Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.602
Filtrar
1.
J Biotechnol Biomed ; 7(3): 387-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364330

RESUMEN

Proliferation and migration of fibroblasts, keratinocytes, and endothelial cells are key events in the physiological process of wound healing. This process includes different but overlapping stages: hemostasis, inflammatory phase, the proliferative phase, and the remodeling phase. Traumatic brain injury (TBI) is defined as a mechanical insult to the brain from external mechanical force (primary injury), usually followed by the secondary injury including edema, inflammation, excitotoxicity, oxidative stress, or mitochondrial dysfunction. The process of tissue repair following TBI is based on the neuronal-glial interactions, where phagocytosis by microglia plays a crucial role. Low-frequency electromagnetic field (LF-EMF) has been shown to enhance tissue repair after TBI, however, there are limited studies investigating the effects of LF-EMF on the proliferation and migration of keratinocytes, fibroblasts, VSMCs, and endothelial cells in the context of wound healing and on neuronal cells and microglia in relation to healing after TBI. Better understanding of the effects of LF-EMF on the proliferation, migration, and differentiation of these cells is important to enhance tissue healing after injury. This review article comprehensively discussed the effect of EMF/LF-EMF on these cells. Results published by different authors are hardly comparable due to different methodological approach and experimental settings. EMF promotes migration and proliferation of fibroblasts, keratinocytes and endothelial cells (EC), and thus could improve wound healing. The pilot study preformed on a large animal model of TBI suggests anti-inflammatory effects of EMF stimulation following TBI. Therefore, EMF is recognized as a potential therapeutic option to accelerate the wound healing and improve cellular recovery and function after TBI. Nonetheless, future studies are needed to define the optimal parameters of EMF stimulation in terms of frequency or duration of exposure.

2.
Oncol Lett ; 28(6): 554, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39355786

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive disease with the capability of metastasizing quickly. However, treatment options for patients with TNBC still remain limited. CDK4/6 inhibitors have been approved by the U.S. Food and Drug Administration and are administered for the treatment of hormone receptor-positive breast cancer subtypes, but not yet for TNBC. Although pre-clinical research is being conducted on their efficacy in treating TNBC, acquired resistance to CDK4/6 inhibitors is now a growing clinical problem. One of the identified resistance mechanisms is through the IL-6/STAT3 signaling pathway. In the present study, the CDK4/6 inhibitor, abemaciclib, was tested in combination with the IL-6 inhibitor, bazedoxifene, on human (SUM159 and MDA-MB-231) and murine (4T1) TNBC cell lines. Both abemaciclib and bazedoxifene monotherapies inhibited cell cycle progression and cell viability, migration and invasion, and induced apoptosis; however, the combination treatment exerted a greater effect than either monotherapy. These findings support the concept of CDK4/6 and IL-6 dual inhibition as a novel targeted therapy against TNBC.

3.
ACS Nano ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356827

RESUMEN

Diabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities. The proposed technology combines electrospinning and electrospraying to develop a therapeutic option for DFUs. Specifically, porous NMs were constructed using electrospun poly(lactic-co-glycolic acid) (PLGA):gelatin short nanofibers, followed by gelatin cross-linking. These NMs demonstrated enhanced cell adhesion to human dermal fibroblasts (HDF) during an in vitro cytocompatibility assessment. Notably, porous NMs displayed superior performance owing to their interconnected pores compared to nonporous NMs. Cell-laden NMs demonstrated higher Young's modulus values than NMs without loaded cells, suggesting improved material resiliency attributed to the reinforcement of cells and their secreted extracellular matrix. Dynamic injection studies on cell-laden NMs further elucidated their capacity to safeguard loaded cells under pressure. In addition, porous NMs promoted host cell infiltration, neovascularization, and re-epithelialization in a diabetic mouse wound model, signifying their effectiveness in healing diabetic wounds. Taken together, porous NMs hold significant potential as minimally invasive, injectable treatments that effectively promote tissue integration and regeneration.

4.
Cell Biochem Funct ; 42(7): e4130, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39364853

RESUMEN

Squamous cell carcinoma (SCC) is a malignancy primarily affecting squamous cells. Its development is linked to multiple risk factors, such as alcohol and tobacco consumption, human papillomavirus (HPV) infection, and Epstein-Barr Virus (EBV) infection. Biochanin A (BCA), a phytoestrogen extracted from red clover, has been extensively researched for its therapeutic properties. It spans antioxidant activity, anti-inflammatory effects, neuroprotection, cardioprotection, and anticancer potential in different bodily systems. However, its impact on oral cancer remains unexplored. Therefore, this investigation aims to assess the potential anticancer effects of BCA, specifically on KB oral cancer cells. This study utilized KB cells to evaluate the impact of BCA on various cellular parameters, including cell viability, apoptosis, intracellular ROS production, mitochondrial membrane potential, and cell migration. BCA treatment induced several notable effects on KB cells, including reduced cell viability, altered morphology suggestive of apoptosis, heightened oxidative stress, and alterations in mitochondrial membrane potential. Moreover, BCA treatment demonstrated an inhibitory effect on cell migration. The study further investigated the impact of BCA on antioxidant enzyme activities and lipid peroxidation, revealing decreased antioxidant enzyme activities and increased lipid peroxidation across different BCA concentrations (IC50 and IC90). Immunocytochemistry and qRT-PCR analyses unveiled that BCA treatment at varying doses (IC50 and IC90) downregulated the expression of nuclear factor-κB (NF-κB) subunits p50 and p65, pivotal players in cancer progression. In summary, this study sheds light on the promising potential of BCA as an anticancer therapeutic agent for treating oral cancer. Its demonstrated ability to induce apoptosis, perturb cellular functions, and modulate gene expression within cancer cells underscores its significance. Nonetheless, further research, particularly following animal studies, is imperative to comprehensively grasp the breadth of BCA's effects and its viability for clinical applications.


Asunto(s)
Apoptosis , Supervivencia Celular , Genisteína , Neoplasias de la Boca , FN-kappa B , Humanos , Genisteína/farmacología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/tratamiento farmacológico , FN-kappa B/metabolismo , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Movimiento Celular/efectos de los fármacos , Células KB , Transducción de Señal/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología
5.
BMC Oral Health ; 24(1): 1166, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354504

RESUMEN

BACKGROUND: Decellularized extracellular matrix (dECM) has been proposed as a useful source of biomimetic materials for regenerative medicine due to its biological properties that regulate cell behaviors. The present study aimed to investigate the influence of decellularized ECM derived from dental pulp stem cells (DPSCs) on gingival fibroblast (GF) cell behaviors. Cells were isolated from dental pulp and gingival tissues. ECM was derived from culturing dental pulp stem cells in growth medium supplemented with ascorbic acid. A bioinformatic database of the extracellular matrix was constructed using Metascape. GFs were reseeded onto dECM, and their adhesion, spreading, and organization were subsequently observed. The migration ability of the cells was determined using a scratch assay. Protein expression was evaluated using immunofluorescence staining. RESULTS: Type 1 collagen and fibronectin were detected on the ECM and dECM derived from DPSCs. Negative phalloidin and nuclei were noted in the dECM. The proteomic database revealed enrichment of several proteins involved in ECM organization, ECM-receptor interaction, and focal adhesion. Compared with those on the controls, the GFs on the dECM exhibited more organized stress fibers. Furthermore, cultured GFs on dECM exhibited significantly enhanced migration and proliferation abilities. Interestingly, GFs seeded on dECM showed upregulation of FN1, ITGB3, and CTNNB1 mRNA levels. CONCLUSIONS: ECM derived from DSPCs generates a crucial microenvironment for regulating GF adhesion, migration and proliferation. Therefore, decellularized ECM from DPSCs could serve as a matrix for oral tissue repair.


Asunto(s)
Adhesión Celular , Movimiento Celular , Pulpa Dental , Matriz Extracelular , Fibroblastos , Encía , Células Madre , Pulpa Dental/citología , Humanos , Encía/citología , Matriz Extracelular/metabolismo , Proliferación Celular , Células Cultivadas , Fibronectinas/metabolismo
6.
Front Bioeng Biotechnol ; 12: 1429771, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372435

RESUMEN

The simultaneous administration of antibacterial treatment and acceleration of tissue regeneration are crucial for the effective healing of infected wounds. In this work, we developed a facile hydrogel (PCC hydrogel) through coordination and hydrogen interactions by polymerizing acrylamide monomers in the presence of carboxymethyl chitosan nanoparticles and copper ions. The prepared PCC hydrogel demonstrated effective bacterial capture from wound exudation and exhibited a potent bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, slow release of copper ions from the hydrogel facilitated wound healing by promoting cell migration, collagen deposition and angiogenesis. Additionally, the PCC hydrogel possessed excellent biocompatibility and hemostatic properties. The practical effectiveness of PCC hydrogel in addressing bacterial infections and facilitating wound healing was verified using a mouse model of MRSA-induced wound infections. Overall, this work presents a simple yet efficient multifunctional hydrogel platform that integrates antibacterial activity, promotion of wound healing, and hemostasis for managing bacteria-associated wounds.

7.
Proc Natl Acad Sci U S A ; 121(42): e2410688121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39374388

RESUMEN

Cytoskeleton remodeling which generates force and orchestrates signaling and trafficking to govern cell migration remains poorly understood, partly due to a lack of an investigation tool with high system flexibility, spatiotemporal resolution, and computational sensitivity. Herein, we developed a multimodal superresolution imaging system-based architecture-driven quantitative (ADQ) framework in spatiotemporal-angular hyperspace to enable both identification of the optimal imaging mode with well-balanced fidelity and phototoxicity and accurate postcharacterization of microtubule remodeling. In the ADQ framework, a pixel/voxel-wise metric reflecting heterogeneous intertubule alignment was proposed with improved sensitivity over previous efforts and further incorporated with temporal features to map dynamic microtubule rearrangements. The ADQ framework was verified by assessing microtubule remodeling in drug-induced (de)polymerization, lysosome transport, and migration. Different remodeling patterns from two migration modes were successfully revealed by the ADQ framework, with a front-rear polarization for individual directed migration and a contact site-centered polarization for cell-cell interaction-induced migration in an immune response model. Meanwhile, these migration modes were found to have consistent orientation changes, which exhibited the potential of predicting migration trajectory.


Asunto(s)
Movimiento Celular , Citoesqueleto , Microtúbulos , Microtúbulos/metabolismo , Humanos , Citoesqueleto/metabolismo , Lisosomas/metabolismo
8.
Dev Cell ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39389053

RESUMEN

Collective cell migration (CCM) is involved in multiple biological processes, including embryonic morphogenesis, angiogenesis, and cancer invasion. However, the molecular mechanisms underlying CCM, especially leader cell formation, are poorly understood. Here, we show that a signaling pathway regulating angiomotin (AMOT) cleavage plays a role in CCM, using mammalian epithelial cells and mouse models. In a confluent epithelial monolayer, full-length AMOT localizes at cell-cell junctions and limits cell motility. After cleavage, the C-terminal fragment of AMOT (AMOT-CT) translocates to the cell-matrix interface to promote the maturation of focal adhesions (FAs), generate traction force, and induce leader cell formation. Meanwhile, decreased full-length AMOT at cell-cell junctions leads to tissue fluidization and coherent migration of cell collectives. Hence, the cleavage of AMOT serves as a molecular switch to generate polarized contraction, promoting leader cell formation and CCM.

9.
Gene ; : 148993, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389329

RESUMEN

The lymphatic system functions in fluid homeostasis, lipid absorption and the modulation of the immune response. The role of Gpnmb (osteoactivin), an established osteoinductive molecule with newly identified anti-inflammatory properties, has not been studied in lymphangiogenesis. Here, we demonstrate that Gpnmb increases lymphatic endothelial cell (LEC) migration and lymphangiogenesis marker gene expression in vitro by enhancing pro-autophagic gene expression, while no changes were observed in cell proliferation or viability. In addition, cellular spreading and cytoskeletal reorganization was not altered following Gpnmb treatment. We show that systemic Gpnmb overexpression in vivo leads to increases in lymphatic tubule number per area. Overall, data presented in this study suggest Gpnmb is a positive modulator of lymphangiogenesis.

10.
Glia ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392208

RESUMEN

Brain vasculature formation begins with vessel invasion from the perineural vascular plexus, which expands through vessel sprouting and growth. Recent studies have indicated the existence of oligodendrocyte-vascular crosstalk during development. However, the relationship between oligodendrocyte progenitor cells (OPCs) and the ordered spatiotemporal vascularization of the neocortex has not been elucidated. Our findings suggest that OPCs play a complex role in the vessel density of the embryonic and postnatal neocortex. Analyses of normal human and mouse embryonic cerebral cortex show that vascularization and OPC distribution are tightly controlled in a spatially and temporally restricted manner, exhibiting a positive correlation. Loss of OPCs at both embryonic and postnatal stages led to a reduction in vascular density, suggesting that OPC populations play a role in vascular density. Nonetheless, dynamic observation on cultured brain slices and staining of tissue sections indicate that OPC migration is unassociated with the proximity to blood vessels, primarily occurring along radial glial cell processes. Additionally, in vitro experiments demonstrate that OPC secretions promote vascular endothelial cell (VEC) growth. Together, these observations suggest that vessel density is influenced by OPC secretions.

11.
Biochimie ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369940

RESUMEN

Obesity increases the risk and mortality of breast cancer through dysregulated secretion of proinflammatory cytokines and tumor adipokines that induce an inflammatory breast microenvironment. Resistin is an adipokine secreted by adipocytes, immune cells, and predominantly macrophages, which contributes to cancer progression, but its molecular mechanism in cancer is not completely described. In this study, we analyzed the relationship of resistin on breast cancer prognosis and tumor progression and the effect in vitro of resistin on p38 and ERK1/2 activation in breast cancer cell lines. By bioinformatic analysis, we found that resistin is overexpressed in the basal subtype triple-negative breast cancer and is related to poor prognosis. In addition, we demonstrated a positive correlation between RETN and MAPK3 expression in basal triple-negative breast cancer. Importantly, we found amplifications of the RETN gene in at least 20 % of metastatic samples from patients with breast cancer. Most samples with RETN amplifications metastasized to bone and showed high expression of IL-8 (CXCL8) and IL-6 (IL6). Finally, resistin could be considered a prognostic marker for basal triple-negative breast cancer, and we also proposed the possibility that resistin-induced cell migration involves the activation of MAPK in breast cancer cells.

12.
Cell Commun Signal ; 22(1): 468, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354505

RESUMEN

Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas del Citoesqueleto , Homeostasis , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Enfermedad , Transducción de Señal
13.
Dev Cell ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39393350

RESUMEN

Collective cell migration is fundamental in development, wound healing, and metastasis. During Drosophila oogenesis, border cells (BCs) migrate collectively inside the egg chamber, controlled by the Ste20-like kinase Misshapen (Msn). Msn coordinates the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that Tao acts as an upstream activator of Msn in BCs. Depleting Tao significantly impedes BC migration, producing a phenotype similar to Msn loss of function. Furthermore, we show that the localization of Msn relies on its citron homology (CNH) domain, which interacts with the small GTPase Rap2l. Rap2l promotes the trafficking of Msn to the endolysosomal pathway. Depleting Rap2l elevates Msn levels by reducing its trafficking into late endosomes and increases overall contractility. These data suggest that Tao promotes Msn activation, while global Msn protein levels are controlled via Rap2l and the endolysosomal degradation pathway. Thus, two mechanisms ensure appropriate Msn levels and activation in BCs.

14.
Elife ; 132024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392396

RESUMEN

Dysfunction of primary cilia leads to genetic disorder, ciliopathies, which shows various malformations in many vital organs such as brain. Multiple tongue deformities including cleft, hamartoma, and ankyloglossia are also seen in ciliopathies, which yield difficulties in fundamental functions such as mastication and vocalization. Here, we found these tongue anomalies in mice with mutation of ciliary protein. Abnormal cranial neural crest-derived cells (CNCC) failed to evoke Hh signal for differentiation of mesoderm-derived cells into myoblasts, which resulted in abnormal differentiation of mesoderm-derived cells into adipocytes. The ectopic adipose subsequently arrested tongue swelling formation. Ankyloglossia was caused by aberrant cell migration due to lack of non-canonical Wnt signaling. In addition to ciliopathies, these tongue anomalies are often observed as non-familial condition in human. We found that these tongue deformities could be reproduced in wild-type mice by simple mechanical manipulations to disturb cellular processes which were disrupted in mutant mice. Our results provide hints for possible future treatment in ciliopathies.


Asunto(s)
Comunicación Celular , Diferenciación Celular , Proteínas Hedgehog , Mesodermo , Transducción de Señal , Lengua , Animales , Lengua/embriología , Lengua/metabolismo , Ratones , Mesodermo/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cresta Neural/metabolismo
15.
Clin Exp Metastasis ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222238

RESUMEN

Cells constantly reshape there plasma membrane and cytoskeleton during physiological and pathological processes (Hagmann et al. in J Cell Biochem 73:488-499, 1999). Cell blebbing, the formation of bulges or protrusions on the cell membrane, is related to mechanical stress, changes in intracellular pressure, chemical signals, or genetic anomalies. These membrane bulges interfere with the force balance of actin filaments, microtubules, and intermediate filaments, the basic components of the cytoskeleton (Charras in J Microsc 231:466-478, 2008). In the past, these blebs with circular structures were considered apoptotic markers (Blaser et al. in Dev Cell 11:613-627, 2006). Cell blebbing activates phagocytes and promotes the rapid removal of intrinsic compartments. However, recent studies have revealed that blebbing is associated with dynamic cell reorganization and alters the movement of cells in-vivo and in-vitro (Charras and Paluch in Nat Rev Mol Cell Biol 9:730-736, 2008). During tumor progression, blebbing promotes invasion of cancer cells into blood, and lymphatic vessels, facilitating tumor progression and metastasis (Weems et al. in Nature 615:517-525, 2023). Blebbing is a dominant feature of tumor cells generally absent in normal cells. Restricting tumor blebbing reduces anoikis resistance (survival in suspension) (Weems et al. in Nature 615:517-525, 2023). Hence, therapeutic intervention with targeting blebbing could be highly selective for proliferating pro-metastatic tumor cells, providing a novel therapeutic pathway for tumor metastasis with minimal side effects. Here, we review the association between cell blebbing and tumor cells, to uncover new research directions and strategies for metastatic cancer therapy. Finaly, we aim to identify the druggable targets of metastatic cancer in relation to cell blebbing.

16.
Cell Signal ; 124: 111382, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243920

RESUMEN

Oxidative stress causes damage to cancer cells and plays an important role in cancer therapy. Antagonizing oxidative stress is crucial for cancer cells to survive during the oxidation-based therapy. In this study, we defined the role of nuclear receptor co-activator 7 (NCOA7) in anti-oxidation in lung cancer cells and found that NCOA7 protects lung cancer A549 cells from the oxidative damage caused by hydrogen peroxide. Knockdown of NCOA7 in A549 cells significantly enhanced the hydrogen peroxide-caused inhibition of cell proliferation and migration, and markedly increased the damage effect of hydrogen peroxide on F-actin and focal adhesion structure, suggesting that NCOA7 protects F-actin and focal adhesion structure, thus the cell proliferation and migration, from oxidation-caused damage. Mechanistically, the anti-oxidation effect of NCOA7 is mediated by its nuclear receptor binding domain, the ERbd domain, suggesting that the anti-oxidation function of NCOA7 is dependent on its nuclear receptor co-activator activity. Our studies identified NCOA7 as an anti-oxidative protein through its nuclear receptor co-activator function and revealed the mechanism underlying the anti-oxidative effect of NCOA7 on cancer cell proliferation and migration.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39246142

RESUMEN

Cell migration is a fundamental and functional cellular process, influenced by complex microenvironment consisting of different cells and extracellular matrix (ECM). Recent research has highlighted that, besides biochemical cues from the microenvironment, physical cues can also greatly alter cellular behavior. However, due to the complexity of the microenvironment, little is known about how the physical interactions between migrating cells and surrounding microenvironment instruct cell movement. Here, we explore various examples of 3D microenvironment reconstruction models in vitro and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation will provide key insights into organ development, regeneration, and tumor metastasis.

18.
Adv Sci (Weinh) ; : e2403547, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239705

RESUMEN

Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.

19.
Exp Cell Res ; 442(2): 114232, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222868

RESUMEN

α-Actinin-4 (ACTN4) expression levels are correlated with the invasive and metastatic potential of cancer cells; however, the underlying mechanism remains unclear. Here, we identified ACTN4-localized ruffle-edge lamellipodia using live-cell imaging and correlative light and electron microscopy (CLEM). BSC-1 cells expressing EGFP-ACTN4 showed that ACTN4 was most abundant in the leading edges of lamellipodia, although it was also present in stress fibers and focal adhesions. ACTN4 localization in lamellipodia was markedly diminished by phosphoinositide 3-kinase inhibition, whereas its localization in stress fibers and focal adhesions remained. Furthermore, overexpression of ACTN4, but not ACTN1, promoted lamellipodial formation. Live-cell analysis demonstrated that ACTN4-enriched lamellipodia are highly dynamic and associated with cell migration. CLEM revealed that ACTN4-enriched lamellipodia exhibit a characteristic morphology of multilayered ruffle-edges that differs from canonical flat lamellipodia. Similar ruffle-edge lamellipodia were observed in A549 and MDA-MB-231 invasive cancer cells. ACTN4 knockdown suppressed the formation of ruffle-edge lamellipodia and cell migration during wound healing in A549 monolayer cultures. Additionally, membrane-type 1 matrix metalloproteinase was observed in the membrane ruffles, suggesting that ruffle-edge lamellipodia have the ability to degrade the extracellular matrix and may contribute to active cell migration/invasion in certain cancer cell types.

20.
Technol Cancer Res Treat ; 23: 15330338241281310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267432

RESUMEN

Purpose: To investigate the inhibitory effect of antimicrobial peptide merecidin on triple-negative breast cancer (TNBC) and the mechanism of inhibiting epithelial-mesenchymal transformation (EMT) by regulating miR-30d-5p/vimentin. Methods: TNBC cell lines (MDA-MB-231, MDA-MB-468) were treated with merecidin to assess proliferation, migration, invasion ability, and EMT. Confocal laser localization was used to examine the role of merecidin and TNBC cells. The relationship between merecidin and miR-30d-5p was determined through RT-qPCR and dual-luciferase reporter gene, and the relationship between merecidin and vimentin was verified through pulling down the experiment. The effects of miR-30d-5p on the migration and invasion ability of TNBC cells were confirmed through scratch and transwell experiments. Vimentin levels, tumor volume, shape, size, and weight were observed in the MDA-MB-231 subcutaneous tumor model in nude mice. Results: merecidin inhibited the proliferation, migration, invasion, and EMT of TNBC cells. merecidin was primarily located in the cytoplasm of TNBC cells, and the expression of miR-30d-5p was low in TNBC cells. merecidin significantly up-regulated the expression of miR-30d-5p. miR-30d-5p negatively regulated vimentin. merecidin could bind to vimentin in vitro. miR-30d-5p inhibited the migration and invasion ability of TNBC cells, while vimentin promoted their migration and invasion ability. Down-regulation of miR-30d-5p or overexpression of vimentin partially counteracted the inhibitory effects of merecidin on TNBC cell migration, invasion ability, and EMT. In nude mouse tumor models, merecidin significantly suppressed tumor growth. Conclusion: Merecidin effectively blocks the EMT process and inhibits the migration and invasion of TNBC cells by regulating miR-30d-5p/vimentin.


Asunto(s)
Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Mama Triple Negativas , Vimentina , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , MicroARNs/genética , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Vimentina/metabolismo , Ratones , Femenino , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Modelos Animales de Enfermedad , Metástasis de la Neoplasia , Péptidos Catiónicos Antimicrobianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA