Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411542, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132837

RESUMEN

Electrooxidation of biomass-derived glycerol which is regarded as a main byproduct of industrial biodiesel production, is an innovative strategy to produce value-added chemicals, but currently showcases slow kinetics, limited Faraday efficiency, and unclear catalytic mechanism. Herein, we report high-efficiency electrooxidation of glycerol into formate via a Cu doped NiCo alloy catalyst supported on nickel foam (Cu-NiCo/NF) in a coupled system paired with nitrate reduction. The designed Cu-NiCo/NF delivers only 1.23 V vs. RHE at 10 mA cm-2, and a record Faraday efficiency of formate of 93.8%. The superior performance is ascribed to the rapid generation of NiIII-OOH and CoIII-OOH and favorable coupling of surface *O with reactive intermediates. Using Cu-NiCo/NF as a bifunctional catalyst, the coupled system synchronously produces NH3 and formate, showing 290 mV lower than the coupling of hydrogen evolution reaction, together with excellent long-term stability for up to 144 h. This work lays out new guidelines and reliable strategies from catalyst design to system coupling for biomass-derived electrochemical refinery.

2.
Adv Mater ; 36(33): e2405970, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866382

RESUMEN

Earth-abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual-doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO2 toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (Ov) concentration in CeO2 synergistically improve the water dissociation on Ov sites and sequential hydrogen adsorption at activated Ov-neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on Ov by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co-CeO2 electrocatalyst exhibits an ultra-low HER overpotential (27 mV at 10 mA cm-2) and Tafel slope (48 mV dec-1), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co-CeO2 achieves excellent stability of 500 h under 600 mA cm-2. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide-based HER electrocatalysts.

3.
J Colloid Interface Sci ; 670: 191-203, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761572

RESUMEN

Transition metal chalcogenides (TMCs) hold great potential for sodium-ion batteries (SIBs) owing to their multielectron conversion reactions, yet face challenges of poor intrinsic conductivity, sluggish diffusion kinetics, severe phase transitions, and structural collapse during cycling. Herein, a self-templating strategy is proposed for the synthesis of a class of metal cobalt-doped NiSe nanoparticles confined within three-dimensional (3D) N-doped macroporous carbon matrix nanohybrids (Co-NiSe/NMC). The cation defect engineering within the developed Co-NiSe and 3D N-doped carbon plays a crucial role in enhancing intrinsic conductivity, reinforcing structural stability, and reducing the barrier to sodium ion diffusion, which are verified by a series of electrochemical kinetic analyses and density functional theory calculations. Significantly, such cation defect engineering not only reduces overpotential but also accelerates conversion reaction kinetics, ensuring both exceptional high-rate capability and extended durability. Consequently, the optimally engineered Co-NiSe/NMC demonstrates a remarkable rate performance, delivering 390 mAh g-1 at 10 A g-1. Moreover, it exhibits an unprecedented lifespan, maintaining a remarkable capacity of 403 mAh g-1 after 1400 cycles and 318 mAh g-1 after 4000 cycles, even at high rates of 1.0 and 2.0 A g-1, respectively. This work marks a substantial advancement in achieving both high performance and prolonged cycle life in sodium-ion batteries.

4.
ACS Nano ; 18(19): 12560-12568, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38700899

RESUMEN

Spin in semiconductors facilitates magnetically controlled optoelectronic and spintronic devices. In metal halide perovskites (MHPs), doping magnetic ions is proven to be a simple and efficient approach to introducing a spin magnetic momentum. In this work, we present a facile metal ion doping protocol through the vapor-phase metal halide insertion reaction to the chemical vapor deposition (CVD)-grown ultrathin Cs3BiBr6 perovskites. The Fe-doped bismuth halide (Fe:CBBr) perovskites demonstrate that the iron spins are successfully incorporated into the lattice, as revealed by the spin-phonon coupling below the critical temperature Tc around 50 K observed through temperature-dependent Raman spectroscopy. Furthermore, the phonons exhibit significant softening under an applied magnetic field, possibly originating from magnetostriction and spin exchange interaction. The spin-phonon coupling in Fe:CBBr potentially provides an efficient way to tune the spin and lattice parameters for halide perovskite-based spintronics.

5.
Polymers (Basel) ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732720

RESUMEN

This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability and excellent cycling performance. The high Li+-conductivity LATP samples are successfully synthesized through a modified sol-gel method followed by thermal calcination. We find that the cation dopants clearly influence the substitution of Al for Ti, with the type of dopant serving as a crucial factor in determining the ionic conductivity and interfacial resistance of the solid electrolyte. The CSE containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and Sn-LATP shows an ionic conductivity of 1.88 × 10-4 S cm-1 at ambient temperature. The optimum conductivity can be attributed to alterations in the lattice parameters and Li+ transport pathways owing to Sn doping. The solid-state cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrates both excellent high rate capability at 5 C (with a capacity retention of 86% compared to the value measured at 0.2 C) and superior cycling stability, maintaining high Coulombic efficiency (>99.0%) over 510 cycles. These findings indicate that the proposed CSE is highly promising for use in solid-state lithium batteries with desirable charge-discharge properties and high durability.

6.
J Colloid Interface Sci ; 663: 961-970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38447409

RESUMEN

High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are intriguing for lithium-ion batteries (LIBs) applications because of their relatively low cost and high capacity. Unfortunately, high charging voltage induces bulk layered structure decline and interface environment deterioration, low cobalt content reduces lithium diffusion kinetics, severely limiting the performance liberation of this kind of cathode. Here, a multifunctional Al/Zr dual cation doping strategy is employed to enhance the electrochemical performance of LiNi0.6Co0.05Mn0.35O2 (NCM) cathode at a high charging cut-off voltage of 4.5 V. On the one hand, Al/Zr co-doping weakens the Li+/Ni2+ mixing through magnetic interactions due to the inexistence of unpaired electrons for Al3+ and Zr4+, thereby increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases. On the other hand, they enhance the lattice oxygen framework stability due to strong Al-O and Zr-O bonds, inhibiting the undesired H2 to H3 phase transition and interface lattice oxygen loss, thereby enhancing the stability of the bulk structure and cathode-electrolyte interface. As a result, Al/Zr co-doped NCM (NCMAZ) shows a 94.2 % capacity retention rate after 100 cycles, while that of NCM is only 79.4 %. NCMAZ also exhibits better rate performance than NCM, with output capacities of 92 mAh/g and 59 mAh/g at a high current density of 5C, respectively. The modification strategy will make the high-voltage medium-nickel low-cobalt cathode closer to practical applications.

7.
Angew Chem Int Ed Engl ; 62(38): e202308775, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37526944

RESUMEN

The complexes of metal center and nitrogen ligands are the most representative systems for catalyzing hydrogenation reactions in small molecule conversion. Developing heterogeneous catalysts with similar active metal-nitrogen functional centers, nevertheless, still remains challenging. In this work, we demonstrate that the metal-nitrogen coupling in anti-perovskite Co4 N can be effective modulated by Cu doping to form Co3 CuN, leading to strongly promoted hydrogenation process during electrochemical reduction of nitrate (NO3 - RR) to ammonia. The combination of advanced spectroscopic techniques and density functional theory calculations reveal that Cu dopants strengthen the Co-N bond and upshifted the metal d-band towards the Fermi level, promoting the adsorption of NO3 - and *H and facilitating the transition from *NO2 /*NO to *NO2 H/*NOH. Consequently, the Co3 CuN delivers noticeably better NO3 - RR activity than the pristine Co4 N, with optimal Faradaic efficiency of 97 % and ammonia yield of 455.3 mmol h-1 cm-2 at -0.3 V vs. RHE. This work provides an effective strategy for developing high-performance heterogeneous catalyst for electrochemical synthesis.

8.
Adv Mater ; 35(42): e2305598, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37433070

RESUMEN

Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solving the issue of hydrazine pollution. Here, the synthesis of compressively strained Ni2 P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER) is reported. Different from a multistep synthetic method that induces lattice strain by creating core-shell structures, a facile strategy is developed to tune the strain of Ni2 P via dual-cation co-doping. The obtained Ni2 P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterparts with tensile strain and without strain. Consequently, the optimized Ni2 P delivers current densities of 10 and 100 mA cm-2 at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compressive strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni2 P. As for the HzOR, the compressive strain reduces the energy barrier of the potential-determining step for the dehydrogenation of *N2 H4 to *N2 H3 . Clearly, this work paves a facile pathway to the synthesis of lattice-strained electrocatalysts via the dual-cation co-doping.

9.
J Colloid Interface Sci ; 629(Pt B): 147-155, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152572

RESUMEN

Vacancy engineering has been shown to be an effective way to tune the electromagnetic parameters of electromagnetic wave (EMW) absorbers and improve their absorption properties. However, the current methods to induce the formation of sulfur vacancies are not enough, and the contribution of sulfur vacancies to EMW absorption has not been clearly described. This work proposes a method to induce sulfur vacancies generation in the Cu2ZnSnS4 (CZTS) system by cation doping. It is found that the formation of sulfur vacancies depends on reactivity with doping cations and the less reactive cation is more favorable for the formation of sulfur vacancies. Benefiting from the improved sulfur vacancies concentration, the defect-induced polarization and dipole polarization are greatly enhanced, which allows the EMW absorber to exhibit excellent EMW absorption performance. Therefore, the minimum reflection loss of the cation-doped CZTS reaches -61.80 dB at a thickness of 2.00 mm, and the effective absorption bandwidth reaches 6.29 GHz at 2.30 mm. This work not only expounds on the significant roles of sulfur vacancies in EMW absorption mechanism, but also presents a novel idea for defect construction of copper-based chalcogenide semiconductor materials.

10.
Molecules ; 27(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36431778

RESUMEN

In the present work, sulfur-doped manganese ferrites S@Mn(Fe2O4) nanoparticles were prepared by using the sol-gel and citrate method. The concentration of sulfur varied from 1 to 7% by adding Na2S. The samples were characterized by performing Fourier Transformed Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Ultraviolet-Visible spectroscopy (UV-Visible). The synthesized sulfur-doped manganese ferrites were applied to evaluate the photocatalytic degradation of the dyes. Further, the degradation studies revealed that the nanoparticles successfully degraded the methylene blue dye by adding a 0.006 g dose under the sunlight. The sulfur-doped manganese ferrite nanoparticles containing 3% sulfur completely degraded the dye in 2 h and 15 min in aqueous medium. Thus, the ferrite nanoparticles were found to be promising photocatalyst materials and could be employed for the degradation of other dyes in the future.


Asunto(s)
Nanopartículas , Luz Solar , Manganeso/química , Catálisis , Nanopartículas/química , Colorantes/química , Cationes , Azufre
11.
Angew Chem Int Ed Engl ; 61(35): e202207217, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35730933

RESUMEN

Manipulating the active species and improving the structural stabilization of sulfur-containing catalysts during the OER process remain a tremendous challenge. Herein, we constructed NiO/NiS2 and Fe-NiO/NiS2 as catalyst models to study the effect of Fe doping. As expected, Fe-NiO/NiS2 exhibits a low overpotential of 270 mV at 10 mA cm-2 . The accumulation of hydroxyl groups on the surface of materials after Fe doping can promote the formation of highly active NiOOH at a lower OER potential. Moreover, we investigated the level of corrosion of M-S bonds and compared the stability variation of M-S bonds with Fe at different locations. Interestingly, Fe bonded with S in the bulk as the sacrificial agent can alleviate the oxidation corrosion of partial Ni-S bonds and thus endow Fe-NiO/NiS2 long-term durability. This work could motivate the community to focus more on resolving the corrosion of sulfur-containing materials.

12.
Small ; 18(25): e2200173, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35567328

RESUMEN

Oxyhydroxides hold promise as highly-efficient non-noble electrocatalysts for the oxygen evolution reaction (OER), but their poor conductivity and structural instability greatly impede their progress. Herein, the authors develop a cation-doping and oxygenvacancy engineering strategy to fabricate Ru/Rh-doped FeOOH nanoarrays with abundant oxygen-vacancies in situ grown on Ti3 C2 Tx MXene (Ru/Rh-FeOOH@Ti3 C2 Tx ) as highly-efficient OER electrocatalysts. Benefiting from Ru/Rh-cation regulation, oxygenvacancy engineering, and heterojunction synergy between MXene and modulated FeOOH, the optimized Rh/Ru-FeOOH@Ti3 C2 Tx electrocatalysts exhibit excellent OER activities and remarkable stabilities with 100 h. Particularly, 3%Rh-FeOOH@Ti3 C2 Tx electrocatalyst only needs a 223 mV overpotential at 10 mA cm-2 and 306 mV to reach 100 mA cm-2 , which is superior to commercial IrO2 catalyst and most reported oxyhydroxide-based electrocatalysts. Further, systematically theoretical caculation, kinetics, thermodynamics, and microstructural analysis verify that the integration of Ru/Rh-cation doping and oxygen vacancy obviously enhances the intrinsic conductivity and lattice defects of FeOOH and expose more active sites, thereby decreasing the adsorption/desorption energy barrier and activation energy, and improving the specific activity and catalytic kinetics of electrocatalysts, whereas in situ hybridization with MXene strengthens the structural stability. This work clearly confirms that cationdoping and oxygen-vacancy engineering offers a joint strategy for the electronic structure modulation and design of highly-efficient inexpensive OER electrocatalysts.

13.
Micromachines (Basel) ; 13(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35334748

RESUMEN

In this work, metal halide perovskite quantum dots (QDs) with Formamidinium (FA) and Cs mixed cations were fabricated using a solution-processed method at room temperature. By controlling Cs doping ratios in a precursor, the optical properties of mixed-cation perovskite QDs were systematically studied. With the increase in Cs ion doping, the photoluminescence (PL) spectra of perovskite QDs were blueshifted, which was mainly due to the smaller radius of Cs ions than those of FA. Temperature-dependent PL spectra were conducted on mixed-cation perovskite QDs. As the temperature gradually increased from 4 K to 300 K, PL peaks were blue shifted, and full-width at half maximum (FWHM) was widened, which was directly related to lattice thermal expansion and the carrier-photon coupling effect under temperature variation. At the same time, excess Cs ion doping had a prominent influence on optical properties at low temperatures, which was mainly due to the introduction of detrimental defects in perovskite crystals. Therefore, it is particularly important to control doping concentration in the preparation of high-quality perovskite QDs and efficient photoelectric devices.

14.
Adv Sci (Weinh) ; 9(8): e2104319, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35048568

RESUMEN

The authors successfully dope the magnetically silent double perovskite semiconductor Sr2 GaSbO6  to induce ferromagnetism and tune its bandgap, with Ga3+ partially substituted by the magnetic trivalent cation Mn3+ , in a rigid cation ordering with Sb5+ . The new ferromagnetic semiconducting Sr2 Ga1- x Mnx SbO6  double perovskite, which crystallizes in tetragonal symmetry (space group I4/m) and has tunable ferromagnetic ordering temperature and bandgap, suggests that magnetic ion doping of double perovskites is a productive avenue toward obtaining materials for application in next-generation oxide-based spintronic devices.

15.
ACS Appl Mater Interfaces ; 13(46): 55208-55217, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34763420

RESUMEN

Rechargeable aqueous zinc-manganese oxide batteries have attracted extensive attention in energy-storage systems owing to their high safety and low cost but still suffer from the lack of advanced cathode materials with both high capacity and a long cycle life. Here, the bismuth-doped α-MnO2 was synthesized by a hydrothermal method. The preintercalation of Bi3+ effectively enlarges the lattice spacing and boosts the electrochemical performance of Zn/MnO2 batteries. The systematical studies suggest that Bi doping significantly optimized the electrochemical behavior and especially enhanced the reversibility of dissolution-deposition and phase transition processes. As a result, the Bi-doped α-MnO2 cathode achieves a superior performance: high reversible specific capacity (325 mA h g-1 at 300 mA g-1) and long cycling stability (90.9% capacity retention after 2000 cycles at 1000 mA g-1). By comparison with the α-MnO2 electrode, the Bi-doped α-MnO2 electrode exhibits a longer and stabler discharge plateau. It is different from most anionic doping methods, which attribute the performance improvement to superior ion diffusion kinetics and enhanced structural stability. Therefore, this work offers a new viewpoint and approach to improve the electrochemical property of Zn/MnO2 batteries.

16.
Adv Sci (Weinh) ; 8(22): e2102713, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34658158

RESUMEN

Doping perovskite oxide with different cations is used to improve its electro-catalytic performance for various energy and environment devices. In this work, an activated lattice oxygen activity in Pr0.4 Sr0.6 Cox Fe0.9- x Nb0.1 O3- δ (PSCxFN, x = 0, 0.2, 0.7) thin film model system by B-site cation doping is reported. As Co doping level increases, PSCxFN thin films exhibit higher concentration of oxygen vacancies ( V o • • ) as revealed by X-ray diffraction and synchrotron-based X-ray photoelectron spectroscopy. Density functional theory calculation results suggest that Co doping leads to more distortion in FeO octahedra and weaker metaloxygen bonds caused by the increase of antibonding state, thereby lowering V o • • formation energy. As a consequence, PSCxFN thin film with higher Co-doping level presents larger amount of exsolved particles on the surface. Both the facilitated V o • • formation and B-site cation exsolution lead to the enhanced hydrogen oxidation reaction (HOR) activity. Excessive Co doping until 70%, nevertheless, results in partial decomposition of thin film and degrades the stability. Pr0.4 Sr0.6 (Co0.2 Fe0.7 Nb0.1 )O3 with moderate Co doping level displays both good HOR activity and stability. This work clarifies the critical role of B-site cation doping in determining the V o • • formation process, the surface activity, and structure stability of perovskite oxides.

17.
Nanotechnology ; 32(44)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34311456

RESUMEN

Molybdenum disulfide (MoS2) nanosheets are promising candidates as earth-abundant and low-cost catalyst for hydrogen evolution reaction (HER). Nevertheless, compared with the benchmark Pt/C catalyst, the application of MoS2nanosheets is limited to its relatively low catalytic activity, especially in alkaline environments. Here, we developed a dual-cation doping strategy to improve the alkaline HER performance of MoS2nanosheets. The designed Ni, Co co-doped MoS2nanosheets can promote the tandem HER steps simultaneously, thus leading to a much enhanced catalytic activity in alkaline solution. Density functional theory calculations revealed the individual roles of Ni and Co dopants in the catalytic process. The doped Ni is uncovered to be the active site for the initial water-cleaving step, while the Co dopant is conducive to the H desorbing by regulating the electronic structure of neighboring edge-S in MoS2. The synergistic effect resulted by the dual-cation doping thus facilitates the tandem HER steps, providing an effective route to raise the catalytic performance of MoS2materials in alkaline solution.

18.
J Colloid Interface Sci ; 598: 419-429, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33930746

RESUMEN

The development of zinc-ion storage cathode materials for aqueous zinc-ion batteries (AZIBs) is a necessary step for the construction of large-scale electrochemical energy conversion and storage devices. Iron-doped alpha-manganese dioxide (α-MnO2) nanocomposites were achieved in this study via pre-intercalation of Fe3+ during the formation of α-MnO2 crystals. A polypyrrole (PPy) granular layer was fabricated on the surface of α-MnO2 using acid-catalyzed polymerization of pyrroles. The pre-intercalation of Fe3+ effectively enlarges the lattice spacing of α-MnO2 and consequently decreases the hindrance for Zn2+ insertion/extraction in the iron-doped α-MnO2 coated by PPy (Fe/α-MnO2@PPy) composite. Meanwhile, the PPy buffer layer can ameliorate electron and ion conductivity and prevent dissolution of α-MnO2during the charge/discharge process. This unique structure makes the Fe/α-MnO2@PPy composite an efficient zinc-ion storage cathode for AZIBs. The targeted Fe/α-MnO2@PPy cathode achieves superior performance with reversible specific capacity (270 mA h g-1 at 100 mA g-1) and exhibits highdiffusioncoefficientof 10-10-10-14 cm-2 s-1. Therefore, a feasible approach is implemented on advanced electrode materials using in AZIBs for practical applications.

19.
Adv Sci (Weinh) ; 8(6): 2003013, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33747726

RESUMEN

Li-excess layered cathode (LLC) materials have a high theoretical specific capacity of 250 mAh g-1 induced by transition metal (cationic) and oxygen (anionic) redox activity. Especially, the oxygen redox reaction related to the activation of the Li2MnO3 domain plays the crucial role of providing a high specific capacity. However, it also induces an irreversible oxygen release and accelerates the layered-to-spinel phase transformation and capacity fading. Here, it is shown that surface doping of vanadium (V5+) cations into LLC material suppresses both the irreversible oxygen release and undesirable phase transformation, resulting in the improvement of capacity retention. The V-doped LLC shows a high discharge capacity of 244.3 ± 0.8 mAh g-1 with 92% retention after 100 cycles, whereas LLC delivers 233.6 ± 1.1 mAh g-1 with 74% retention. Furthermore, the average discharge voltage of V-doped LLC drops by only 0.33 V after 100 cycles, while LLC exhibits 0.43 V of average discharge voltage drop. Experimental and theoretical investigations indicate that doped V-doping increase the transition metal-oxygen (TM-O) covalency and affect the oxidation state of peroxo-like (O2) n - species during the delithiation process. The role of V-doping to make the oxygen redox reversible in LLC materials for high-energy density Li-ion batteries is illustrated here.

20.
ChemSusChem ; 14(7): 1710-1719, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33595904

RESUMEN

The commercialization of Li-S batteries is hindered by the shuttling of lithium polysulfides (LiPSs), the sluggish sulfur redox kinetics as well as the low sulfur utilization during charge/discharge processes. Herein, a free-standing cathode material was developed, based on Fe-doped NiSe2 nanosheets grown on activated carbon cloth substrates (Fe-NiSe2 /ACC) for high-performance Li-S batteries. Fe-doping in NiSe2 plays a key role in the electronic structure modulation of NiSe2 , enabling improved charge transfer with the adsorbed LiPSs molecules, stronger interactions with the active sulfur species and higher electrical conductivity. Effective promotion of the sulfur redox kinetics and enhanced sulfur utilization were achieved under high areal sulfur loadings. The stronger interactions with LiPSs together with the unique 3D structure of Fe-NiSe2 /ACC also induced the transformation of Li2 S2 /Li2 S growth from conventional 2D films to 3D particles, significantly eliminating the barriers of solid nucleation and growth during the phase transition of liquid LiPSs to solid Li2 S2 /Li2 S. With a high sulfur loading of 9.9 mg cm-2 , the Fe-NiSe2 /ACC cathode enabled a high area capacity of 9.14 mAh cm-2 with a low average decay of 0.11 % per cycle over 200 cycles at 0.1 C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA