Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mech Ageing Dev ; 220: 111953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38834155

RESUMEN

Muscle aging contributed to morbidity and mortality in the elderly adults by leading to severe outcomes such as frailty, falls and fractures. Post-transcriptional regulation especially competing endogenous RNA (ceRNA) mechanism may modulate the process of skeletal muscle aging. RNA-seq was performed in quadriceps of 6-month-old (adult) and 22-month-old (aged) male mice to identify differentially expressed ncRNAs and mRNAs and further construct ceRNA networks. Decreased quadriceps-body weight ratio and muscle fiber cross-sectional area as well as histological characteristics of aging were observed in the aged mice. Besides, there were higher expressions of atrogin-1 and MuRF-1 and lower expression of Myog, Myf4 and Myod1 in the quadriceps of aged mice relative to that of adult mice. The expression of 85 lncRNAs, 52 circRNAs, 10 miRNAs and 277 mRNAs were significantly dysregulated in quadriceps between the two groups, among which two ceRNA networks lncRNA 2700081O15Rik/circRNA_0000820-miR-673-3p-Tmem120b were constructed. Level of triglycerides and expression of PPARγ, C/EBPα, FASN and leptin were elevated and the expression of adiponectin was reduced in quadriceps of aged mice compared with that of adult mice. LncRNA 2700081O15Rik/circRNA_0000820-miR-673-3p-Tmem120b were possibly associated with the adipogenesis and fat accumulation in skeletal muscle of age male mice.


Asunto(s)
Envejecimiento , Animales , Masculino , Ratones , Envejecimiento/metabolismo , Músculo Esquelético/metabolismo , Redes Reguladoras de Genes , MicroARNs/metabolismo , MicroARNs/genética , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Circular/metabolismo , ARN Circular/genética , Músculo Cuádriceps/metabolismo , ARN Endógeno Competitivo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38788625

RESUMEN

Ovarian development in animals is a complicated biological process, requiring the simultaneous coordination among various genes and pathways. To understand the dynamic changes and molecular regulatory mechanisms of ovarian development in mud crab (Scylla paramamosain), both histological observation and whole transcriptome sequencing of ovarian tissues at different mating stages were implemented in this study. The histological results revealed that ovarian development was delayed in unmated females (60 days after courtship behavior but not mating), who exhibited an oocyte diameter of 56.38 ± 15.17 µm. Conversely, mated females exhibited accelerated the ovarian maturation process, with females reaching ovarian stage III (proliferative stage) 23 days after mating and attained an average oocyte diameter of 132.19 ± 15.07 µm. Thus, mating process is essential in promoting the rapid ovarian development in mud crab. Based on the whole transcriptome sequencing analysis, a total of 518 mRNAs, 1502 lncRNAs, 18 circRNAs and 151 miRNAs were identified to be differentially expressed between ovarian tissues at different mating stages. Notably, six differentially expressed genes (DEGs) associated with ovarian development were identified, including ovary development-related protein, red pigment concentrating hormone receptor, G2/mitotic-specific cyclin-B3-like, lutropin-chorio gonadotropic hormone receptor, renin receptor, and SoxB2. More importantly, both DEGs and targets of differentially expressed non-coding RNAs (DEncRNAs) were enriched in renin-angiotensin system, TGF-ß signaling, cell adhesion molecules, MAPK signaling pathway, and ECM-receptor interaction, suggesting that these pathways may play significant roles in the ovarian development of mud crabs. Moreover, competition endogenous RNA (ceRNA) networks were constructed while mRNAs were differentially expressed between mating stages were involved in Gene Ontology (GO) biological processes such as developmental process, reproduction, and growth. These findings could provide solid foundations for the future development of female mud crab maturation enhancement strategy, and improve the understanding of the ovarian maturation process in crustaceans.


Asunto(s)
Braquiuros , Ovario , Transcriptoma , Animales , Femenino , Braquiuros/genética , Braquiuros/crecimiento & desarrollo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Conducta Sexual Animal , Perfilación de la Expresión Génica , Masculino , Análisis de Secuencia de ARN
3.
Noncoding RNA Res ; 9(3): 744-758, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38577019

RESUMEN

Trastuzumab-induced cardiotoxicity (TIC) is a common and serious disease with abnormal cardiac function. Accumulating evidence has indicated certain non-coding RNAs (ncRNAs), functioning as competing endogenous RNAs (ceRNAs), impacting the progression of cardiovascular diseases. Nonetheless, the specific involvement of ncRNA-mediated ceRNA regulatory mechanisms in TIC remains elusive. The present research aims to comprehensively investigate changes in the expressions of all ncRNA using whole-transcriptome RNA sequencing. The sequencing analysis unveiled significant dysregulation, identifying a total of 43 circular RNAs (circRNAs), 270 long noncoding RNAs (lncRNAs), 12 microRNAs (miRNAs), and 4131 mRNAs in trastuzumab-treated mouse hearts. Subsequently, circRNA-based ceRNA networks consisting of 82 nodes and 91 edges, as well as lncRNA-based ceRNA networks comprising 111 nodes and 112 edges, were constructed. Using the CytoNCA plugin, pivotal genes-miR-31-5p and miR-644-5p-were identified within these networks, exhibiting potential relevance in TIC treatment. Additionally, KEGG and GO analyses were conducted to explore the functional pathways associated with the genes within the ceRNA networks. The outcomes of the predicted ceRNAs and bioinformatics analyses elucidated the plausible involvement of ncRNAs in TIC pathogenesis. This insight contributes to a better understanding of underlying mechanisms and aids in identifying promising targets for effective prevention and treatment strategies.

4.
Gene ; 911: 148346, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452877

RESUMEN

Noncoding RNAs (ncRNAs) have gained significant attention in recent years due to their crucial roles in various biological processes. However, our understanding of the expression and functions of ncRNAs in Cyclina sinensis, an economically important marine bivalve, remains limited. This study aimed to address this knowledge gap by systematically identifying ncRNAs in the mantles of C. sinensis with purple and white shells. Through our analysis, we identified a differential expression of 1244 mRNAs, 196 lncRNAs, 49 circRNAs, and 23 miRNAs between purple- and white-shell clams. Functional enrichment analysis revealed the involvement of these differentially expressed ncRNAs in biomineralization and pigmentation processes. To gain further insights into the regulatory mechanisms underlying shell color formation, we established competitive endogenous RNA (ceRNA) networks. These networks allowed us to identify targeted differentially expressed miRNAs (DEMis) and genes associated with shell color formation. Based on the ceRNA networks, we obtained an up-down-up lncRNA-miRNA-mRNA network consisting of 13 upregulated lncRNAs and a circRNA-miRNA-mRNA network comprising three upregulated circRNAs (novel_circ_0004787, novel_circ_0001165, novel_circ_0000245). Through these networks, we identified and selected an upregulated novel gene (evm.TU.Hic_asm_7.988) and a downregulated sponge miRNA (hru-miR-1985) as potential contributors to shell color regulation. In summary, the present investigation offers a comprehensive analysis of ncRNA catalogs expressed in the clam mantle of C. sinensis. The findings enhance our comprehension of the molecular mechanisms governing shell coloration and offer new perspectives for selective breeding of C. sinensis in the future.


Asunto(s)
Bivalvos , MicroARNs , ARN Largo no Codificante , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Endógeno Competitivo , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , Bivalvos/genética , Bivalvos/metabolismo
5.
Plant Sci ; 339: 111930, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007196

RESUMEN

Switchgrass (Panicum virgatum L.) plays a pivotal role as a bioenergy feedstock in the production of cellulosic ethanol and contributes significantly to enhancing ecological grasslands and soil quality. The utilization of non-coding RNAs (ncRNAs) has gained momentum in deciphering the intricate genetic responses to abiotic stress in various plant species. Nevertheless, the current research landscape lacks a comprehensive exploration of the responses of diverse ncRNAs, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), to drought stress in switchgrass. In this study, we employed whole transcriptome sequencing to comprehensively characterize the expression profiles of both mRNA and ncRNAs during episodes of drought stress in switchgrass. Our analysis identified a total of 12,511 mRNAs, 59 miRNAs, 38 circRNAs, and 368 lncRNAs that exhibited significant differential expression between normal and drought-treated switchgrass leaves. Notably, the majority of up-regulated mRNAs displayed pronounced enrichment within the starch and sucrose metabolism pathway, as validated through KEGG analysis. Co-expression analysis illuminated that differentially expressed (DE) lncRNAs conceivably regulated 1308 protein-coding genes in trans and 7110 protein-coding genes in cis. Furthermore, both cis- and trans-target mRNAs of DE lncRNAs exhibited enrichment in four common KEGG pathways. The intricate interplay between lncRNAs and circRNAs with miRNAs via miRNA response elements was explored within the competitive endogenous RNA (ceRNA) network framework. As a result, we constructed elaborate regulatory networks, including lncRNA-novel_miRNA480-mRNA, lncRNA-novel_miRNA304-mRNA, lncRNA/circRNA-novel_miRNA122-PvSS4, and lncRNA/circRNA-novel_miRNA14-PvSS4, and subsequently validated the functionality of the target gene, starch synthase 4 (PvSS4). Furthermore, through the overexpression of PvSS4, we ascertained its capacity to enhance drought tolerance in yeast. However, it is noteworthy that PvSS4 did not exhibit any discernible impact under salt stress conditions. These findings, as presented herein, not only contribute substantively to our understanding of ceRNA networks but also offer a basis for further investigations into their potential functions in response to drought stress in switchgrass.


Asunto(s)
MicroARNs , Panicum , ARN Largo no Codificante , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Panicum/genética , Panicum/metabolismo , ARN Largo no Codificante/genética , Sequías , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Redes Reguladoras de Genes
6.
Cancers (Basel) ; 15(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894321

RESUMEN

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-ß), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.

7.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894720

RESUMEN

Long noncoding RNAs (lncRNAs) are transcripts with lengths of more than 200 nt and limited protein-coding potential. They were found to play important roles in plant stress responses. In this study, the maize drought-tolerant inbred line AC7643 and drought-sensitive inbred line AC7729/TZSRW, as well as their recombinant inbred lines (RILs) were selected to identify drought-responsive lncRNAs in roots. Compared with non-responsive lncRNAs, drought-responsive lncRNAs had different sequence characteristics in length of genes and number of exons. The ratio of down-regulated lncRNAs induced by drought was significantly higher than that of coding genes; and lncRNAs were more widespread expressed in recombination sites in the RILs. Additionally, by integration of the modifications of DNA 5-methylcytidine (5mC), histones, and RNA N6-methyladenosine (m6A), it was found that the enrichment of histone modifications associated with transcriptional activation in the genes generated lncRNAs was lower that coding genes. The lncRNAs-mRNAs co-expression network, containing 15,340 coding genes and 953 lncRNAs, was constructed to investigate the molecular functions of lncRNAs. There are 13 modules found to be associated with survival rate under drought. We found nine SNPs located in lncRNAs among the modules associated with plant survival under drought. In conclusion, we revealed the characteristics of lncRNAs responding to drought in maize roots based on multiomics studies. These findings enrich our understanding of lncRNAs under drought and shed light on the complex regulatory networks that are orchestrated by the noncoding RNAs in response to drought stress.


Asunto(s)
ARN Largo no Codificante , Zea mays , Zea mays/genética , ARN Largo no Codificante/genética , Sequías , Exones , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
8.
J Inflamm Res ; 16: 3879-3895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674532

RESUMEN

Background: Acute lung injury (ALI) is associated with a high mortality rate; however, the underlying molecular mechanisms are poorly understood. The purpose of this study was to investigate the expression profile and related networks of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in lung tissue exosomes obtained from sepsis-induced ALI. Methods: A mouse model of sepsis was established using the cecal ligation and puncture method. RNA sequencing was performed using lung tissue exosomes obtained from mice in the sham and CLP groups. Hematoxylin-eosin staining, Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and nanoparticle tracking analysis were performed to identify relevant phenotypes, and bioinformatic algorithms were used to evaluate competitive endogenous RNA (ceRNA) networks. Results: Thirty lncRNA-miRNA-mRNA interactions were identified, including two upregulated lncRNAs, 30 upregulated miRNAs, and two downregulated miRNAs. Based on the expression levels of differentially expressed mRNAs(DEmRNAs), differentially expressed LncRNAs(DELncRNAs), and differentially expressed miRNAs(DEmiRNAs), 30 ceRNA networks were constructed. Conclusion: Our study revealed, for the first time, the expression profiles of lncRNA, miRNA, and mRNA in exosomes isolated from the lungs of mice with sepsis-induced ALI, and the exosome co-expression network and ceRNA network related to ALI in sepsis.

9.
BMC Plant Biol ; 23(1): 142, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918810

RESUMEN

BACKGROUND: Nitrogen is a macronutrient element for plant growth and development. Circular RNAs (circRNAs) serve as pivotal regulators for the coordination between nutrient supply and plant demand. Moso bamboo (Phyllostachys edulis) is an excellent plant with fast growth, and the mechanism of the circRNA-target module in response to nitrogen remains unclear. RESULTS: Deep small RNA sequencing results of moso bamboo seedlings under different concentrations of KNO3 (N0 = 0 mM, N6 = 6 mM, N18 = 18 mM) were used to identify circRNAs. A total of 549 circRNAs were obtained, of which 309 were generated from corresponding parental coding genes including 66 new ones. A total of 536 circRNA-parent genes were unevenly distributed in 24 scaffolds and were associated with root growth and development. Furthermore, 52 differentially expressed circRNAs (DECs) were obtained, including 24, 33 and 15 DECs from three comparisons of N0 vs. N6, N0 vs. N18 and N6 vs. N18, respectively. Based on integrative analyses of the identified DECs, differentially expressed mRNAs (DEGs), and miRNAs (DEMs), a competitive endogenous RNA (ceRNA) network was constructed, including five DECs, eight DEMs and 32 DEGs. A regulatory module of PeSca_6:12,316,320|12,372,905-novel_miR156-PH02Gene35622 was further verified by qPCR and dual-luciferase reporter assays. CONCLUSION: The results indicated that circRNAs could participate in multiple biological processes as miRNA sponges, including organ nitrogen compound biosynthesis and metabolic process regulation in moso bamboo. Our results provide valuable information for further study of circRNAs in moso bamboo under fluctuating nitrogen conditions.


Asunto(s)
MicroARNs , ARN Circular , ARN Circular/genética , Nitrógeno/metabolismo , Poaceae/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Redes Reguladoras de Genes
10.
Subcell Biochem ; 102: 249-270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36600136

RESUMEN

Circular RNAs (circRNAs) are closed-loop RNA transcripts formed by a noncanonical back splicing mechanism. circRNAs are expressed in various tissues and cell types in a temporospatially regulated manner and have diverse molecular functions including their ability to act as miRNA sponges, transcriptional and splicing regulators, protein traps, and even templates for polypeptide synthesis. Emerging evidence suggests that circRNAs are themselves dynamically regulated throughout development in various organisms, with a substantial accumulation during ageing. Their regulatory roles in cellular pathways associated with ageing and senescence, as well as their implications in ageing-related diseases, such as neurological disease, cancer, and cardiovascular disease, suggest that circRNAs are key molecular determinants of the ageing process. Their unique structure, expression specificity, and biological functions highlight a potential capacity for use as novel biomarkers for diagnosis, prognosis, and treatment outcomes in a variety of conditions including pathological ageing. CircRNA may also have potential as target for interventions that manipulate ageing and longevity. In this chapter, we discuss the most recent advances in circRNA changes in ageing and ageing-associated disease.


Asunto(s)
MicroARNs , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo , Empalme del ARN
11.
Hereditas ; 159(1): 36, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154667

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. The mechanism of tubulointerstitial lesions in DN is not fully elucidated. This article aims to identify novel genes and clarify the molecular mechanisms for the progression of DN through integrated bioinformatics approaches. METHOD: We downloaded microarray datasets from Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs). Enrichment analyses, construction of Protein-protein interaction (PPI) network, and visualization of the co-expressed network between mRNAs and microRNAs (miRNAs) were performed. Additionally, we validated the expression of hub genes and analyzed the Receiver Operating Characteristic (ROC) curve in another GEO dataset. Clinical analysis and ceRNA networks were further analyzed. RESULTS: Totally 463 DEGs were identified, and enrichment analyses demonstrated that extracellular matrix structural constituents, regulation of immune effector process, positive regulation of cytokine production, phagosome, and complement and coagulation cascades were the major enriched pathways in DN. Three hub genes (CD53, CSF2RB, and LAPTM5) were obtained, and their expression levels were validated by GEO datasets. Pearson analysis showed that these genes were negatively correlated with the glomerular filtration rate (GFR). After literature searching, the ceRNA networks among circRNAs/IncRNAs, miRNAs, and mRNAs were constructed. The predicted RNA pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB provides an important perspective and insights into the molecular mechanism of DN. CONCLUSION: In conclusion, we identified three genes, namely CD53, CSF2RB, and LAPTM5, as hub genes of tubulointerstitial lesions in DN. They may be closely related to the pathogenesis of DN and the predicted RNA regulatory pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB presents a biomarker axis to the occurrence and development of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Biología Computacional , Citocinas/genética , Nefropatías Diabéticas/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Front Genet ; 13: 858641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711933

RESUMEN

The diagnosis and treatment of unexplained recurrent spontaneous abortion (URSA) are subject to debate, because the exact underlying mechanisms remain unclear. To address this issue, we elucidated the expression profiles of dysregulated circRNAs, miRNAs, and mRNAs and constructed circRNA-associated competitive endogenous RNA (ceRNA) networks by comparing the decidua of URSA with that of normal early pregnancy (NEP) using RNA-sequencing. In total, 550 mRNAs, 88 miRNAs, and 139 circRNAs were differentially expressed (DE) in decidua of URSA. Functional annotation revealed that DE mRNAs as well as potential target genes of DE miRNAs and DE circRNAs are mainly involved in immunologic function, such as antigen processing and presentation, allograft rejection, and T cell receptor signaling pathway. In addition, the top hub genes, including CCL4, DDX58, CXCL10, CXCL9, MX1, CD44, RPS2, SOCS3, RPS3A, and CXCL11, were identified. The mRNAs involved in ceRNA network were enriched in complement and coagulation cascades and protein processing in the endoplasmic reticulum. We found that circRNAs in the ceRNA network, which acted as decoys for hsa-miR-204-5p, were positively correlated with MFGE8 expression. Collectively, the results demonstrated that circRNAs, miRNAs, and mRNAs were aberrantly expressed in the decidua of patients with URSA and played a potential role in the development of URSA. Thus, the establishment of the ceRNA network may profoundly affect the diagnosis and therapy of URSA in the future.

13.
J Assist Reprod Genet ; 39(4): 919-931, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35247118

RESUMEN

PURPOSE: Long non-coding RNAs (lncRNAs) control gene expression at multiple levels. By interacting with microRNAs (miRNAs), they regulate their mRNA targets creating dynamic regulatory networks involved in different cellular processes. Their role in follicle development and oocyte maturation has recently emerged. lncRNA deregulation has been found associated with different pathological conditions. In this study, we identified differentially expressed lncRNAs in cumulus cells (CCs) isolated from MII oocytes of advanced maternal age women and proposed ceRNA-networks involved in signaling pathways crucial in ovarian folliculogenesis and female germ cell maturation. METHODS: We performed a high-throughput analysis of the expression profile of 68 lncRNAs from CCs of aged and young women by using NanoString technology. By miRNet, TarPmiR, miRTarBase, OKdb, and KEGG we predicted some ceRNA-networks involving the differentially expressed (DE) lncRNAs, miRNA interactors, and their mRNA target genes. RESULTS: We identified 28 lncRNAs down-regulated in CC samples from aged women. The analysis revealed that the miRNAs binding 11 of the DE lncRNAs and their mRNA targets are included in ceRNA-networks involved in the regulation of the PI3K-Akt, FOXO, and p53 signaling pathways. CONCLUSION: We proposed that the lncRNA down-regulation in CCs from aged women could influence the expression of genes encoding proteins deregulated in reproductive aging. A better understanding of the interplay of lncRNA-miRNA-mRNA networks in human CCs could increase our knowledge about the mechanisms of regulation of gene expression involved in aging, lead to the development of novel therapeutics, and improve reproductive outcomes in aged women.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Anciano , Envejecimiento/genética , Células del Cúmulo/metabolismo , Regulación hacia Abajo/genética , Femenino , Redes Reguladoras de Genes/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
J Nutr Biochem ; 104: 108968, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35192918

RESUMEN

Whey protein has been reported to be an impactful dietary supplement to ameliorate skeletal muscle aging for a long time. However, whether whey protein could contribute to muscle aging amelioration by post-transcriptional modulation remains unclear. In this study, 19-month-old mice orally received whey protein supplementation (1.0 g/kg/bw/d, whey protein group) or deionized water (the control group) for 3 months. Differentially expressed ncRNAs and mRNAs in quadriceps were identified by RNA-seq. Construction of non-coding RNAs (ncRNAs)-associated competing endogenous RNA (ceRNA) networks as well as GO and KEGG enrichment analyses were also carried out subsequently. Meanwhile, ultrasound measurement, H&E staining, myofiber cross-sectional area measurement, western blotting and RT-qPCR were performed in the quadriceps to evaluate muscle status and verify the RNA-seq data. Whey protein supplementation for 3 months increased quadriceps-body weight ratio and improved the histological as well as ultrasonographic characteristics of aging in muscle. Moreover, the protein expression levels of Myog, Myf4, Myf5 and MyoD1 were all significantly elevated in quadriceps. The expression of 90 lncRNAs, 334 mRNAs, six circRNAs and 52 miRNAs were significantly up or down-regulated in quadriceps after whey protein supplementation. Furthermore, ncRNAs-associated networks and GO and KEGG enrichment analyses revealed whey protein may influence muscle aging process through selected ncRNAs-associated ceRNA networks. Therefore, post-transcriptional modulation could be a potential crucial way to ameliorate skeletal muscle aging after whey protein supplementation. The selected ncRNAs-associated ceRNA networks may provide new insight for the underlying mechanism and profound therapeutic target for skeletal muscle aging.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Envejecimiento/genética , Animales , Suplementos Dietéticos , Redes Reguladoras de Genes , Ratones , MicroARNs/genética , Músculo Esquelético/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de Suero de Leche/farmacología
15.
Biomolecules ; 12(2)2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204832

RESUMEN

microRNAs are small non-coding RNAs that play a key role in regulating gene expression. These molecules exert their function through sequence complementarity with microRNA responsive elements and are typically located in the 3' untranslated region of mRNAs, negatively regulating expression. Even though the relevant role of miRNA-dependent regulation is broadly recognized, the principles governing their ability to lead to specific functional outcomes in distinct cell types are still not well understood. In recent years, an intriguing hypothesis proposed that miRNA-responsive elements act as communication links between different RNA species, making the investigation of microRNA function even more complex than previously thought. The competing endogenous RNA hypothesis suggests the presence of a new level of regulation, whereby a specific RNA transcript can indirectly influence the abundance of other transcripts by limiting the availability of a common miRNA, acting as a "molecular sponge". Since this idea has been proposed, several studies have tried to pinpoint the interaction networks that have been established between different RNA species and whether they contribute to normal cell function and disease. The focus of this review is to highlight recent developments and achievements made towards the process of characterizing competing endogenous RNA networks and their role in cellular function.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Front Immunol ; 13: 1085038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618366

RESUMEN

Background: Colon cancer (CC) is the second most common gastrointestinal malignancy. About one in five patients have already developed distant metastases at the time of initial diagnosis, and up to half of patients develop distant metastases from initial local disease, which leads to a poor prognosis for CC patients. Necroptosis plays a key role in promoting tumor growth in different tumors. The purpose of this study was to construct a prognostic model composed of necroptosis-related genes (NRGs) in CC. Methods: The Cancer Genome Atlas was used to obtain information on clinical features and gene expression. Gene expression differential analysis, weighted gene co-expression network analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator regression algorithm were utilized to identify prognostic NRGs. Thereafter, a risk scoring model was established based on the NRGs. Biological processes and pathways were identified by gene ontology and gene set enrichment analysis (GSEA). Further, protein-protein interaction and ceRNA networks were constructed based on mRNA-miRNA-lncRNA. Finally, the effect of necroptosis related risk score on different degrees of immune cell infiltration was evaluated. Results: CALB1, CHST13, and SLC4A4 were identified as NRGs of prognostic significance and were used to establish a risk scoring model. The time-dependent receiver operating characteristic curve analysis revealed that the model could well predict the 1-, 3-, and 5-year overall survival (OS). Further, GSEA suggested that the NRGs may participate in biological processes, such as the WNT pathway and JAK-Stat pathway. Eight key hub genes were identified, and a ceRNA regulatory network, which comprised 1 lncRNA, 5 miRNAs and 3 mRNAs, was constructed. Immune infiltration analysis revealed that the low-risk group had significantly higher immune-related scores than the high-risk group. A nomogram of the model was constructed based on the risk score, necroptosis, and the clinicopathological features (age and TNM stage). The calibration curves implied that the model was effective at predicting the 1-, 3-, and 5-year OS of CC. Conclusion: Our NRG-based prognostic model can assist in the evaluation of CC prognosis and the identification of therapeutic targets for CC.


Asunto(s)
Neoplasias del Colon , MicroARNs , ARN Largo no Codificante , Humanos , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/genética , Quinasas Janus , MicroARNs/genética , Necroptosis/genética , Pronóstico , Transducción de Señal , Factores de Transcripción STAT
17.
Genomics ; 113(1 Pt 1): 193-204, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33338629

RESUMEN

Non-coding RNAs appear to be involved in the regulation of the nervous system. However, no competing endogenous RNA (ceRNA) network related to PM2.5 damage in the hippocampal function has yet been constructed. Herein, we used whole-transcriptome sequencing technology to systematically study the ceRNA network in rat hippocampi after PM2.5 exposure. We identified 100 circRNAs, 67 lncRNAs, 28 miRNAs, and 539 mRNAs and constructed the most comprehensive ceRNA network to date, to our knowledge. Gene Ontology and KEGG analyses showed that the network molecules are involved in synapses, neural projections, and neural development and involve signal pathways such as the synaptic vesicle cycle. Finally, the expression of the differentially expressed RNAs confirmed by quantitative real-time PCR was consistent with the sequencing data. This study systematically dissected the ceRNA atlas related to cognitive memory function in the hippocampal tissue of PM2.5-exposed rats for the first time, to our knowledge, and promotes the development of potential new treatments for cognitive impairment.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Redes Reguladoras de Genes , Hipocampo/metabolismo , Material Particulado/toxicidad , Transcriptoma , Animales , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Masculino , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas , Ratas Wistar
18.
Arch Med Sci ; 16(6): 1411-1418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33224341

RESUMEN

INTRODUCTION: Hodgkin lymphoma (HL) is a type of lymphoma common throughout the western countries. However, the detailed mechanisms and special biomarkers of HL remain to be further investigated. Emerging studies have shown that long non-coding RNAs play a key role in human cancers. MATERIAL AND METHODS: In the present work, we constructed relapse-related lncRNA-mediated ceRNA networks in HL. Additionally, we constructed co-expression networks for these relapse-related lncRNAs. We also constructed a relapse-related lncRNA-miRNA-mRNA network to study the potential mechanism of these lncRNAs. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore functions of DEGs in Hodgkin lymphoma. RESULTS: A total of 18 lncRNAs were found to be dysregulated between early relapse and late relapse HL. Six lncRNAs (PCBP1-AS1, HCG18, GAS5, PSMD6-AS2, PRKCQ-AS1, SNHG6), 116 mRNAs and 121 miRNAs were included in the ceRNA network. Bioinformatics analyses revealed that these lncRNAs were significantly involved in regulating immune system processes, responses to chemical stimuli and responses to stress. Among them, HCG18 and PCBP1-AS1 were identified as key lncRNAs in HL relapse. CONCLUSIONS: Our results for the first time constructed the key relapse-related lncRNA-mediated ceRNA networks in Hodgkin lymphoma progression. We trust that this work will provide a new therapeutic and prognostic target for HL.

19.
Clin Exp Pharmacol Physiol ; 47(8): 1350-1359, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32246488

RESUMEN

Lung adenocarcinoma (LUAD) is one of several malignant tumours with the highest incidence rates. Currently, there is an urgent need for effective diagnostic and therapeutic targets for LUAD in clinical practice. Numerous studies have shown that there may be differences in the development pattern of LUAD between male and female patients, leading to the need for differential treatment. At the same time, previous studies have shown that competitive endogenous (ce)RNA plays an important role in the development of LUAD, but there is no relevant research on whether there is a gender difference in the ceRNA network of LUAD. In this study, we constructed gender-independent, male-specific, and female-specific ceRNA networks using RNA sequencing results from TCGA database. Subsequently, through analysis of the core genes of the ceRNA network, we determined that the male and female ceRNA networks indeed display different features. In addition, we also found that the osteoclast-associated receptor (OSCAR) gene was a potential diagnostic target for detecting LUAD in females, and that increased expression of this gene promoted the proliferation and migration of A549 and H1975 LUAD cell lines; more specifically, A549 and H1975 are male and female LUAD cell lines, respectively. This suggests that the OSCAR gene has the potential to serve as target molecule for the diagnosis and treatment of female-specific LUADs.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Movimiento Celular/genética , ARN/genética , Receptores de Superficie Celular/genética , Caracteres Sexuales , Células A549 , Proliferación Celular/genética , Femenino , Humanos , Masculino
20.
Planta ; 251(2): 47, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31925576

RESUMEN

MAIN CONCLUSION: Circular RNA (circRNA) identification and expression profiles, and construction of circRNAs-miRNAs-mRNAs networks indicates that circRNAs are involved in wood formation of poplars in acclimation to low nitrogen availability. Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in wood formation of poplars in acclimation to low nitrogen (N) availability are currently unknown. Here, we undertook a systematic identification and characterization of circRNAs in the wood of Populus × canescens exposed to either 50 (low N) or 500 (normal N) µM NH4NO3 using rRNA-depleted RNA-sequencing. A total of 2,509 unique circRNAs were identified, and 163 (ca. 6.5%) circRNAs were significantly differentially expressed (DE) under low N condition. We observed a positive correlation between the expression patterns of DE circRNAs and their hosting protein-coding genes. Moreover, circRNAs-miRNAs-mRNAs' networks were identified in the wood of poplars under low N availability. For instance, upregulated several circRNAs, such as circRNA1226, circRNA 1732, and circRNA392 induced increases in nuclear factor Y, subunit A1-A (NFYA1-A), NFYA1-B, and NFYA10 transcript levels via the mediation of miR169b members, which is in line with reduced xylem width and cell layers of the xylem in the wood of low N-supplied poplars. Upregulation of circRNA1006, circRNA1344, circRNA1941, circRNA901, and circRNA146 caused increased transcript level of MYB61 via the mediation of a miR5021 member, corresponding well to the higher lignin concentration in the wood of low N-treated poplars. Overall, these results indicated that DE circRNAs play an essential role in regulating gene expression via circRNAs-miRNAs-mRNAs' networks to modulate wood anatomical and chemical properties of poplars in acclimation to low N availability.


Asunto(s)
Aclimatación/genética , Nitrógeno/farmacología , Populus/crecimiento & desarrollo , Populus/genética , ARN Circular/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Aclimatación/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Genoma de Planta , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Populus/efectos de los fármacos , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Madera/efectos de los fármacos , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA