Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.302
Filtrar
1.
Biomaterials ; 313: 122793, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226655

RESUMEN

Numerous nanoparticles have been utilized to deliver Fe2+ for tumor ferroptosis therapy, which can be readily converted to Fe3+via Fenton reactions to generate hydroxyl radical (•OH). However, the ferroptosis therapeutic efficacy of large tumors is limited due to the slow conversion of Fe3+ to Fe2+via Fenton reactions. Herein, a strategy of intratumor Fe3+/2+ cyclic catalysis is proposed for ferroptosis therapy of large tumors, which was realized based on our newly developed hollow mesoporous iron sesquioxide nanoparticle (HMISN). Cisplatin (CDDP) and Gd-poly(acrylic acid) macrochelates (GP) were loaded into the hollow core of HMISN, whose surface was modified by laccase (LAC). Fe3+, CDDP, GP, and LAC can be gradually released from CDDP@GP@HMISN@LAC in the acidic tumor microenvironment. The intratumor O2 can be catalyzed into superoxide anion (O2•-) by LAC, and the intratumor NADPH oxidases can be activated by CDDP to generate O2•-. The O2•- can react with Fe3+ to generate Fe2+, and raise H2O2 level via the superoxide dismutase. The generated Fe2+ and H2O2 can be fast converted into Fe3+ and •OH via Fenton reactions. The cyclic catalysis of intratumor Fe3+/2+ initiated by CDDP@GP@HMISN@LAC can be used for ferroptosis therapy of large tumors.


Asunto(s)
Ferroptosis , Hierro , Ferroptosis/efectos de los fármacos , Animales , Catálisis , Humanos , Hierro/química , Línea Celular Tumoral , Nanopartículas/química , Porosidad , Ratones , Cisplatino/química , Cisplatino/uso terapéutico , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Ratones Endogámicos BALB C , Peróxido de Hidrógeno/química , Microambiente Tumoral/efectos de los fármacos , Ratones Desnudos , Femenino
2.
Biomaterials ; 312: 122755, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39151270

RESUMEN

Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.


Asunto(s)
Materiales Biomiméticos , Cobre , Humanos , Cobre/química , Materiales Biomiméticos/química , Catálisis , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Cerio/química , Línea Celular Tumoral , Animales , Química Clic/métodos , Biomimética/métodos , Ratones
3.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003031

RESUMEN

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Asunto(s)
Carbón Orgánico , Carbón Orgánico/química , Halogenación , Oxidación-Reducción , Dibromuro de Etileno/química , Modelos Químicos
4.
J Environ Sci (China) ; 147: 22-35, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003042

RESUMEN

High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.


Asunto(s)
Arcilla , Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Arcilla/química , Suelo/química , Catálisis , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Calor
5.
J Environ Sci (China) ; 149: 164-176, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181631

RESUMEN

Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.


Asunto(s)
Cerio , Cobalto , Oxidación-Reducción , Titanio , Tolueno , Titanio/química , Cobalto/química , Catálisis , Tolueno/química , Cerio/química , Modelos Químicos , Procesos Fotoquímicos
6.
J Environ Sci (China) ; 149: 209-220, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181635

RESUMEN

Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.


Asunto(s)
Contaminantes Atmosféricos , Geles , Contaminantes Atmosféricos/química , Geles/química , Atmósfera/química , Adsorción , Dióxido de Carbono/química , Restauración y Remediación Ambiental/métodos , Dióxido de Silicio/química
7.
Angew Chem Int Ed Engl ; : e202413633, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312192

RESUMEN

We have developed a new type of nanoparticles with potent antitumor activity photoactivatable via the combination of molecular photoswitching of spiropyran (SP) and enzymatic reaction of glucose oxidase (GOx). As two key processes involved therein, Fe(III)-to-Fe(II) photoreduction in Fe(III) metal-organic frameworks (MOFs) brings about the release of free Fe2+/Fe3+ while the photoswitching of SP to merocyanine (MC) unlocks the enzymatic activity of GOx that was pre-passivated by SP. The release of free Fe3+ boosts its hydrolysis and therefore enables the acidification of microenvironment, which is further reinforced by one of the products of the GOx-mediated glucose oxidation reaction, gluconic acid (GlcA). Based on the generation of Fe2+ and acidic milieu together with another product of the oxidation reaction, hydrogen peroxide (H2O2), these two processes jointly present triple enabling factors for generating lethal hydroxyl radicals (•OH) species via Fenton reactions and therefore oxidative stress capable of inhibiting tumor. The antitumor potency of such nanoparticle is verified in tumor-bearing model mice in vivo, proclaiming its potential as a potent and safe agent based on the unique mechanism of optically manipulating enzyme activity for synergistic antitumor therapeutics with high spatial precision, enhanced efficacy and minimized side effects.

8.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274985

RESUMEN

As "chemical chameleons," organosulfones have been widely applied in various desulfonylative functionalization reactions. However, the desulfonylative functionalization of (hetero)arylsulfones through the cleavage of inert C(sp2)-SO2 bonds remains a challenging and underexplored task. Over the past twenty years, the use of (hetero)arylsulfones as arylation reagents has gradually gained attention in diverse cross-coupling reactions under specific catalytic conditions, especially in transition metal-catalysis and photocatalysis chemistry. In this review, we discuss the representative accomplishments and mechanistic insights achieved in desulfonylative reactions of inactive C(sp2)-SO2 bonds in (hetero)arylsulfones, including: (i) transition-metal-catalyzed desulfonylative cross-coupling reactions and (ii) photo-/electrocatalytic radical desulfonylative coupling reactions. We anticipate that this review will provide an overall perspective in this area to a general audience of researchers and stimulate further innovative strategies for desulfonylative functionalization of inert arylsulfones.

9.
Int J Biol Macromol ; 280(Pt 1): 135688, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288853

RESUMEN

Prenyltransferases play a pivotal role in the isoprenoid biosynthesis and transfer in insects. In the current study, two classes of prenyltransferases (MhieFPPS1 and MhieFPPS2, MhiePFT-ß and MhiePF/GGT-α) were identified in the leaf beetle, Monolepta hieroglyphica. Phylogenetic analysis revealed that MhieFPPS1, MhieFPPS2, MhiePFT-ß and MhiePF/GGT-α were clustered in one clade with homologous in insects. Moreover, MhieFPPS2 lacked one aspartate-rich motif SARM. Molecular docking and kinetic analysis indicated that the (E)-GPP displayed higher affinity with MhieFPPS1 compared to DMAPP within the binding pocket containing metal binding sites (MG). The other class of prenyltransferases (MhiePFT-ß and MhiePF/GGT-α) lack the aspartate-rich motif. Docking results indicated that binding site of MhiePFT-ß involved divalent metal ions (Zn) and bound farnesyl or geranylgeranyl. In vitro, only recombiant MhieFPPS1 could catalyze the formation of (E)-farnesol against different combination of substrates, including IPP/DMAPP and IPP/(E)-GPP, highlighting the importance of SARM for enzyme activities. Kinetic analysis further indicated that MhiePFT-ß operated via Zn2+-dependent substrate binding, while MhiePF/GGT-α stabilized the ß-subunit during catalytic reaction. These findings contribute to a valuable insight in to understanding of the mechanisms involved in the biosynthesis and delivery of isoprenoid products in beetles.

10.
Chemistry ; : e202402679, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298687

RESUMEN

The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 µs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than the RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1% in aerated solution. Particularly, the RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for the RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.

11.
ACS Nano ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301666

RESUMEN

Lithiation, a process of inserting lithium ions into a host material, is revolutionizing nanomaterials synthesis and structural engineering as well as enhancing their performance across emerging applications, particularly valuable for large-scale synthesis of high-quality low-dimensional nanomaterials. Through a systematic investigation of the synthetic strategies and structural changes induced by lithiation, this review aims to offer a comprehensive understanding of the development, potential, and challenges associated with this promising approach. First, the basic principles of lithiation/delithiation processes will be introduced. Then, the recent advancements in the lithiation-induced structure changes of nanomaterials, such as morphology tuning, phase transition, defect generation, etc., will be stressed, emphasizing the importance of lithiation in structural modulation of nanomaterials. With the tunable structures induced by the lithiation, the properties and performance in electrochemical, photochemical, electronic devices, bioapplications, etc. will be discussed, followed by outlining the current challenges and perspectives in this research area.

12.
ChemSusChem ; : e202401395, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302255

RESUMEN

A semi-heterogeneous photocatalytic system was assembled through encapsulation of a lipophilic porphyrin in stabilized polydiacetylene micelles. The colloidal nanohybrid catalyst was valorized in the aerobic photo-oxidation of sulfides to the corresponding sulfoxides. Micelles behaved as nanoreactors by creating a favorable environment for the photo-activation of oxygen nearby thioethers and subsequent sulfoxidation. The process operates selectively under visible light and air atmosphere, with low catalytic loading and in water as the only solvent.

13.
Angew Chem Int Ed Engl ; : e202411249, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315673

RESUMEN

The quest for polymers that would be at the same time bio-based and degradable after usage, in addition to offering chemical post-modification options, remains a daunting challenge in contemporary polymer science. Despite advances in polymer chemistry, attempts at controlling the chain-growth polymerization of muconate esters remain unexplored. Here we show that dialkyl muconates can be rapidly polymerized by organocatalyzed group transfer polymerization (O-GTP). O-GTP is conducted to completion at room temperature in toluene within a few minutes, using 1-ethoxy-1-(trimethylsiloxy)-1,3-butadiene (ETSB) as initiator and 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-phosphoranylidenamino]-25,45 catenadi(phosphazene) (P4-t--Bu) as catalyst. Chain extension experiments and synthesis of all muconate-type block copolymers can also be achieved. Furthermore, polymuconates are amenable to facile post-polymerization modification reactions. This is showcased through the hydrolysis of the ester side chains leading to well-defined poly(muconic acid), and by epoxidation of the C=C double bonds of the main chain. Last but not least, these internal alkene groups can be selectively cleaved by ozonolysis, demonstrating the upcyclability of polymuconates under oxidative conditions. This work demonstrates that polymuconates constitute a unique platform of bio-based polymers, easily modifiable in addition to being chemically degradable under user friendly experimental conditions.

14.
Angew Chem Int Ed Engl ; : e202415792, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317646

RESUMEN

This integrated computational and experimental study comprehensively examines the viability of competing inner-sphere electron transfer (ISET) and outer-sphere electron transfer (OSET) processes in [Cu(dap)2]+-mediated atom-transfer radical additions (ATRA) of olefins and CF3SO2Cl that can deliver both R-SO2Cl and R-Cl products. Five sterically- and electronically-varied representative alkenes were selected from which to explore and reconcile the range of experimentally observed outcomes. Findings are consistent with photoexcited [Cu(dap)2]+ initiating photoelectron transfer via ISET and the subsequent regeneration of the oxidized catalyst via single-electron transfer in the ground state via ISET to close the catalytic cycle and liberate products. R-SO2Cl/R-Cl product ratios appear to be primarily governed by the relative rates of direct catalyst regeneration {i.e., [Cu(dap)2SO2Cl]•+ + R•} and ligand exchange {i.e., [Cu(dap)2SO2Cl]•+ + Cl- }. Through this work, a more consistent and more complete conceptual framework has been developed to better understand this chemistry and how catalyst regeneration occurs. It is this important ground state process, which closes the catalytic cycle, and ultimately controls the enantioselectivity of ATRA reactions employing chiral copper photocatalysts.

15.
Angew Chem Int Ed Engl ; : e202416467, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317956

RESUMEN

The research on electrocatalytic carbon dioxide reduction (ECR) catalysts using renewable energy is particularly crucial in energy conversion studies, especially for viable hydrocarbon production. This study employs density functional theory calculations to screen a series of non-radioactive lanthanide two-dimensional metal-organic frameworks (MOFs) for product selectivity in ECR. Based on theoretical screening, our focus is on a lutetium (Lu)-based conducting MOF (Lu-HHTP), which exhibits a Faradaic efficiency of approximately 77% for methane (CH4) production and maintains a stable current density of -280 mA/cm2 at -1.1 V vs. RHE. In situ electrochemical experiments and material characterization demonstrate that the Lu sites possess high coordination stability and structural recoverability during catalytic CO2 reduction, attributed to the overlap between Lu's f-orbitals and the π*-orbitals of the ligand O, and the formation of back bonding orbitals between the f-orbitals of Lu and the π* orbitals of CO contribute increasing CH4 selectivity and lowering the potential. This study leverages rare-earth MOF-type materials, offering a novel approach to addressing low conductivity and stabilizing rare-earth materials, thereby establishing a theoretical framework for the conversion of linearly adsorbed *CO into hydrocarbons.

16.
Angew Chem Int Ed Engl ; : e202407018, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300819

RESUMEN

Bifunctional catalase-peroxidase (KatG) features a posttranslational methionine-tyrosine-tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen-linked hydroperoxyl adduct (MYW-OOH) in Mycobacterium tuberculosis KatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW-OOH-containing KatG protein, we investigated the chemical stability and functional impact of MYW-OOH. We discovered that MYW-OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW-OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, the N-linked hydroperoxyl group is releasable. KatG with MYW-OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role of N-linked hydroperoxyl modifications in enzymatic function.

17.
Natl Sci Rev ; 11(10): nwae252, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39301064

RESUMEN

While atomically precise metal nanoclusters (NCs) with unique structures and reactivity are very promising in catalysis, the spatial resistance caused by the surface ligands and structural instability poses significant challenges. In this work, Au25(Cys)18 NCs are encapsulated in multivariate metal-organic frameworks (MOFs) to afford Au25@M-MOF-74 (M = Zn, Ni, Co, Mg). By the MOF confinement, the Au25 NCs showcase highly enhanced activity and stability in the intramolecular cascade reaction of 2-nitrobenzonitrile. Notably, the interaction between the metal nodes in M-MOF-74 and Au25(Cys)18 is able to suppress the free vibration of the surface ligands on the Au25 NCs and thereby improve the accessibility of Au sites; meanwhile, the stronger interactions lead to higher electron density and core expansion within Au25(Cys)18. As a result, the activity exhibits the trend of Au25@Ni-MOF-74 > Au25@Co-MOF-74 > Au25@Zn-MOF-74 > Au25@Mg-MOF-74, highlighting the crucial roles of microenvironment modulation around the Au25 NCs by interaction between the surface ligands and MOF hosts.

18.
Small ; : e2405150, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301975

RESUMEN

Zeolites with band-like charge transport properties have exhibited their potential activities in sensing, optics, and electronics. Herein, a precisely designed Cu@ZSM-5 catalyst is presented with an ultra-wide bandgap of 4.27 eV, showing excellent photocatalytic activity in hydroxylation of benzene with benzene conversion 27.9% and phenol selectivity 97.6%. The SXRD and Rietveld refinement results illustrate that Cu@ZSM-5 has an average of 0.8 Cu atoms per unit cell and the single Cu atoms located in the cross-section of the sinusoidal and straight channels. XANES and EXAFS further demonstrate that the Cu atoms have an oxidation state of +2, coordinated with three OMFI-framework atoms and one ─OH group. Detailed characterizations demonstrate that the Cu@ZSM-5 with tailored bandgap is able to enhance the photoinduced electron-hole separation and hence promote selective hydroxylation of benzene to phenol via the superoxide radical route. This work may open a new way for designing electrically conductive zeolite-supported photocatalysts.

19.
Chempluschem ; : e202400521, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302819

RESUMEN

Solution combustion (SC) remains among the most promising synthetic strategies for the production of crystalline nanopowders from an aqueous medium, due to its easiness, time and cost-effectiveness, scalability and eco-friendliness. In this work, this method was selected to obtain anisometric ceria-based nanoparticles applied as catalysts for the direct synthesis of dimethyl carbonate. The catalytic performances were studied for the ceria and Fe-doped ceria from SC (CeO2-SC, Ce0.9Fe0.1O2-SC) in comparison with the ceria nanorods (CeO2-HT, Ce0.9Fe0.1O2-HT) obtained by hydrothermal (HT) method, one of the most studied systems in the literature. Indeed, the ceria nanoparticles obtained by SC were found to be highly crystalline, platelet-shaped, arranged in a mosaic-like assembly and with smaller crystallite size (≈6 nm vs. ≈17 nm) and higher surface area (80 m2 g-1vs. 26 m2 g-1) for the undoped sample with respect to the Fe-doped counterpart. Although all samples exhibit an anisometric morphology that should favor the exposition of specific crystalline planes, HT-samples showed better performances due to higher oxygen vacancies concentration and lower amount of strong basic and acid sites.

20.
Protein Sci ; 33(10): e5165, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39291728

RESUMEN

Cytochrome P450 2B4 (CYP 2B4) is one of the best-characterized CYPs and serves as a key model system for understanding the mechanisms of microsomal class II CYPs, which metabolize most known drugs. The highly flexible nature of CYP 2B4 is apparent from crystal structures that show the active site with either a wide open or a closed heme binding cavity. Here, we investigated the conformational ensemble of the full-length CYP 2B4 in a phospholipid bilayer, using multiresolution molecular dynamics (MD) simulations. Coarse-grained MD simulations revealed two predominant orientations of CYP 2B4's globular domain with respect to the bilayer. Their refinement by atomistic resolution MD showed adaptation of the enzyme's interaction with the lipid bilayer, leading to open configurations that facilitate ligand access to the heme binding cavity. CAVER analysis of enzyme tunnels, AquaDuct analysis of water routes, and Random Acceleration Molecular Dynamics simulations of ligand dissociation support the conformation-dependent passage of molecules between the active site and the protein surroundings. Furthermore, simulation of the re-entry of the inhibitor bifonazole into the open conformation of CYP 2B4 resulted in binding at a transient hydrophobic pocket within the active site cavity that may play a role in substrate binding or allosteric regulation. Together, these results show how the open conformation of CYP 2B4 facilitates the binding of substrates from and release of products to the membrane, whereas the closed conformation prolongs the residence time of substrates or inhibitors and selectively allows the passage of smaller reactants via the solvent and water channels.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Familia 2 del Citocromo P450 , Simulación de Dinámica Molecular , Animales , Hidrocarburo de Aril Hidroxilasas/química , Hidrocarburo de Aril Hidroxilasas/metabolismo , Familia 2 del Citocromo P450/química , Familia 2 del Citocromo P450/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Conformación Proteica , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA