Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros











Intervalo de año de publicación
1.
Animals (Basel) ; 14(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39335298

RESUMEN

To investigate the effect of Eimeria tenella (E. tenella) infection on the cecal microbiota, resistant and susceptible families were screened out based on the coccidiosis resistance evaluation indexes after E. tenella infection. Subsequently, a comparative analysis of cecal microorganisms among control, resistant, and susceptible groups as well as between different periods following the E. tenella challenge was conducted using metagenomic sequencing technology. The results showed that the abundance of opportunistic pathogens, such as Pantoea, Sporomusa, and Pasteurella in the susceptible group and Helicobacter and Sutterella in the resistant group, was significantly higher on day 27 post-inoculation (PI) (the recovery period) than on day 5 PI (the infection period). Additionally, the abundance of Alistipes, Butyricicoccus, and Eubacterium in the susceptible group and Coprococcus, Roseburia, Butyricicoccus, and Lactobacillus in the resistant group showed a significant upward trend during the infection period compared with that in the recovery period. On day 5 PI, the abundance of Faecalibacterium and Lactobacillus was decreased in both the resistant and susceptible groups when compared with that in the control group and was greater in the resistant group than in the susceptible group, while Alistipes in the susceptible group had a relatively higher abundance than that in other groups. A total of 49 biomarker taxa were identified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Of these, the relative abundance of Lactobacillus aviarius, Lactobacillus salivarius, Roseburia, and Ruminococcus gauvreauii was increased in the resistant group, while Bacteroides_sp__AGMB03916, Fusobacterium_mortiferum, Alistipes_sp__An31A, and Alistipes_sp__Marseille_P5061 were enriched in the susceptible group. On day 27 PI, LDA scores identified 43 biomarkers, among which the relative abundance of Elusimicrobium_sp__An273 and Desulfovibrio_sp__An276 was increased in the resistant group, while that of Bacteroides_sp__43_108, Chlamydiia, Chlamydiales, and Sutterella_sp__AM11 39 was augmented in the susceptible group. Our results indicated that E. tenella infection affects the structure of the cecal microbiota during both the challenge and recovery periods. These findings will enhance the understanding of the effects of changes in the cecal microbiota on chickens after coccidia infection and provide a reference for further research on the mechanisms underlying how the intestinal microbiota influence the growth and health of chickens.

2.
J Anim Sci ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243135

RESUMEN

Egg-laying is an important trait in chickens, and it is affected by many factors, such as hormones regulated by the hypothalamic-pituitary axis and precursors synthesized by the liver. Recent studies showed that gut microbiota was associated with egg-laying, however, its underlying mechanism remains unclear. We comprehensively analyzed the host transcriptome, gut microbiota and metabolome in broiler breeder hens during the pre-laying, peak-laying and late-laying periods. The transcriptome analysis of the tissues related to the hypothalamic-pituitary-liver (HPL) axis revealed dynamic gene expression during egg-laying periods. Differentially expressed genes (DEGs) (i.e., PENK, NPY, AVP, PRL, RLN3, and FST) from the hypothalamus and pituitary gland were involved in female gonadal development, hormone secretion, response to endogenous stimulus, liver development, and amide metabolism. In liver, DEGs (i.e., FABP3, VTG1, LPL, APOA5, APOV1, and RBP5) were enriched in efferocytosis, sphingolipid metabolism, amide and peptide biosynthesis. Alpha and beta diversity changed significantly in cecum microbiota during different laying periods. The abundance of Firmicutes was decreased and the abundance of Bacteroidota was increased during the peak-laying period. Functional analysis showed that the biosynthesis of secondary metabolites, amino acids, purine, and steroid hormones were altered during laying. The metabolome analysis from cecal contents showed that amino acid metabolism and steroid hormone biosynthesis changed during laying. Integrated analysis of the cecal microbiota and metabolites showed the genus Megasphaera was involved in amino acid metabolism, which included 3-phenyllatic acid, quinic acid, caffeic acid, and folic acid, and the genus Hungatella participated in steroid hormone biosynthesis through its strong correlation with estradiol. These results explored the dynamic changes in tissues related to the HPL axis and cecal microbiota, and provided new insights into the interaction between the host and microbiota during egg-laying in chickens.

3.
Front Microbiol ; 15: 1403166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101039

RESUMEN

Background: The gut microbiome plays a key role in the formation of livestock and poultry traits via serum metabolites, and empirical evidence has indicated these traits are sex-linked. Methods: We examined 106 chickens (54 male chickens and 52 female chickens) and analyzed cecal content samples and serum samples by 16S rRNA gene sequencing and non-targeted metabolomics, respectively. Results: The cecal microbiome of female chickens was more stable and more complex than that of the male chickens. Lactobacillus and Family XIII UCG-001 were enriched in male chickens, while Eubacterium_nodatum_group, Blautia, unclassified_Anaerovoraceae, Romboutsia, Lachnoclostridium, and norank_Muribaculaceae were enriched in female chickens. Thirty-seven differential metabolites were identified in positive mode and 13 in negative mode, showing sex differences. Sphingomyelin metabolites possessed the strongest association with cecal microbes, while 11ß-hydroxytestosterone showed a negative correlation with Blautia. Conclusion: These results support the role of sexual dimorphism of the cecal microbiome and metabolome and implicate specific gender factors associated with production performance in chickens.

4.
Biomolecules ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39199404

RESUMEN

Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Animales , Humanos , Eje Cerebro-Intestino , Conducta Animal , Trasplante de Microbiota Fecal , Agresión , Ciego/microbiología , Trastornos Mentales/etiología , Trastornos Mentales/microbiología , Estrés Psicológico/microbiología , Disbiosis/microbiología
5.
Animals (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39061504

RESUMEN

China is a major goose-raising country, and the geese industry plays a significant role in animal husbandry. Therefore, goose growth performance (body weight) is a critical topic. Goose gut microbiota influences weight gain by regulating its energy metabolism and digestion. Additionally, the impact of cecal microbial community structure on goose growth and development, energy metabolism, and immunity has been examined. However, most studies have used different additives or feeds as variables. Improving the understanding of the dynamic changes in gut microbial communities in geese of different body weights during their growth and development and their correlation with the host's body weight is necessary. In this study, the cecal microbiota of healthy Yangzhou geese with large (L) and small (S) body weights, all at the same age (70 days old) and under the same feeding conditions, were sequenced using 16S rRNA. The sequencing results were annotated using QIIME2 (classify-sklearn algorithm) software, and the linkET package was used to explore the correlation between intestinal microorganisms and the body weight of the Yangzhou goose (Spearman). At the phylum level, the Firmicutes/Bacteroidetes ratio in the large body weight group was approximately 20% higher than that in the small body weight group, with Bacteroidetes and Firmicutes exhibiting a highly significant negative correlation. At the genus level, Bacteroides constituted the most abundant microbial group in both groups, although the Prevotellaceae_Ga6A1_group exhibited a higher abundance in the large than the small weight group. Spearman correlation analysis and the linkET package were used to analyze the correlation between cecal microflora and production performance indicators that showed significant differences between the two groups and showed that birth weight was significantly positively correlated with Deferribacterota at the phylum level. At the genus level, leg and chest muscle weights exhibited significant positive correlations with Prevotellace-ae_Ga6A1_group, suggesting its critical role in promoting the growth and development of goose leg and chest muscles. A significant negative correlation was observed between [Ruminococ-cus]_torque and Prevotellaceae_Ga6A1_group. These findings offer a crucial theoretical foundation for the study of gastrointestinal microorganisms and provide insights into the development and formulation of poultry probiotics.

6.
Front Vet Sci ; 11: 1393434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988982

RESUMEN

Introduction: Yeast peptides have garnered attention as valuable nutritional modifiers due to their potential health benefits. However, the precise mechanisms underlying their effects remain elusive. This study aims to explore the potential of yeast peptides, when added to diets, to mitigate lipopolysaccharide (LPS)-induced intestinal damage and microbiota alterations in rabbits. Methods: A total of 160 35-day-old Hyla line rabbits (0.96 ± 0.06 kg) were randomly assigned to 4 groups. These groups constituted a 2 × 2 factorial arrangement: basal diet (CON), 100 mg/kg yeast peptide diet (YP), LPS challenge + basal diet (LPS), LPS challenge +100 mg/kg yeast peptide diet (L-YP). The experiment spanned 35 days, encompassing a 7-day pre-feeding period and a 28-day formal trial. Results: The results indicated that yeast peptides mitigated the intestinal barrier damage induced by LPS, as evidenced by a significant reduction in serum Diamine oxidase and D-lactic acid levels in rabbits in the L-YP group compared to the LPS group (p < 0.05). Furthermore, in the jejunum, the L-YP group exhibited a significantly higher villus height compared to the LPS group (p < 0.05). In comparison to the LPS group, the L-YP rabbits significantly upregulated the expression of Claudin-1, Occludin-1 and ZO-1 in the jejunum (p < 0.05). Compared with the CON group, the YP group significantly reduced the levels of rabbit jejunal inflammatory cytokines (TNF-α, IL-1ß and IL-6) and decreased the relative mRNA expression of jejunal signaling pathway-associated inflammatory factors such as TLR4, MyD88, NF-κB and IL-1ß (p < 0.05). Additionally, notable changes in the hindgut also included the concentration of short-chain fatty acids (SCFA) of the YP group was significantly higher than that of the CON group (p < 0.05). 16S RNA sequencing revealed a substantial impact of yeast peptides on the composition of the cecal microbiota. Correlation analyses indicated potential associations of specific gut microbiota with jejunal inflammatory factors, tight junction proteins, and SCFA. Conclusion: In conclusion, yeast peptides have shown promise in mitigating LPS-induced intestinal barrier damage in rabbits through their anti-inflammatory effects, modulation of the gut microbiota, and maintenance of intestinal tight junctions.

7.
J Anim Sci Biotechnol ; 15(1): 100, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997768

RESUMEN

BACKGROUND: Liver lipid dysregulation is one of the major factors in the decline of production performance in late-stage laying hens. Silymarin (SIL), a natural flavonolignan extracted from milk thistle, is known for its hepatoprotective and lipid-lowering properties in humans. This study evaluates whether SIL can provide similar benefits to late-stage laying hens. A total of 480 68-week-old Lohmann Pink laying hens were randomly assigned into 5 groups, each group consisting of 6 replicates with 16 hens each. The birds received a basal diet either without silymarin (control) or supplemented with silymarin at concentrations of 250, 500, 750, or 1,000 mg/kg (SIL250, SIL500, SIL750, SIL1000) over a 12-week period. RESULTS: The CON group exhibited a significant decline in laying rates from weeks 9 to 12 compared to the initial 4 weeks (P = 0.042), while SIL supplementation maintained consistent laying rates throughout the study (P > 0.05). Notably, the SIL500 and SIL750 groups showed higher average egg weight than the CON group during weeks 5 to 8 (P = 0.049). The SIL750 group had a significantly higher average daily feed intake across the study period (P < 0.05), and the SIL500 group saw a marked decrease in the feed-to-egg ratio from weeks 5 to 8 (P = 0.003). Furthermore, the SIL500 group demonstrated significant reductions in serum ALT and AST levels (P < 0.05) and a significant decrease in serum triglycerides and total cholesterol at week 12 with increasing doses of SIL (P < 0.05). SIL also positively influenced liver enzyme expression (FASN, ACC, Apo-VLDL II, FXR, and CYP7A1; P < 0.05) and altered the cecal microbiota composition, enhancing species linked to secondary bile acid synthesis. Targeted metabolomics identified 9 metabolites predominantly involved in thiamin metabolism that were significantly different in the SIL groups (P < 0.05). CONCLUSIONS: Our study demonstrated that dietary SIL supplementation could ameliorate egg production rate in late stage laying hens, mechanistically, this effect was via improving hepatic lipid metabolism and cecal microbiota function to achieve. Revealed the potentially of SIL as a feed supplementation to regulate hepatic lipid metabolism dysregulation. Overall, dietary 500 mg/kg SIL had the best effects.

8.
J Genet Genomics ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950856

RESUMEN

Heterosis has been widely utilized in agricultural production. Despite over a century of extensive research, the underlying mechanisms of heterosis remain elusive. Most hypotheses and research have focused on the genetic basis of heterosis. However, the potential role of gut microbiota in heterosis has been largely ignored. Here, we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis. We find that the breast muscle weight of the hybrids exhibits a high heterosis, 6.28% higher than the mid-parent value. A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents. Over 90% of the differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns. Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota, including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odoribacter, Oscillibacter, and Alistipes in hybrids. Moreover, higher abundances of these microbiota are related to better meat yield. In summary, these findings highlight the importance of gut microbiota in heterosis, serving as crucial factors that modulate heterosis expression in chickens.

9.
Front Vet Sci ; 11: 1401980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895717

RESUMEN

Microorganisms residing in the cecum of donkeys are crucial for physiological processes, nutrient metabolism, and immune function. Feeding methods can affect the dynamic balance of animal gut microbiota, thereby affecting indicators such as volatile fatty acids. This study explores suitable feeding methods to promote actual production by changing the feeding order of concentrate. Fifteen Dezhou donkeys with similar age and weight profiles were randomly divided into three groups with the concentrate feeding sequence: fiber-to-concentrate (FC), concentrate-to-fiber (CF), and total mixed ration (TMR). The experiment spanned a duration of 82 days. The analyses conducted were primarily aimed at determining the effects of feeding on gut microbes, primarily using metagenomic sequencing techniques. The experimental findings revealed that the levels of valeric acid were notably higher in the CF and TMR groups compared to the FC group (p < 0.05). These results suggest that the feeding sequence exerts a certain impact on the microbial composition within the cecum of Dezhou donkeys. At the phylum level, the predominant microbiota consisted of Firmicutes and Bacteroidetes, with the CF group displaying a higher relative abundance of Firmicutes compared to both the FC and TMR groups. At the genus level, Prevotella, Bacteroides, and Fibrobacter were the dominant bacterial genera identified in cecum. The functional gene annotation analysis indicated a significantly lower abundance of lacZ (K01190), Por/nifJ (K03737), and ppdK (K01006) genes in CF group relative to the FC and TMR groups (p < 0.05), highlighting their roles in galactose metabolism and glycolysis, respectively. Moreover, the CF group exhibited a higher concentration of antibiotic resistance genes (tetO and tet44) in the gut microbiota compared to the TMR and FC groups (p < 0.05), underscoring the presence of numerous antibiotic resistance genes within the phyla Bacteroidetes, Firmicutes, and Proteobacteria. In conclusion, different precision feed sequences significantly impact the levels of volatile fatty acids in Dezhou fattening donkeys, modify the composition and functional genes of the cecal microbiota, and elucidate the microbial mechanisms influenced by the feeding sequence on the growth and metabolism. These insights are anticipated to provide a foundation for the rational design of precision feed sequences in practical agricultural settings.

10.
Poult Sci ; 103(8): 103954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909508

RESUMEN

Succinate has been shown to be a potentially beneficial nutritional supplement with a diverse range of physiological functions. However, it remains unknown whether succinate supplementation regulates lipid metabolism in chickens. The aim of this study was to explore how succinate affects fat deposition and the underlying mechanism involved in broilers and to determine the most appropriate level of succinate supplementation in the diet. A total of 640 one-day-old male yellow-feathered broilers were randomly divided into 4 groups with 8 replicates and 20 broilers per replicate. A basal diet was provided to the control group (CON). The experimental broilers were fed diets containing 0.2% (L), 0.4% (M), or 0.6% (H) succinate and the study was lasted for 21 d. The linear (l) and quadratic (q) effects of succinate addition were determined. The results indicated that supplementation with 0.4% succinate reduced ADFI, serum triglycerides (l, q; P < 0.05), glucose (q; P < 0.05), and increased high-density lipidprotein cholesterol (l, q; P < 0.05) concentrations in broilers. Moreover, 0.4% succinate affects lipid metabolism by decreasing the abdominal fat percentage and adipocyte surface area, the expression of genes that promote liposynthesis in the abdominal fat and liver, as well as increasing the expression of genes that promote lipolysis in the abdominal fat and liver. In addition, increased cecal propionic acid content (q, P < 0.05) was found in the M group compared to the CON group. The 16S rRNA sequence analysis showed that group M altered cecum microbial composition by increasing the abundance of genera such as Blautia and Sellimonas (P < 0.05). LC-MS metabolomic analysis revealed that the differential metabolites between the M and CON groups were enriched in amino acid-related pathways. In conclusion, the optimum level of succinate added to broiler diets in the present study was 0.4%. Succinate can potentially reduce fat accumulation in broilers by modulating the composition of the gut flora and amino acid metabolism related to lipid metabolism.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Ácido Succínico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ácido Succínico/metabolismo , Ácido Succínico/administración & dosificación , Distribución Aleatoria , Relación Dosis-Respuesta a Droga
11.
Biology (Basel) ; 13(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785799

RESUMEN

In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.

12.
Poult Sci ; 103(7): 103778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703760

RESUMEN

The gut-brain axis is essential in maintaining the homeostasis of neuronal system, endocrine system, and intestinal microbiota in both the afferent and efferent directions. This axis is considered to be a key mechanism that regulates feed efficiency (FE). This study aimed to investigate the regulatory mechanisms of gut-brain axis-related genes on the residual feed intake (RFI) in H-strain small-sized meat ducks. A total of 500 ducks with similar initial BW (635.2 ± 15.1 g) were selected and reared in the same experimental facility until slaughter at 42 d of age. RFI was calculated from the average daily gain (ADG), average daily feed intake (ADFI), and metabolic body weight (MBW0.75). Thirty high-RFI (H-RFI) and 30 low-RFI (L-RFI) birds were selected for further evaluation of growth performance, carcass characteristics, and blood biochemical parameter measurements. Six L-RFI and 6 H-RFI birds were then subjected to hypothalamic transcriptomic and cecal microbial sequencing analyses. Results indicated that L-RFI birds exhibited lower production performance (ADFI, FCR, and RFI) and blood biochemical indices (total cholesterol and ghrelin content) compared with H-RFI birds (P < 0.05). Gene expression differed significantly between the L-RFI and H-RFI birds, with 70 upregulated and 50 downregulated genes. The bacterial communities of L-RFI birds showed higher abundances of Bacteroides, Bifidobacterium, and Lactococcus, and lower abundances of Erysipelatoclostridium, Parasutterella, Fournierella, and Blautia compared with H-RFI birds (P < 0.05). Interactive analysis revealed bacterial communities associated with FE were significantly correlated with hypothalamic genes (P < 0.05), for example, Bacteroides was positively correlated with DGKH and LIPT2, while negatively correlated with CAPN9, GABRD, and PDE1A. Bifidobacterium showed significant correlations with ATP2A3, CALHM6, and TMEM121B. Overall, RFI was a crucial indicator of FE, regulated by interactions between brain gene expression and gut microbiota through cAMP signaling, neuroactive ligand-receptor interaction, and calcium signaling pathways. Notably, increased expression of hypothalamic genes and abundance of carbohydrate-utilization microbiota in L-RFI meat ducks improved FE by enhancing energy metabolism and volatile fatty acids absorption.


Asunto(s)
Patos , Microbioma Gastrointestinal , Animales , Patos/fisiología , Patos/crecimiento & desarrollo , Patos/genética , Microbioma Gastrointestinal/fisiología , Eje Cerebro-Intestino/fisiología , Ingestión de Alimentos , Masculino
13.
Poult Sci ; 103(7): 103824, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772089

RESUMEN

Coccidiosis, which is caused by Eimeria species, results in huge economic losses to the poultry industry. Arbor Acres (AA) broilers and yellow-feathered broilers are the dominant broilers in northern and southern China, respectively. However, their susceptibility to coccidiosis has not been fully compared. In this study, the susceptibility of yellow-feathered broilers, AA broilers and Lohmann pink layers to E. tenella was evaluated based on mortality rate, relative body weight gain rate, intestinal lesion score, oocyst output, anticoccidial index (ACI), and cecum weight and length. The yellow-feathered broilers were shown to produce significantly fewer oocysts with higher intestinal lesion score compared to AA broilers, which had the highest growth rates and ACI scores. Subsequently, changes in the cecal microbiota of the 3 chicken lines before and after high-dose infection (1 × 104 oocysts) with E. tenella were determined by 16S rRNA sequencing. The results showed that composition of the microbiota changed dramatically after infection. The abundance of Firmicutes and Bacteroidetes in the infected chickens decreased, and Proteobacteria increased significantly among the different chicken lines. At the genus level, Escherichia increased significantly in all 3 groups of infected chickens, but Lactobacillus decreased to 0% in the infected yellow-feathered broilers. The results of the study indicate that the susceptibility to E. tenella varies among the 3 chicken lines, and that changes in intestinal microbiota by E. tenella-infection among the different chicken lines had a similar trend, but to different degrees. This study provides basic knowledge of the susceptibility in the 3 chicken lines, which can be helpful for the control and prevention of coccidiosis.


Asunto(s)
Ciego , Pollos , Coccidiosis , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Animales , Coccidiosis/veterinaria , Coccidiosis/parasitología , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/microbiología , Ciego/microbiología , Ciego/parasitología , Susceptibilidad a Enfermedades/veterinaria , Eimeria tenella/fisiología , Femenino , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , China , Eimeria/fisiología
14.
Poult Sci ; 103(7): 103855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796988

RESUMEN

Lipid metabolic capacity, feed utilization, and the diversity of gut microbiota are reduced in the late laying stage for laying hens. This experiment aimed to investigate the effects of different levels of dietary metabolizable energy (ME) on hepatic lipid metabolism and cecal microbiota in late laying hens. The 216 Peking Pink laying hens (57-wk-old) were randomly assigned to experimental diets of 11.56 (HM = high ME), 11.14 (MM = medium ME), or 10.72 (LM = low ME) MJ of ME/kg, with each dietary treatment containing 6 replicates per group and 12 chickens per replicate. The HM group showed higher triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) concentrations in the liver compared with the LM group; second, the HM group showed higher TG concentration and the LM group showed lower T-CHO concentration compared with MM group; finally, the HM group showed a lower hepatic lipase (HL) activity compared with the MM and LM groups (P < 0.05). There was a significant difference in the microbial community structure of the cecum between the HM and MM groups (P < 0.05). The decrease of dietary ME level resulted in a gradual decrease relative abundance of Proteobacteria. At the genus level, beneficial bacteria were significantly enriched in the LM group compared to the MM group, including Faecalibacterium, Lactobacillus, and Bifidobacterium, (linear discriminant analysis [LDA] >2, P <0.05). In addition, at the species level, Lactobacillus crispatus, Parabacteroides gordonii, Blautia caecimuris, and Lactobacillus johnsonii were significantly enriched in the LM group (LDA>2, P < 0.05). The HM group had a higher abundance of Sutterella spp. compared to the LM group (LDA>2, P <0.05). In conclusion, this research suggests that the reduction in dietary energy level did not adversely affect glycolipid metabolism or low dietary ME (10.72 MJ/kg). The findings can be helpful for maintaining intestinal homeostasis and increasing benefit for gut microbiota in late laying hens.


Asunto(s)
Alimentación Animal , Ciego , Pollos , Dieta , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Hígado , Animales , Pollos/microbiología , Pollos/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ciego/microbiología , Ciego/metabolismo , Ciego/efectos de los fármacos , Dieta/veterinaria , Femenino , Alimentación Animal/análisis , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Distribución Aleatoria , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Energía
15.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38720654

RESUMEN

Cecal microbiota has emerged as a prominent intervention target for improving the production and welfare of poultry. This is essential for the overall health and performance of broiler chickens. The current study focused on investigating the effect of cecal microbiota transplantation (CMT) from healthy donor chickens on the growth performance, immunity, and microbial composition of newly hatched chicks and evaluated the effect of sample storage on the microbial diversity of the cecal samples. A healthy "Wannan Yellow Chicken line" was selected as the donor, and 180 1-d-old chicks from the same line were used as recipients for a 60-d feed trial. The chicks were randomly allocated to three groups (60 birds per group) with three replicates in each group. The three treatment groups were CMT-0 (control, normal saline solution), CMT-I (1:12 cecal content, normal saline supplemented with 10% glycerol), and CMT-II (1:6 cecal content, normal saline supplemented with 10% glycerol). The results of weight gain and absolute organ weight showed significant improvements in the CMT-II group compared with the CMT-0 group. Serum IgG level was significantly improved (P < 0.05) in CMT-I compared with that in the CMT-0. However, IL-6 levels increased in CMT-I and then significantly decreased in CMT-II. The cecal microbial diversity of CMT treatment was compared between two groups, fresh samples (FS) and stored samples at-80 °C (SS). The results showed that beneficial taxa, such as Firmicutes and Verrucomicrobiota, were substantially more abundant in both CMT-I and CMT-II than in CMT-0 in both FS and SS. Microbial function analysis at levels 1, 2, and 3 showed improved metabolism, genetic information processing, cellular processes, environmental information processing, and organismal systems in CMT-I and CMT-II for both FS and SS groups. However, the SS group showed decreased microbial diversity and function. To conclude, cecal microbiota transplantation is a promising strategy for enhancing the productivity and health of broiler chickens.


The cecal microbiota refers to a diverse community of microorganisms that play a crucial role in digestion, nutrient absorption, and overall gut health, influencing the well-being and performance of the host bird. In this study, we aimed to improve the health and growth of broiler chickens by exploring a unique approach called cecal microbiota transplantation. A thorough investigation was conducted by transplanting the microbiota from healthy Wannan Yellow Chicken line donors into newly hatched chicks in a 60-d feeding trial. After dividing the chicks into three groups, each receiving different treatments, we found significant enhancements in WG and organ health in the groups that received cecal microbiota transplants. The results also showed improvements in Serum IgG levels in the treatment groups. Furthermore, the analysis of microbial diversity indicated that beneficial microorganisms were more abundant in the treated groups, suggesting a positive effect on chicken digestive health. To summarize, our findings suggest that transferring healthy gut microorganisms from mature parent chickens to young chicks can lead to improved growth, immune system function, microbial diversity, and overall health. This approach is a promising strategy for enhancing the productivity and well-being of broiler chickens.


Asunto(s)
Ciego , Pollos , Microbioma Gastrointestinal , Animales , Pollos/crecimiento & desarrollo , Pollos/microbiología , Ciego/microbiología , Trasplante de Microbiota Fecal , Distribución Aleatoria , Masculino , Dieta/veterinaria
16.
Dig Dis Sci ; 69(6): 2026-2043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622463

RESUMEN

BACKGROUND: Gastrointestinal transit (GIT) is influenced by factors including diet, medications, genetics, and gut microbiota, with slow GIT potentially indicating a functional disorder linked to conditions, such as constipation. Although GIT studies have utilized various animal models, few effectively model spontaneous slow GIT. AIMS: We aimed to characterize the GIT phenotype of CFP/Yit (CFP), an inbred mouse strain with suggested slow GIT. METHODS: Female and male CFP mice were compared to Crl:CD1 (ICR) mice in GIT and assessed based on oral gavage of fluorescent-labeled 70-kDa dextran, feed intake, fecal amount, and fecal water content. Histopathological analysis of the colon and analysis of gut microbiota were conducted. RESULTS: CFP mice exhibited a shorter small intestine and a 1.4-fold longer colon compared to ICR mice. The median whole-GIT time was 6.0-fold longer in CFP mice than in ICR mice. CFP mice demonstrated slower gastric and cecal transits than ICR mice, with a median colonic transit time of 4.1 h (2.9-fold longer). CFP mice exhibited lower daily feed intakes and fecal amounts. Fecal water content was lower in CFP mice, apparently attributed to the longer colon. Histopathological analysis showed no changes in CFP mice, including tumors or inflammation. Moreover, CFP mice had a higher Firmicutes/Bacteroidota ratio and a relative abundance of Erysipelotrichaceae in cecal and fecal contents. CONCLUSIONS: This study indicates that CFP mice exhibit slow transit in the stomach, cecum, and colon. As a novel mouse model, CFP mice can contribute to the study of gastrointestinal physiology and disease.


Asunto(s)
Tránsito Gastrointestinal , Animales , Tránsito Gastrointestinal/fisiología , Femenino , Masculino , Ratones , Microbioma Gastrointestinal/fisiología , Heces/química , Heces/microbiología , Ratones Endogámicos ICR , Colon/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos , Ciego/metabolismo , Ciego/microbiología
17.
Poult Sci ; 103(6): 103760, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678750

RESUMEN

This study was aimed to evaluate the effect of vitamin E (VE) on laying performance, VE deposition, antioxidant capacity, immunity, follicle development, estrogen secretion, ovary metabolome, and cecal microbiota of laying hens. One hundred and twenty XinYang Black-Feathered laying hens (70 wk old) were randomly assigned to 2 groups (6 replicates of 20 birds), and fed a basal diet (containing 20 mg/kg VE, control (CON) group) and a basal diet supplemented with 20 mg/kg VE (VE group). The experiment lasted for 10 wk. Results showed that VE supplementation increased laying performance, antioxidant capacity, and immunity, as evidenced by increased (P < 0.05) performance (laying rate), antioxidant (glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and catalase) and immune (immunoglobulins) parameters, and decreased (P < 0.05) feed/egg ratio and malondialdehyde. Meanwhile, VE group had higher (P < 0.05) pregrade follicles, ovary index and serum estrogen levels than CON group. 16S rRNA sequencing showed that VE supplementation altered the cecal microbiota composition by increasing Bacteroides, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-001 and Megamonas abundances and reducing Christensenellaceae_R-7_group abundance (at genus level), which are mainly associated with the production of short-chain fatty acids. Metabolomic profiling of the ovary revealed that the major metabolites altered by VE supplementation were mainly related to follicle development, estrogen secretion, anti-inflammatory, antioxidant, phototransduction, bile acid synthesis, and nutrient transport. Furthermore, changes in cecal microbiota (at genus level) and ovary metabolites were highly correlated with laying performance, antioxidant, and immune parameters. In summary, VE contributed to the laying performance of aged laying hens by enhancing antioxidant, immune, and ovarian functions, promoting follicle development and estrogen secretion, and regulating gut microbiota and ovary metabolites. These findings will provide a new perspective on the mechanisms of egg production in aged poultry ovaries.


Asunto(s)
Alimentación Animal , Ciego , Pollos , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Metaboloma , Ovario , Vitamina E , Animales , Pollos/fisiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Suplementos Dietéticos/análisis , Ciego/microbiología , Ciego/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Vitamina E/administración & dosificación , Vitamina E/farmacología , Metaboloma/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Distribución Aleatoria , Antioxidantes/metabolismo
18.
Anim Sci J ; 95(1): e13946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651265

RESUMEN

This study explored the effects of a Bacillus subtilis and Lactobacillus acidophilus mixture containing the co-fermented products of the two probiotics on growth performance, serum immunity and cecal microbiota of Cherry Valley ducks. This study included 480 one-day-old Cherry Valley ducks divided into four feeding groups: basal diet (control group) and basal diet supplemented with 300, 500, or 700 mg/kg of the probiotic powder; the ducks were raised for 42 days. Compared with the control group, body weight on day 42 and the average daily gain on days 15-42 significantly increased (p < 0.05), and the feed conversion rate significantly decreased (p < 0.05) in the experimental groups. Furthermore, the serum immunoglobulin (Ig) A, IgG, IgM, and interleukin (IL)-4 levels increased significantly (p < 0.05), and IL-1ß, IL-2, and tumor necrosis factor-α decreased significantly (p < 0.05) in the experimental groups. Finally, Sellimonas, Prevotellaceae NK3B31 group, Lachnospiraceae NK4A136 group and Butyricoccus played an important role in the cecal microbiota of the experimental group. Thus, the probiotic powder has impacts on the growth performance, serum immunity and cecal microbiota of Cherry Valley Ducks.


Asunto(s)
Bacillus subtilis , Ciego , Patos , Lactobacillus acidophilus , Probióticos , Animales , Probióticos/administración & dosificación , Ciego/microbiología , Patos/crecimiento & desarrollo , Patos/microbiología , Patos/inmunología , Patos/sangre , Microbioma Gastrointestinal , Dieta/veterinaria , Alimentación Animal , Inmunoglobulinas/sangre , Suplementos Dietéticos
19.
Animals (Basel) ; 14(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612231

RESUMEN

Excessive liver fat causes non-alcoholic fatty liver disease (NAFLD) in laying hens, reducing egg production. Addressing NAFLD via bile-acid metabolism is gaining attention. We induced NAFLD in 7-week-old ISA female chickens with a high-cholesterol, low-choline diet (CLC) for 6 weeks. LC/MS was used to analyze serum and cecal bile acids, while cecal digesta DNA underwent 16S rRNA sequencing. The distribution of bile acid varied in healthy (CON) and CLC-fed chickens. CLC increased secondary bile acids (TLCA, TUDCA, THDCA, TDCA) in serum and primary bile acids (CDCA, TCDCA, isoDCA) in serum, as well as glycochenodeoxycholic acid (GCDCA) in cecal contents. CLC upregulated bile-acid synthesis enzymes (CYP7A1, CYP8B1) in the liver. Bile-acid receptor gene expression (HNF4A, FXR, LXR) was similar between groups. Microbiota abundance was richer in CON (alpha-diversity), with distinct separation (beta-diversity) between CON and CLC. The Firmicutes/Bacteroidetes ratio slightly decreased in CLC. Taxonomic analysis revealed higher Bacteroides, Alistipes, Megamonas in CLC but lower Barnesiella. CLC had more Mucispirillum, Eubacterium_coprostanoligenes_group, Shuttleworthia, and Olsenella, while CON had more Enterococcus, Ruminococcaceae_UCG_014, and Faecalibacterium. This study unveils bile-acid and microflora changes in a chicken NAFLD model, enhancing our understanding of fatty liver disease metabolism and aiding targeted interventions.

20.
Poult Sci ; 103(5): 103635, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520936

RESUMEN

Despite the existence of a number of studies investigating the effect of insect meal on the growth performance of broilers, knowledge about the metabolic effects of insect meal in broilers is still scarce. Thus, the present study investigated the effect of partial replacement of soybean meal with Hermetia illucens (HI) larvae meal on the liver transcriptome, the plasma metabolome, and the cecal microbiota in broilers. For the study, 72 male one-day-old Cobb 500 broilers were divided into three groups and fed 3 different diets with either 0% (HI0), 7.5% (HI7.5), or 15% (HI15) defatted HI meal for 35 d. Each group consisted of 6 cages (replicates) with 4 broilers/cage. While body weight (BW) gain, feed intake, and feed:gain ratio did not differ between groups, breast muscle weight, carcass yield, and apparent ileal digestibility (AID) of 5 amino acids were higher in group HI15 than in group HI0 (P < 0.05). Indicators of α-diversity (Chao1 and Observed) in the cecal digesta were higher in groups HI15 and HI7.5 than in group HI0 (P < 0.05). The abundance of 5 families and 18 genera, all of which belonged to the Firmicutes phylum, in the cecal digesta differed among groups (P < 0.05). Concentrations of butyric acid, valeric acid, and isobutyric acid in the cecal digesta were lower in group HI15 than in the other 2 groups (P < 0.05), whereas those of total and other short-chain fatty acids were not different between groups. Liver transcriptomics revealed a total of 70 and 61 differentially expressed transcripts between groups HI15 vs. HI0 and between groups HI7.5 vs. HI0, respectively, (P < 0.05). Targeted metabolomics identified 138 metabolites, most of which were triglyceride species, being different between the 3 groups (FDR < 0.05). According to this study, dietary inclusion of HI larvae meal has no detrimental impact but increases breast muscle weight and carcass weight in broilers suggesting that HI larvae meal can be recommended as a sustainable alternative protein source for broilers.


Asunto(s)
Alimentación Animal , Ciego , Pollos , Dieta , Microbioma Gastrointestinal , Hígado , Metaboloma , Transcriptoma , Animales , Pollos/fisiología , Pollos/crecimiento & desarrollo , Alimentación Animal/análisis , Masculino , Dieta/veterinaria , Hígado/metabolismo , Ciego/microbiología , Glycine max/química , Fenómenos Fisiológicos Nutricionales de los Animales , Escarabajos , Larva , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA