Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Behav Brain Res ; 472: 115135, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-38964616

RESUMEN

The present study aimed to evaluate the protective potential of carvacrol against depressive-like behavior and cognitive impairment prompted by chronic unpredictable mild stress (CUMS) in mice. The animals were divided into six groups: Control (non-stressed), CARV (carvacrol at 50 mg/kg, p.o.), FLU (fluoxetine at 10 mg/kg, p.o.), CUMS (stressed), CUMS + CARV and CUMS + FLU, and the groups with CUMS were subjected to different stressors for 28 days. After treatment, mice underwent behavioral testing (open field, forced swimming, sucrose preference, social interaction, novel object recognition and Y-maze) and brain areas were removed for oxidative stress (MDA, nitrite/nitrate and GSH levels) and cytokine (IL-1ß and TNF-α) content assays. The results revealed that CARV administration reversed depressive-like behavior and significantly ameliorated the cognitive deficit induced by CUMS, as well as was able to attenuate oxidative stress (decreased MDA and nitrite/nitrate levels and increased GSH levels). In addition, a significant reduction in hippocampal IL-1ß and TNF-α levels was observed, demonstrating a potential anti-neuroinflammatory activity. Taken together, the antioxidant and anti-inflammatory activities observed in this study indicate that CARV is a promising drug for antidepressant treatment.


Asunto(s)
Conducta Animal , Disfunción Cognitiva , Cimenos , Depresión , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Estrés Psicológico , Animales , Estrés Oxidativo/efectos de los fármacos , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/etiología , Masculino , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Cimenos/farmacología , Cimenos/administración & dosificación , Conducta Animal/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Antidepresivos/farmacología , Antidepresivos/administración & dosificación , Antioxidantes/farmacología , Fluoxetina/farmacología , Fluoxetina/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Interleucina-1beta/metabolismo
2.
Int J Biol Macromol ; 274(Pt 1): 133039, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866285

RESUMEN

Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin. Spray-drying temperature of 120 °C and 3 %(w/w) maltodextrin content maximized both encapsulation efficiency (~97 %) and loading capacity (~53 %). The powder's antioxidant properties were evaluated in two food simulant media: water (SiW) and water-ethanol (SiD). The highest antioxidant activity was observed in SiW for both ABTS•+ (8.2 ± 0.3mgEAG/g) and FRAP (4.1 ± 0.2mgEAG/g) methods because of the reduced release of carvacrol in SiD vs. SiW, as supported by micro- and macrostructural observations by SAXS and microscopy, respectively. An increase from 143 to 157 °C attributable to carvacrol protection and Tg = 44.4 °C (> ambient) were obtained by TGA and DSC, respectively. FT-IR confirmed intermolecular interactions (e.g. -COO- and -NH3+) as well as H-bonding formation. High water solubility (81 ± 3 %), low hygroscopicity (8.8 ± 0.2 %(w/w), poor flowability (CI:45 ± 4), and high cohesiveness (HR:1.8 ± 0.1) between particles were achieved, leading to a powdered antioxidant additive with high potential for applications which required avoiding/reducing oxidation on hydrophilic and hydrophobic food products.


Asunto(s)
Alginatos , Antioxidantes , Quitosano , Cimenos , Emulsiones , Polisacáridos , Polvos , Quitosano/química , Antioxidantes/química , Antioxidantes/farmacología , Cimenos/química , Alginatos/química , Emulsiones/química , Polisacáridos/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química
3.
Heliyon ; 10(10): e31443, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831831

RESUMEN

The objective of this study was to evaluate the antioxidant capacity by spectrophotometric methods, the in vitro and in vivo antifungal effect against Lasiodiplodia theobromae and the constitution of the essential oils (EO) of oregano and thyme in comparison with their commercial counterparts. The results showed by the EOs of extracted thyme (T-EO), commercial thyme (CT-EO), extracted oregano (O-EO) and commercial oregano (CO-EO), demonstrated antioxidant profiles with a radical neutralizing potential (DPPH•) of IC50: 1.11 ± 0.019; 1.08 ± 0.05; 40.56 ± 0.227 and 0.69 ± 0.004 mg/mL, respectively. They also revealed a ferric ion reducing capacity (FRAP) of 93.05 ± 0.52; 97.72 ± 0.42; 21.85 ± 0.57 and 117.24 ± 0.64 mg Eq Trolox/g. A reduction in ß-carotene degradation of 65.71 ± 0.04; 51.97 ± 0.66; 43.58 ± 1.56 and 57.46 ± 1.56 %. A total phenol content (Folin-Ciocalteu) of 132.97 ± 0.77; 141.89 ± 2.56; 152.04 ± 0.10 and 25.66 ± 0.40 mg EGA/g. Chemical characterization performed by gas chromatography mass spectrometry (GC-MS) showed that the respective major components of the samples were thymol (T-EO: 45.78 %), thymol (CT-EO: 43.57 %), alloaromadendrene (O-EO: 25.17 %) and carvacrol (CO-EO: 62.06 %). Regarding antifungal activity, it was evident that at the in vitro level, both commercial EOs had a MIC of 250 ppm while the extracted thyme EO had a MIC of 500 ppm; In vivo studies demonstrated that the application of thyme EO had a behavior similar to the synthetic fungicide, slowing down rot in bananas under storage conditions. Finally, partial least squares discriminant analysis (PLS-DA) and heat maps suggest p-cymene, carvacrol, linalool, eucalyptol, 4-terpineol, (z)-ß-terpineol, alkanhol, caryophyllene, ß-myrcene, d-limonene, α-terpinene, α-terpineol, d-α-pinene, camphene, caryophyllene oxide, δ-cadinene, terpinolene and thymol as relevant biomarkers associated with the assessed bioactive properties demonstrating the potential of extracted essential oils for the development of a botanical biofungicide.

4.
Antibiotics (Basel) ; 13(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786172

RESUMEN

This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.

5.
Future Med Chem ; 16(7): 679-688, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390753

RESUMEN

Background: The scope of the study was to analyze original preclinical studies on the antimicrobial effects of carvacrol and derivatives on the Mycobacterium genus. Materials & methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, four databases (PubMed, Web of Science, SCOPUS and EMBASE) were searched. Results: The search retrieved 392 records, of which 11 papers were selected. Heterogeneity in the techniques and mycobacterial targets was observed. Carvacrol demonstrated synergistic antimycobacterial activity with rifampicin against multidrug-resistant Mycobacterium tuberculosis on membranes and biofilms. In silico approaches showed specific targets in mycobacteria, by inhibition and molecular docking assays, on the enzyme chorismate mutase and the heat shock protein 16.3. Conclusion: Carvacrol has been shown to be a scaffold candidate for future molecules with activity against mycobacteria.


Asunto(s)
Cimenos , Pruebas de Sensibilidad Microbiana , Mycobacterium , Cimenos/farmacología , Cimenos/química , Mycobacterium/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química
6.
Braz J Microbiol ; 55(1): 689-698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227116

RESUMEN

The use of fungicides in the postharvest treatment of mangoes has been widespread due to the incidence of pathogens, but awareness of the health risks arising from their use has increased, driving the search for more sustainable treatments. This study aimed to evaluate the activity of antifungal treatment of seven essential oils (EO) against four fungi that cause postharvest diseases in mangoes and define the minimum inhibitory concentration (MIC) and chemical composition, analyzed by gas chromatography (GC-MS). The results showed that the EOs of oregano, rosemary pepper, cinnamon bark, and clove inhibited 100% of the mycelial growth of the studied pathogens, with MIC ranging from 250 to 2000 µL.L-1. The main compound found in oregano was carvacrol (69.1%); in rosemary and pepper oil, it was thymol (77.2%); cinnamaldehyde (85.1%) was the main constituent of cinnamon bark, and the eugenol (84.84%) in cloves. When evaluating the antifungal activity of these compounds, thymol and carvacrol showed greater inhibitory activity against fungi. Therefore, this study showed the great potential of oregano, clove, rosemary pepper, and cinnamon bark essential oil as alternative treatments to synthetic fungicides in controlling postharvest diseases in mangoes.


Asunto(s)
Cimenos , Fungicidas Industriales , Mangifera , Aceites Volátiles , Timol/farmacología , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Hongos , Pruebas de Sensibilidad Microbiana
7.
Artículo en Inglés | MEDLINE | ID: mdl-38261226

RESUMEN

Abiotic stresses including sodium chloride (NaCl) are known to negatively affect plant physiology and seed germination by inducing a delay in establishing seedling emergence. The monoterpene carvacrol is the major component of several aromatic plants and seems to interfere with germination and seedling growth. In this study, we investigated whether treatment with carvacrol attenuates the effects of NaCl on the germination and development of Allium cepa, where biochemical parameters were also analyzed. The results showed that the Emergency Speed Index (ESI) was near to 2.0 in the control group. The groups NaCl, carvacrol alone, and in co-treatment with NaCl exhibited an ESI below 0.8, being significantly smaller when compared to the control. NaCl + carvacrol significantly inhibited seed emergence in relation to the NaCl group. Only the content of malondialdehyde was significantly altered by NaCl.

8.
Ciênc. rural (Online) ; 54(3): e20220538, 2024. tab, graf
Artículo en Inglés | LILACS-Express | VETINDEX | ID: biblio-1513996

RESUMEN

ABSTRACT: Flora of Türkiye is hosting many Origanum sp. and spp. valuable members of Lamiaceae, including outstanding endemic species and hybrids. Those are having a number of using field and still meeting the World's major demand. Five combinations of artificial Oregano hybrids were cultivated in Ankara ecological conditions. Among those species; Origanum minutiflorum and Origanum onites are endemic to the flora of Türkiye and the combinations of those hybrids are very valuable and unique. According to the field studies results; the highest green herb yield was provided from H4 as 439.93g and from H5 as 317.26 g x plant-1. H2 and H3 showed the highest green leaf yield by 278.69 and 244.33 g x plant-1, and the highest leaf ratio (%). The essential oils ranged between 4.20% and 5.96%, Carvacrol predominated in the hybrids at; 77.90% (H1), 61.26% (H3) and 26.99% (H4), 72.09 (H5), and linalool at 45.86% (H2).


RESUMO: A flora da Turquia hospeda muitos Origanum sp. e spp. membros importantes de Lamiaceae, incluindo espécies endêmicas excepcionais e híbridos. Cinco várias combinações de híbridos artificiais de orégano foram cultivadas em condições ecológicas de Ancara. Entre essas espécies, Origanum minutiflorum e Origanum onites são endêmicos da flora Turca e as combinações desses híbridos são muito valiosas e únicas. De acordo com os resultados dos estudos de campo, a maior produção de erva verde foi obtida do H4 com 439,93g e do H5 com 317,26 g x planta-1. H2 e H3 apresentaram a maior produção de folhas verdes em 278,69 e 244,33 g x planta-1. Os óleos essenciais variaram entre 4,20% e 5,96%. O carvacrol predominou nos híbridos 77,90% (H1), 61,26% (H3) e 26,99% (H4), 72,09 (H5), e linalol a 45,86% (H2).

9.
Nat Prod Res ; : 1-9, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041623

RESUMEN

Lippia origanoides essential oil (LOEO) is extensively utilised as food preservative due to its antioxidant and antibacterial activities. In this study, the antioxidant and anti-ageing effects of LOEO was investigated in vivo using the nematode Caenorhabditis elegans. The gas chromatography-mass spectrometry analysis indicated that the main components of LOEO are carvacrol and thymol. LOEO treatment improved physiological parameters such as pharyngeal pumping, locomotion and body size indicating that is not toxic to C. elegans. LOEO treatment showed antioxidant effect in C. elegans by reducing endogenous ROS (Reactive Oxygen Species) production and increasing their survival under oxidative stress. Finally, LOEO treatment significantly extended C. elegans lifespan and alleviated the paralysis induced by ß-amyloid peptide overexpression in the muscle. This work demonstrates for the first time LOEO antioxidant and anti-ageing properties on an organism level providing a valuable proof of principle to support further studies in the development of nutraceuticals or antioxidant phytotherapy.

10.
Vet Sci ; 10(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38133246

RESUMEN

This study assessed the impact of a mixture of garlic (Allium sativum) and oregano (Origanum vulgare) essential oils (EOGOs) on in vitro dry matter digestibility (IVDMD) and in vivo apparent nutrient digestibility. Different EOGO inclusion levels were evaluated to assess the dose response and potential effects of the mixture. Three EOGO inclusion levels (0.5, 0.75, and 1 mL/kg of incubated dry matter) were evaluated in vitro, while four treatments (0.5, 0.75, and 1 mL/day of EOGO and a control group) were tested in vivo on 12 West African sheep. A randomized controlled trial was conducted using a 4 × 4 design. Blood parameters (glucose, blood urea nitrogen, and ß-hydroxybutyrate) were measured to observe the effect of EOGO on the metabolism. The results showed that the inclusion of EOGO significantly enhanced IVDMD at low levels (p < 0.052) compared with the highest levels in treatments containing 0.5 and 0.75 mL/kg of EOGO dry matter. A higher intake of dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF) (p < 0.05) was observed in the in vivo diets with the inclusion of EOGO. In terms of in vivo apparent digestibility, significant differences were found among treatments in the digestibility coefficients of DM, CP, and NDF. EOGO inclusion increased the digestibility of DM. CP digestibility displayed a cubic effect (p < 0.038), with the lowest values of digestibility observed at 1 mL EOGO inclusion. Additionally, NDF digestibility showed a cubic effect (p < 0.012), with the highest value obtained at 0.75 mL of EOGO inclusion. The inclusion levels above 0.75 mL EOGO showed a cubic effect, which indicates that higher concentrations of EOGO may not be beneficial for the digestibility of CP and NDF. Although no significant difference was observed in total digestible nutrients, a linear trend was observed (p < 0.059). EOGO improved the intake of DM, CP, and NDF. EOGO supplementation improved the digestibility of DM and NDF, with optimal levels observed at 0.5 mL/day. No significant effects were observed in the blood parameters. These results suggest that EOGO has the potential as an additive in ruminal nutrition to improve food digestibility and serve as an alternative to antibiotic additives. The use of EOGO potentially improves fiber digestion and may reduce the use of antibiotics in livestock production. Garlic (A. sativum) and oregano (O. vulgare) essential oils effectively modulated fiber digestibility at 0.75 mL/day. Garlic (A. sativum) and oregano (O. vulgare) essential oils have the potential to improve digestibility at low inclusion levels and serve as an alternative to antibiotic additives. The effectiveness of essential oils is greater in a mixture and at lower doses.

11.
Microorganisms ; 11(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38138087

RESUMEN

Essential oils are known to exhibit diverse antimicrobial properties, showing their value as a natural resource. Our work aimed to investigate the primary mode of action of Cuban Lippia graveolens (Kunth) essential oil (EO) against Salmonella enterica subsp. enterica serovar Typhimurium (S. enterica ser. Typhimurium). We assessed cell integrity through various assays, including time-kill bacteriolysis, loss of cell material with absorption at 260 and 280 nm, total protein leakage, and transmission electron microscopy (TEM). The impact of L. graveolens EO on membrane depolarization was monitored and levels of intracellular and extracellular ATP were measured by fluorescence intensity. The minimum inhibitory and bactericidal concentrations (MIC and MBC) of L. graveolens EO were 0.4 and 0.8 mg/mL, respectively. This EO exhibited notable bactericidal effects on treated cells within 15 min without lysis or leakage of cellular material. TEM showed distinct alterations in cellular ultrastructure, including membrane shrinkage and cytoplasmic content redistribution. We also observed disruption of the membrane potential along with reduced intracellular and extracellular ATP concentrations. These findings show that L. graveolens EO induces the death of S. enterica ser. Typhimurium, important information that can be used to combat this foodborne disease-causing agent.

12.
Antibiotics (Basel) ; 12(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37887240

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen known for its ability to form biofilms, leading to persistent infections and antibiotic resistance. The limited effective antibiotics have encouraged the development of innovative strategies such as using essential oils and their constituents. This study evaluated the efficacy of oregano (Lippia graveolens) essential oil (OEO) and its terpene compounds, carvacrol and thymol, in inhibiting A. baumannii biofilms. These treatments showed a minimum inhibitory concentration of 0.6, 0.3, and 2.5 mg/mL and a minimum bactericidal concentration of 1.2, 0.6, and 5 mg/mL, respectively. Sub-inhibitory doses of each treatment and the OEO significantly reduced biofilm biomass and the covered area of A. baumannii biofilms as measured by fluorescence microscopy. Carvacrol at 0.15 mg/mL exhibited the most potent efficacy, achieving a remarkable 95% reduction. Sub-inhibitory concentrations of carvacrol significantly reduced the biofilm formation of A. baumannii in stainless steel surfaces by up to 1.15 log CFU/cm2 compared to untreated bacteria. The OEO and thymol exhibited reductions of 0.6 log CFU/cm2 and 0.4 log CFU/cm2, respectively, without affecting cell viability. Moreover, the terpenes inhibited twitching motility, a crucial step in biofilm establishment, with carvacrol exhibiting the highest inhibition, followed by OEO and thymol. The study provides valuable insights into the potential of terpenes as effective agents against A. baumannii biofilms, offering promising avenues for developing novel strategies to prevent persistent infections and overcome antibiotic resistance.

13.
Molecules ; 28(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764323

RESUMEN

In recent years, the determination of the antioxidant and antibacterial activity of essential oils in wild plants, such as Mexican oregano (Lippia graveolens Kunth), has become increasingly important. The objective was to compare the antioxidant and antibacterial activity of Mexican oregano essential oil obtained from plants occurring naturally in semiarid areas (Wild1 and Wild2), and those cultivated in the field (CField) and greenhouse (CGreenhouse) in northern Mexico. The Mexican oregano essential oil extraction was performed using the hydrodistillation method, the antioxidant activity was determined using the ABTS method, and the antibacterial activity was assessed through bioassays under the microwell method at nine different concentrations. The aim was to determine the diameter of the inhibition zone and, consequently, understand the sensitivity level for four bacterial species. The results revealed an antioxidant activity ranging from 90% to 94% at the sampling sites, with Wild1 standing out for having the highest average antioxidant activity values. Likewise, six out of the nine concentrations analyzed showed some degree of sensitivity for all the sampling sites. In this regard, the 25 µL mL-1 concentration showed the highest diameter of inhibition zone values, highlighting the Wild2 site, which showed an average diameter greater than 30 mm for the four bacteria tested. Only in the case of S. typhi did the CGreenhouse site surpass the Wild2, with an average diameter of the inhibition zone of 36.7 mm. These findings contribute to the search for new antioxidant and antibacterial options, addressing the challenges that humanity faces in the quest for opportunities to increase life expectancy.

14.
Biomed Pharmacother ; 165: 115189, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37481932

RESUMEN

Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 µg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.


Asunto(s)
Acinetobacter baumannii , Timol , Animales , Chlorocebus aethiops , Timol/farmacología , Acinetobacter baumannii/genética , Transcriptoma , Células Vero , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Mamíferos
15.
Nanomedicine (Lond) ; 18(4): 331-342, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37140262

RESUMEN

Aim: To formulate a carvacryl acetate nanoemulsion (CANE) and test its antischistosomal activity. Materials & methods: CANE was prepared and tested in vitro on Schistosoma mansoni adult worms and both human and animal cell lines. Next, CANE was administered orally to mice infected with either a prepatent infection or a patent infection of S. mansoni. Results: CANE was stable during 90 days of analysis. CANE showed in vitro anthelmintic activity, and no cytotoxic effects were observed. In vivo, CANE was more effective than the free compounds in reducing worm burden and egg production. Treatment with CANE was more effective for prepatent infections than praziquantel. Conclusion: CANE improves antiparasitic properties and may be a promising delivery system for schistosomiasis treatment.


Asunto(s)
Praziquantel , Schistosoma mansoni , Ratones , Humanos , Animales , Monoterpenos , Antiparasitarios
16.
Foods ; 12(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37174440

RESUMEN

This study aimed to develop nanoemulsions with a focus on improving the bioactivity of oregano essential oil (OEO), carvacrol and thymol for possible food applications. Nanoemulsions were prepared with acoustic cavitation using ultrasound. The nanodroplets had average diameters of 54.47, 81.66 and 84.07 nm for OEO, thymol and carvacrol, respectively. The main compound in OEO was carvacrol (74%), and the concentration in the nanoemulsions was 9.46 mg/mL for OEO and the isolated compounds. The effects of droplet size reduction on antioxidant, antibacterial and antibiofilm activity were evaluated. Regarding antioxidant activity, the nanoemulsions performed better at the same concentration, with inhibitions >45% of the DPPH radical and significant differences compared with their non-nanoemulsified versions (p < 0.05). The nanoemulsions' minimum inhibitory concentration (MIC) and non-nanoemulsified compounds were evaluated against foodborne pathogens with inhibition ranges between 0.147 and 2.36 mg/mL. All evaluated pathogens were more sensitive to nanoemulsions, with reductions of up to four times in MIC compared with non-nanoemulsified versions. E. coli and S. Enteritidis were the most sensitive bacteria to the carvacrol nanoemulsion with MICs of 0.147 mg/mL. Concerning antibiofilm activity, nanoemulsions at concentrations up to four times lower than non-nanoemulsified versions showed inhibition of bacterial adhesion >67.2% and removal of adhered cells >57.7%. Overall, the observed effects indicate that droplet size reduction improved the bioactivity of OEO, carvacrol and thymol, suggesting that nanoemulsion-based delivery systems for natural compounds may be alternatives for food applications compared with free natural compounds.

17.
Food Res Int ; 168: 112748, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37120202

RESUMEN

Carvacrol is an antimicrobial agent that shows potential for eliminating microorganisms in vegetables, increasing food safety. However, intense odor and low water solubility of carvacrol are limiting factors for its application for fresh vegetables sanitization, which can be overcome by nanotechnology. Two different nanoemulsions containing carvacrol (11 mg/mL) were developed by probe sonication: carvacrol-saponin nanoemulsion (CNS) and carvacrol-polysorbate 80 nanoemulsion (CNP). Formulations presented appropriate droplet sizes (from 74.7 nm to 168.2 nm) and high carvacrol encapsulation efficiency (EE) (from 89.5 % to 91.5 %). CNS showed adequate droplet size distribution (PDI < 0.22) and high zeta potential values (around -30 mV) compared to CNP, with saponin chosen for the following experiments. Carvacrol nanoemulsions presented Bacterial Inactivation Concentration (BIC) against the Salmonella cocktail from 5.51 to 0.69 mg/mL and for the E. coli cocktail from 1.84 to 0.69 mg/mL. Among all tested nanoemulsions, CNS1 presented the lowest BIC (0.69 mg/mL) against both bacterial cocktails. Damage to bacterial cells in lettuce treated with nanoemulsion was confirmed by scanning electron microscopy. For lettuce sanitization, CNS1 showed a similar effect to unencapsulated carvacrol, with a high bacterial reduction (>3 log CFU/g) after lettuce immersion for 15 min at 2 × BIC. Using the same immersion time, the CNS1 (2 × BIC) demonstrated equal or better efficacy in reducing both tested bacterial cocktails (>3 log CFU/g) when compared to acetic acid (6.25 mg/mL), citric acid (25 mg/mL), and sodium hypochlorite solution (150 ppm). Lettuce immersed in CNS1 at both concentrations (BIC and 2 × BIC) did not change the color and texture of leaves, while the unencapsulated carvacrol at 2 × BIC darkened them and reduced their firmness. Consequently, carvacrol-saponin nanoemulsion (CNS1) proved to be a potential sanitizer for lettuce.


Asunto(s)
Escherichia coli O157 , Lactuca , Lactuca/microbiología , Microbiología de Alimentos , Escherichia coli O157/fisiología , Recuento de Colonia Microbiana , Verduras , Emulsionantes
18.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37107119

RESUMEN

Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.

19.
Reprod Domest Anim ; 58(6): 860-866, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029731

RESUMEN

The addition of antioxidants in boar semen is an alternative to mitigate the reduction of sperm quality during preservation. To evaluate the effect of carvacrol on cooling of boar semen. Fifteen ejaculates from five boars were extended in MR-A® with 0, 5, 10, 15, 15, 20, 25 and 30 µM of carvacrol (C) and were cooled for 5 days at 16°C. Sperm motility and kinetics were evaluated with computer-assisted semen analysis (CASA). At 0 and 96 h, membrane functionality was determined by hypoosmotic test; reactive oxygen species (ROS) production and total antioxidant capacity (TAC) by spectrofluorimetry and mitochondrial membrane potential (Δ¥M) by flow cytometry. Linear models, regression analysis and comparison of means by Duncan test, were conducted. The addition of carvacrol did not influence sperm motility, but at low concentrations decreased ROS production, whereas 30 µM C reduced the membrane functionality and 25 µM C decreased Δ¥M. In addition, regression coefficients showed that C produced a lower rate of decrease in different parameters of sperm motility and kinetics. During cooling there is a reduction in sperm quality due to the excessive production of ROS, generating oxidative stress and affecting cell permeability and functionality. In this study, it was possible to demonstrate the protective activity of C as a molecule capable of neutralizing free radicals. In addition, it has been proposed that C is also capable of reducing peroxyl radicals, superoxide radicals, hydrogen peroxide and nitric oxide. Carvacrol can mitigate the reduction of boar semen quality during the storage period under cooling conditions. Likewise, it can reduce ROS production and modulate the mitochondrial activity of porcine sperm.


Asunto(s)
Preservación de Semen , Semen , Porcinos , Masculino , Animales , Análisis de Semen/veterinaria , Especies Reactivas de Oxígeno , Motilidad Espermática , Espermatozoides , Antioxidantes , Preservación de Semen/veterinaria , Criopreservación/veterinaria
20.
Zygote ; 31(2): 173-179, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36804925

RESUMEN

Carvacrol (C10H14O), an efficient phenolic antioxidant substance for several cell types, may become a useful antioxidant for female germ cells and embryo culture. This study investigates the effects of carvacrol supplementation on bovine oocytes in in vitro maturation (IVM) and embryo production. In total, 1222 cumulus-oocyte complexes were cultured in TCM-199+ alone (control treatment) or supplemented with carvacrol at the concentrations of 3 µM (Carv-3), 12.5 µM (Carv-12.5), or 25 µM (Carv-25). After IVM, the oocytes were subjected to in vitro fertilization and embryo production, and the spent medium post-IVM was used for evaluating the levels of reactive oxygen species and the antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate and 2,2'-azinobis-3-ethyl-benzothiozoline-6-sulphonic acid quantification). A greater (P < 0.05) antioxidant potential was observed in the spent medium of all carvacrol-treated groups compared with the control medium. Moreover, the addition of carvacrol to the maturation medium did not affect (P > 0.05) blastocyst production on days 7 and 10 of culture; however, the total number of cells per blastocyst was reduced (P < 0.05) in two carvacrol-treated groups (Carv-3 and Carv-25). In conclusion, carvacrol demonstrated a high antioxidant capacity in the spent medium after oocyte maturation; however, although embryo production was not affected, in general, carvacrol addition to IVM medium reduced the total number of cells per blastocyst. Therefore, due to the high antioxidant capacity of carvacrol, new experiments are warranted to investigate the beneficial effects of lower concentrations of carvacrol on embryo production in cattle and other species.


Asunto(s)
Antioxidantes , Técnicas de Maduración In Vitro de los Oocitos , Bovinos , Femenino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oogénesis , Oocitos , Fertilización In Vitro/veterinaria , Blastocisto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA