Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 20(6): e202300319, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37183173

RESUMEN

Sphaeranthus africanus L. is native in Vietnam. Little is known about α-glucosidase inhibition of Sphaeranthus africanus and its isolated compounds. A bioactive-guided isolation was applied to the Vietnamese Sphaeranthus africanus to find α-glucosidase inhibitory components. Eight compounds were detected and structurally elucidated. They are 3-angeloyloxy-5-[2'',3''-epoxy-2''-methylbutanoyloxy]-7-hydroxycarvotacetone, 3-angeloyloxy-5-[3''-chloro-2''-hydroxy-2''-methylbutanoyloxy]-7-hydroxycarvotacetone, 3-angeloyloxy-5-[2''R,3''R-dihydroxy-2''-methyl-butanoyloxy]-7-hydroxycarvotacetone, 3-angeloyloxy-5-[2''S,3''R-dihydroxy-2''-methylbutanoyloxy]-7-hydroxycarvotacetone, 3-angeloyloxy-5-[2''S,3''S-dihydroxy-2''-methylbutanoyloxy]-7-hydroxycarvotacetone, 5-angeloyloxy-7-hydroxy-3-tigloyloxycarvotacetone, 3-O-methylquercetin, and chrysosplenol D. Their chemical structures were elucidated by extensive 1D and 2D NMR analysis and high-resolution mass spectroscopy as well as comparisons in literature. 3-Angeloyloxy-5-[2''S,3''S-dihydroxy-2''-methylbutanoyloxy]-7-hydroxycarvotacetone is a new compound. Isolated compounds were evaluated for the α-glucosidase inhibition. Isolated compounds showed moderate activity with IC50 values ranging from 128.9-274.3 µM while others are weak. A molecular docking study was conducted, indicating that isolated compounds are potent α-glucosidase inhibitory compounds.


Asunto(s)
Asteraceae , Extractos Vegetales , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Asteraceae/química , Componentes Aéreos de las Plantas/química , Estructura Molecular
2.
Nat Prod Res ; : 1-5, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973941

RESUMEN

A new carvotacetone sphaeranthone A and four known compounds 3-angeloyloxy-5-[2″,3″-epoxy-2″-methylbutanoyloxy]-7-hydroxycarvotacetone (2), 3-angeloyloxy-5-[3″-chloro-2″-hydroxy-2″-methylbutanoyloxy]-7-hydroxycarvotacetone (3), chrysosplenol D (4), and 3-O-methylquercetin (5) were isolated from leaves of Sphaeranthus africanus growing in Vietnam. Their chemical structures were elucidated by extensive 1D and 2D NMR analysis and high-resolution mass spectroscopy as well as comparisons in literature. Compounds 1-3 were evaluated for the alpha-glucosidase inhibition. They showed moderate activity with IC50 values of 103 ± 1.7, 146.8 ± 2.5, 49 ± 0.8 µg/mL, respectively.

3.
Nat Prod Res ; 35(21): 3599-3607, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31997645

RESUMEN

In an attempt to synthesize carvotacetone analogues, new 3-O-benzyl-carvotacetone (10) and previously reported 3-hydroxy-2-isopropyl-5-methyl-p-benzoquinone (11) were synthesized from piperitone (7). In this work, we describe the synthesis of 10 and other analogues from 7. Luche reduction of 7 to cis-piperitol (8), followed by benzylation yielded 3-O-benzyl-piperitol (9). Riley oxidation of 9 afforded corresponding ketone 10, 11 and 3-benzyloxy-4-isopropylcyclohex-1-enecarbaldehyde (12). Structures of these compounds were determined based on NMR, IR and LC-MS spectral data. Compound 11, exhibited antiplasmodial activities against chloroquine-sensitive (D6) and resistant (W2) strains of Plasmodium falciparum with IC50 values of 0.697 and 0.653 µg/mL, respectively. In addition, compound 11 was active against Cryptococcus neoformans with an IC50 value of 3.11 µg/mL, compared to reference standard fluconazole (IC50 value of 1.87 µg/mL), while 10 and 12 were inactive against both organisms. This is the first report of the antiplasmodial and anticryptococcal activity of compound 11.


Asunto(s)
Antiinfecciosos , Antimaláricos , Antiinfecciosos/farmacología , Antimaláricos/farmacología , Benzoquinonas/farmacología , Ciclohexanonas , Plasmodium falciparum
4.
Phytomedicine ; 62: 152951, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31136898

RESUMEN

BACKGROUND: Sphaeranthus africanus has been used in traditional Vietnamese medicine to treat sore throat, and to relieve pain and swelling. However, the anti-inflammatory activity of this plant had not yet been investigated. Previously, we isolated five carvotacetones (1-5) from this plant that displayed cytotoxicity against several cancer cell lines. PURPOSE: The objective of this study was to isolate further constituents from S. africanus and to investigate the anti-inflammatory activity of all constituents. Furthermore, the anti-proliferative activity of the newly isolated compounds was evaluated. STUDY DESIGN AND METHODS: Compounds were isolated from the upper parts of S. africanus by chromatographic methods. Structures were determined using spectroscopic techniques, like NMR and MS. All nine compounds isolated from S. africanus were evaluated for inhibitory activity against COX-1 and COX-2 isoenzymes in-vitro, COX-2 mRNA expression and influence on NO production. The anti-proliferative activities of newly isolated compounds (6-9) were evaluated by XTT viability assay with four cancer cell lines, namely CCRF-CEM, MDA-MB-231, HCT-116, and U-251 cells. RESULTS: Two diastereomeric carvotacetones (3-angeloyloxy-5-[2″S,3″R-dihydroxy-2″-methyl-butanoyloxy]-7-hydroxycarvotacetone (6) and 3-angeloyloxy-5-[2″R,3″R-dihydroxy-2″-methyl-butanoyloxy]-7-hydroxycarvotacetone (7), asperglaucide (8) and chrysoplenol D (9) were isolated from S. africanus. COX-1 and COX-2 assays of compounds 1-9 revealed that compounds 1 and 2 possess potent and selective COX-2 inhibitory activity with IC50 values of 3.6 and 0.5 µM, respectively. COX-2 gene expression assay showed that some carvotacetones exhibited inhibitory effects on COX-2 gene expression in THP-1 macrophages. Compound 4 is the most active compound inhibiting the synthesis of COX-2 by 55% at 2.06 µM. In the iNOS assay, all seven carvotacetones inhibited NO production in BV2 and RAW cell lines with IC50 values ranging from 0.2 to 2.9 µM. Compound 4 showed potent inhibitory activity with IC50 values of 0.2 µM in both BV2 and RAW cell lines. Molecular docking studies revealed the binding orientations of 1 and 2 in the active sites of COX-2. XTT assay of the newly isolated compounds revealed that the two isomeric carvotacetones (6-7) exhibited considerable anti-proliferative activity against four cancer cell lines (CCRF-CEM, MDA-MB-231, HCT-116, U-251) with IC50 values ranging from 1.23 to 8 µM. CONCLUSION: For the first-time, the diastereomeric carvotacetones (6-7) were isolated as separate compounds, and their anti-proliferative activity was determined. Selective COX-2 inhibitory, COX-2 mRNA expression and NO production inhibitory activities by some of the major constituents of S. africanus supports the traditional medical application of this plant for the treatment of inflammation-related disorders.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Asteraceae/química , Inhibidores de la Ciclooxigenasa/farmacología , Animales , Antiinflamatorios/química , Antineoplásicos Fitogénicos/química , Línea Celular , Línea Celular Tumoral , Ciclooxigenasa 2/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/química , Evaluación Preclínica de Medicamentos , Humanos , Macrófagos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Componentes Aéreos de las Plantas/química , Plantas Medicinales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA