Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Materials (Basel) ; 17(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124388

RESUMEN

Ethylene-vinyl acetate copolymer (EVA), a crucial elastomeric resin, finds extensive application in the footwear industry. Conventional chemical foaming agents, including azodicarbonamide and 4,4'-oxybis(benzenesulfonyl hydrazide), have been identified as environmentally problematic. Hence, this study explores the potential of physical foaming of EVA using supercritical nitrogen as a sustainable alternative, garnering considerable interest in both academia and industry. The EVA formulations and processing parameters were optimized and EVA foams with densities between 0.15 and 0.25 g/cm3 were produced. Key findings demonstrate that physical foaming not only reduces environmental impact but also enhances product quality by a uniform cell structure with small cell size (50-100 µm), a wide foaming temperature window (120-180 °C), and lower energy consumption. The research further elucidates the mechanisms of cell nucleation and growth within the crosslinked EVA network, highlighting the critical role of blowing agent dispersion and localized crosslinking around nucleated cells in defining the foam's cellular morphology. These findings offer valuable insights for producing EVA foams with a more controllable cellular structure, utilizing physical foaming techniques.

2.
Sci Rep ; 14(1): 18952, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147858

RESUMEN

Homotypic cell-in-cell structures (hoCICs) are associated with tumor proliferation, invasion, and metastasis and is considered a promising prognostic marker in various cancers. However, the role of hoCICs in non-small cell lung cancer (NSCLC) remains unclear. Tumor tissue sections were obtained from 411 NSCLC patients. We analyzed the relationship between clinicopathological variables and the number of hoCICs. LASSO and multivariate Cox regression analysis were employed to identify prognostic factors for NSCLC. The impact of hoCICs on overall survival (OS) and disease-free survival (DFS) was assessed using the Kaplan-Meier curves and log-rank test. Prognostic models for OS and DFS were developed and validated using the C-index, time-dependent area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curves and decision curve analysis (DCA). Among the cohort, 56% of patients had hoCICs while 44% did not. Notably, hoCICs were primarily found at the tumor invasion front. Male gender, smoking, squamous cell carcinoma, low differentiation, tumor size ≥ 3 cm, advanced TNM stage, lymph node metastasis, pleural invasion, vascular invasion, necrosis, P53 mutation, and high expression of Ki-67 were identified as relative risk factors for hoCICs. Furthermore, hoCICs was found to be a significant prognostic factor for both OS and DFS, with higher frequencies of hoCICs correlating with poorer outcomes. We constructed nomograms for predicting 1-, 3-, and 5-year OS and DFS based on hoCICs, and the calibration curves showed good agreement between the predicted and actual outcomes. The results of the C-index, time-dependent AUC, NRI, IDI, and DCA analyses demonstrated that incorporating hoCICs into the prognostic model significantly enhanced its predictive power and clinical applicability. HoCICs indicated independent perdictive value for OS and DFS in patients with NSCLC. Furthermore, the frequent localization of hoCICs at the tumor invasion front suggested a strong association between hoCICs and tumor invasion as well as metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Invasividad Neoplásica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Masculino , Femenino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Persona de Mediana Edad , Pronóstico , Anciano , Estimación de Kaplan-Meier , Adulto , Supervivencia sin Enfermedad , Estadificación de Neoplasias , Biomarcadores de Tumor/metabolismo
3.
Biomed Pharmacother ; 179: 117312, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39167843

RESUMEN

Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.

4.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2223-2234, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044586

RESUMEN

Heterotypic cell-in-cell (heCIC) structures represent a unique intercellular interaction where tumor cells internalize immune cells to enhance the killing efficiency of immune cells. However, the mechanism of heCIC structure formation remains to be fully elucidated. In this study, we explored the role of epithelial membrane protein 3 (EMP3), a PMP-22/EMP/MP20 protein family member highly expressed in the patients with hepatocellular carcinoma and poor prognosis, in the formation of the heCIC structure formed by natural killer cells and hepatocellular carcinoma cells. The analysis of monoclonal hepatocellular carcinoma cell lines revealed that EMP3 presented low expression in the cells with high capability to form heCIC structure and high expression in those with low capability. Knocking down the expression of EMP3 by gene editing promoted the formation of heCIC structures, while overexpression of EMP3 significantly inhibited this process. Additionally, the expression of factors involved in the heCIC structure formation suggested that EMP3 inhibited the formation of heCIC structures by modulating the adhesion ability and cytoskeleton of tumor cells. The findings lay a foundation for enhancing the heCIC-mediated tumor immunotherapy by targeting EMP3.


Asunto(s)
Carcinoma Hepatocelular , Adhesión Celular , Células Asesinas Naturales , Neoplasias Hepáticas , Glicoproteínas de Membrana , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Comunicación Celular/inmunología , Células Asesinas Naturales/inmunología , Línea Celular Tumoral , Adhesión Celular/inmunología , Citoesqueleto/inmunología , Inmunoterapia , Humanos , Técnicas de Silenciamiento del Gen , Edición Génica
5.
Plants (Basel) ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931082

RESUMEN

Cadmium (Cd) is a naturally occurring toxic heavy metal that adversely affects plant germination, growth, and development. While the effects of Cd have been described on many crop species including rice, maize, wheat and barley, few studies are available on cadmium's effect on Tartary buckwheat which is a traditional grain in China. We examined nine genotypes and found that 30 µM of Cd reduced the root length in seedlings by between 4 and 44% and decreased the total biomass by 7 to 31%, compared with Cd-free controls. We identified a significant genotypic variation in sensitivity to Cd stress. Cd treatment decreased the total root length and the emergence and growth of lateral roots, and these changes were significantly greater in the Cd-sensitive genotypes than in tolerant genotypes. Cd resulted in greater wilting and discoloration in sensitive genotypes than in tolerant genotypes and caused more damage to the structure of root and leaf cells. Cd accumulated in the roots and shoots, but the concentrations in the sensitive genotypes were significantly greater than in the more tolerant genotypes. Cd treatment affected nutrient uptake, and the changes in the sensitive genotypes were greater than those in the tolerant genotypes, which could maintain their concentrations closer to the control levels. The induction of SOD, POD, and CAT activities in the roots and shoots was significantly greater in the tolerant genotypes than in the sensitive genotypes. We demonstrated that Cd stress reduced root and shoot growth, decreased plant biomass, disrupted nutrient uptake, altered cell structure, and managed Cd-induced oxidative stress differently in the sensitive and tolerant genotypes of Tartary buckwheat.

6.
J Microbiol Biol Educ ; 25(2): e0003624, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-38829051

RESUMEN

This paper presents two low-cost hands-on activities designed to enhance student understanding and address the pedagogical challenges faced by microbiology professors in teaching concepts related to cell structure and gene regulation. In the first activity, we used Shrinky Dinks and Jeopardy-style game questions to explore the differences between prokaryotic and eukaryotic cells. Students have to collect pieces and physically build their cell models. The second activity uses origami organelles sets from Edvotek to illustrate the regulation of gene expression in the lac and trp operons, incorporating mutation scenarios for analysis. The intended audience comprises undergraduate students in microbiology, including biology, pre-medical studies, and health profession majors. The activities were deployed in three microbiology lectures, and students were surveyed. Students' feedback highlights the efficacy of the hands-on approach and increased class participation, as two of the recurring words in the students' survey were "helpful" and "fun."

7.
iScience ; 27(5): 109731, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38689638

RESUMEN

Cassidine leaf beetles are associated with genome-reduced symbiotic bacteria Stammera involved in pectin digestion. Stammera cells appear to be harbored in paired symbiotic organs located at the foregut-midgut junction either intracellularly or extracellularly, whereas the symbiont is extracellular in the ovary-accessory glands of adult females and during caplet transmission in eggs. However, using fluorescence and electron microscopy, an intracellular symbiotic configuration of Stammera was observed in Notosacantha species. Detailed inspection of other cassidine species revealed fragmented cell membrane and cytoplasm of the symbiotic organs, wherein Stammera cells are in an intermediate status between intracellularity and extracellularity. We also identified a mitochondria-rich region adjacent to the symbiont-filled region and well-developed muscle fibers surrounding the whole symbiotic organ. Based on these observations, we discuss why the Stammera genome has been reduced so drastically and how symbiont-derived pectinases are produced and supplied to the host's alimentary tract for plant cell wall digestion.

8.
Mol Cell Proteomics ; 23(5): 100758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574860

RESUMEN

The acceleration of advances in proteomics has enabled integration with imaging at the EM and light microscopy levels, cryo-EM of protein structures, and artificial intelligence with proteins comprehensively and accurately resolved for cell structures at nanometer to subnanometer resolution. Proteomics continues to outpace experimentally based structural imaging, but their ultimate integration is a path toward the goal of a compendium of all proteins to understand mechanistically cell structure and function.


Asunto(s)
Microscopía por Crioelectrón , Proteómica , Proteómica/métodos , Humanos , Biología Celular , Animales
9.
Materials (Basel) ; 17(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38591445

RESUMEN

In this paper, the impact resistance of a cylindrical structure with a buffer ring and an energy-absorbing ring under double impact loads is studied. Based on ABAQUS 2023 finite element software, a simulation model of a buffer ring structure with three different sibs was established, and the specimens were subjected to double impact loading. The results show that the impact resistance of the structure decreases with the increase in curvature radius. The increase in the thickness of the panel can effectively reduce the deformation difference between the center point of the panel and the maximum displacement point. The buffer ring composed of cell structure with negative Poisson's ratio effect has better shock resistance under explosion load, while the buffer ring with hexagonal cellular structure has excellent kinetic energy shock resistance.

10.
Ultrason Sonochem ; 103: 106782, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309050

RESUMEN

This study investigates a prospective and straightforward method for producing graphene material derived from biomass, examining the influence of plant cell composition and functions. The experimental outcomes highlight ultrasound's crucial role in synthesizing graphene material sourced from biomass. Ultrasound, a pivotal element in the experiment, significantly affects graphene production from biomass by working synergistically with the liquid components in the solvent system. Notably, the ethanol content reduces the solution's surface tension, facilitating the effective dispersion of biochar and graphene oxide sheets throughout the process. Simultaneously, the water content maintains the solution's polarity, enhancing the cavitation effect induced by ultrasound. Biomass-derived graphene is exfoliated utilizing an ultrasonic bath system (134.4 W, 40 kHz, 0.5 W/cm2) from biochar. The as-synthesized graphene oxide exhibits a structure comprising a few layers while remaining intact, featuring abundant functional groups. Interestingly, the resulting product displays nanopores with an approximate diameter of 100 nm. These nanopores are attributed to preserving specific cell structures, particularly those with specialized cell wall structures or secondary metabolite deposits from biomass resources. The study's findings shed light on the impact of cellular structure on synthesizing graphene material sourced from biomass, emphasizing the potential application of ultrasound as a promising approach in graphene production.


Asunto(s)
Carbón Orgánico , Grafito , Oryza , Estudios Prospectivos , Ultrasonido
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1023774

RESUMEN

Objective To investigate the influence of different cell structures on the static and dynamic mechanical performance of porous titanium alloy scaffolds,and to provide a theoretical mechanical basis for the application of scaffolds in the repair of mandibular bone defects.Methods Porous titanium alloy scaffolds with diamond,cubic,and cross-sectional cubic cell structures were manufactured using three-dimensional printing technology.Uniaxial compression tests and ratcheting fatigue with compression load tests were conducted to analyze the static and dynamic mechanical performances of scaffolds with different cell structures.Results The elastic moduli of the diamond cell,cross-sectional cubic cell,and cubic cell scaffolds were 1.17,0.566,and 0.322 GPa,respectively,and the yield strengths were 71.8,65.1,and 31.8 MPa,respectively.After reaching the stable stage,the ratcheting strains of the cross-sectional cubic,diamond,and cubic cell scaffolds were 3.3%,4.0%,and 4.5%,respectively.The ratcheting strain increased with increasing average stress,stress amplitude,and peak holding time,and decreased with increasing loading rate.Conclusions The evaluation results of the static mechanical performance showed that the diamond cell scaffold was the best,followed by the cross-sectional cubic cell scaffold and the cubic cell scaffold.The evaluation results of the dynamic mechanical performance showed that the cross-sectional cubic cell scaffold performed the best,followed by the diamond cell scaffold,whereas the cubic cell scaffold performed the worst.The fatigue performance of the scaffold is affected by the loading conditions.These results provide new insights for scaffold construction for the repair of mandibular bone defects and provide an experimental basis for further clinical applications of this scaffold technology.

12.
mSystems ; 9(1): e0108523, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117068

RESUMEN

High hydrostatic pressure (HHP) influences the life processes of organisms living at depth in the oceans. While filamentous fungi are one of the essential members of deep-sea microorganisms, few works have explored their piezotolerance to HHP. Here, we obtained three homogeneous Aspergillus sydowii from terrestrial, shallow, and hadal areas, respectively, to compare their pressure resistance. A set of all-around evaluation methods including determination of growth rate, metabolic activity, and microscopic staining observation was established and indicated that A. sydowii DM1 from the hadal area displayed significant piezotolerance. Global analysis of transcriptome data under elevated HHP revealed that A. sydowii DM1 proactively modulated cell membrane permeability, hyphae morphology, and septal quantities for seeking a better livelihood under mild pressure. Besides, differentially expressed genes were mainly enriched in the biosynthesis of amino acids, carbohydrate metabolism, cell process, etc., implying how the filamentous fungi respond to elevated pressure at the molecular level. We speculated that A. sydowii DM1 could acclimatize itself to HHP by adopting several strategies, including environmental response pathway HOG-MAPK, stress proteins, and cellular metabolisms.IMPORTANCEFungi play an ecological and biological function in marine environments, while the physiology of filamentous fungi under high hydrostatic pressure (HHP) is an unknown territory due to current technologies. As filamentous fungi are found in various niches, Aspergillus sp. from deep-sea inspire us to the physiological trait of eukaryotes under HHP, which can be considered as a prospective research model. Here, the evaluation methods we constructed would be universal for most filamentous fungi to assess their pressure resistance, and we found that Aspergillus sydowii DM1 from the hadal area owned better piezotolerance and the active metabolisms under HHP indicated the existence of undiscovered metabolic strategies for hadal fungi. Since pressure-related research of marine fungi has been unexpectedly neglected, our study provided an enlightening strategy for them under HHP; we believed that understanding their adaptation and ecological function in original niches will be accelerated in the perceivable future.


Asunto(s)
Aspergillus , Hongos , Presión Hidrostática , Estudios Prospectivos , Océanos y Mares , Hongos/genética
13.
J Sci Food Agric ; 104(6): 3559-3569, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147410

RESUMEN

BACKGROUND: Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB) isolated from soya sauce moromi. During the production of these fermented foods, acid stress is an inevitable environmental stress. In our previous study, T. halophilus could form biofilms and the cells in the biofilms exhibited higher cell viability under multiple environmental stresses, including acid stress. RESULTS: In this study, the effect of preformed T. halophilus biofilms on cell survival, cellular structure, intracellular environment, and the expression of genes and proteins under acid stress was investigated. The result showed that acid stress with pH 4.30 for 1.5 h reduced the live T. halophilus cell count and caused cellular structure damage. However, T. halophilus biofilm cells exhibited greater cell survival under acid stress than the planktonic cells, and biofilm formation reduced the damage of acid stress to the cell membrane and cell wall. The biofilm cells maintained a higher level of H+ -ATPase activity and intracellular ammonia concentration after acid stress. The RNA-Seq and iTRAQ technologies revealed that the genes and proteins associated with ATP production, the uptake of trehalose and N-acetylmuramic acid, the assembly of H+ -ATPase, amino acid biosynthesis and metabolism, ammonia production, fatty acid biosynthesis, CoA biosynthesis, thiamine production, and acetoin biosynthesis might be responsible for the stronger acid tolerance of T. halophilus biofilm cells together. CONCLUSION: These findings further explained the mechanisms that allowed LAB biofilm cells to resist environmental stress. © 2023 Society of Chemical Industry.


Asunto(s)
Amoníaco , Enterococcaceae , Lactobacillales , RNA-Seq , Estructuras Celulares , Adenosina Trifosfatasas
14.
iScience ; 26(12): 108551, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125024

RESUMEN

Microbial rhodopsins are widely distributed in the aqua-ecosystem due to their simple structure and multifaceted functions. Conventionally, microbial rhodopsins are considered to be exclusively light active. Here, we report the discovery of light-independent function of a proteorhodopsin from a psychrophile Psychroflexus torquis (ptqPR). ptqPR could improve the growth and viability of Escherichia coli cells under stressful conditions in the absence of light, and this was achieved by improving the energy maintenance, membrane potential, membrane fluidity, and membrane integrity. We further show that this non-canonical function of PR is related to its scramblase activity. PR mutants which lost scramblase activities also lost their ability to confer physiological advantages in E. coli. These findings shed light on why microbial rhodopsins are widely distributed in ecological systems where light is inaccessible.

15.
Front Oncol ; 13: 1248097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790755

RESUMEN

One of the regulated forms of cell death is the cell-in-cell (CIC) structure, in which a surviving cell is engulfed by another cell, a mechanism that causes the death of the engulfed cell by an adjacent cell. Several investigators have previously shown that the presence of CICs is an independent risk factor significantly associated with decreased survival in patients with various types of cancer. In this review, we summarize the role of CIC in the tumor microenvironment (TME), including changes and crosstalk of molecules and proteins in the surrounding CIC, and the role of these factors in contributing to therapeutic resistance acquisition. Moreover, CIC structure formation is influenced by the modulation of TME, which may lead to changes in cellular properties. Future use of CIC as a clinical diagnostic tool will require a better understanding of the effects of chemotherapy on CIC, biomarkers for each CIC formation process, and the development of automated CIC detection methods in tissue sections of tumor specimens.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4123-4134, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37877395

RESUMEN

Heterotypic cell-in-cell structures (heCICs) are closely related to tumor development and progression, and have become a new frontier in life science research. Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the classic Rho GTPase, which plays a key role in regulating the cytoskeleton and cell movement. To investigate the role and mechanism of Rac1 in the formation of heCICs, tumor cells and immune killer cells were labeled with cell-tracker, respectively, to establish the heCICs model. Upon treatment with the Rac1 inhibitor NSC23766, the formation of heCICs between tumor and immune cells was significantly reduced. The plasmid pQCXIP-Rac1-EGFP constructed by gene cloning was packaged into pseudoviruses that subsequently infect tumor cells to make cell lines stably expressing Rac1. As a result, the formation of heCICs was significantly increased upon Rac1 overexpression. These results demonstrated a promotive role of Rac1 in heCICs formation, which may facilitate treating cell-in-cell related diseases, such as tumors, by targeting Rac1.

17.
3D Print Addit Manuf ; 10(5): 992-1002, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886410

RESUMEN

Personalized insoles manufactured with selective laser sintering (SLS) technology are popular especially for exercisers and patients with foot diseases. However, insufficient strength and toughness of personalized insoles would result in crack and even fracture. To address these deficiencies and fill the research shortages in this area, optimization of process parameters and design of cell structures are conducted to improve the mechanical performance of insoles in this topic. First, six sets of process parameters in terms of energy density were designed for parameter optimization. The energy density of 0.08 J/mm2 was affirmed to be the finest selection. Then, specific cell structures featuring both whale shark and ancient soldier armor (WS structures for short) with various curvature radius were established to act on the bottom of the insole to further strengthen the personalized insoles. It was shown that the WS14 structure exhibited the best performance characteristics. Finally, a personalized insole with the array of WS14 structures was developed with SLS under the optimum energy density of 0.08 J/mm2. Finite element method analysis and exercising testing were performed to evaluate the insole performance. The result reveals that a more uniform stress distribution is attained of the WS14 personalized insole, and the fracture problem is indeed solved.

18.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37631491

RESUMEN

Our experiment revealed that the addition of Janus nanosheets to polypropylene (PP) has a significant impact on the viscoelasticity of the composite system. Specifically, when 0.10 wt% of Janus nanosheets were added, the complex viscosity of the composite system increased. However, when we added less than 0.05 wt% of Janus nanosheets, there was a reduction in complex viscosity, which is known as the non-Einstein phenomenon. The Cole-Cole plot showed that the nanosheet network structure did not have a significant effect on the viscosity of the composite system. Additionally, we used carbon dioxide as a foaming agent to autoclave foaming using modified PP from Janus nanosheets, and the results demonstrated that increasing the number of Janus nanosheets decreased the apparent density and strengthened the cell structure of foaming beads, resulting in improved closed porosity.

19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 1037-1041, 2023 Aug 15.
Artículo en Chino | MEDLINE | ID: mdl-37586807

RESUMEN

Objective: To review the research progress of design of bone scaffolds with different single cell structures. Methods: The related literature on the study of bone scaffolds with different single cell structures at home and abroad in recent years was extensively reviewed, and the research progress was summarized. Results: The single cell structure of bone scaffold can be divided into regular cell structure, irregular cell structure, cell structure designed based on topology optimization theory, and cell structure designed based on triply periodic minimal surface. Different single cell structures have different structural morphology and geometric characteristics, and the selection of single cell structure directly determines the mechanical properties and biological properties of bone scaffold. It is very important to choose a reasonable cell structure for bone scaffold to replace the original bone tissue. Conclusion: Bone scaffolds have been widely studied, but there are many kinds of bone scaffolds at present, and the optimization of single cell structure should be considered comprehensively, which is helpful to develop bone scaffolds with excellent performance and provide effective support for bone tissue.


Asunto(s)
Huesos , Andamios del Tejido
20.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1281-1289, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236945

RESUMEN

The frequency of drought will increase under further warming. The increase in atmospheric CO2 concentration, along with more frequent drought, will affect crop growth. We examined the changes of cell structure, photosynthetic physiology, antioxidant enzymes, osmotic regulatory substances, and yield of foxtail millet (Setaria ita-lica) leaves under different CO2 concentrations (ambient air CO2 concentration and ambient atmospheric CO2 concentration + 200 µmol·mol-1) and water treatment (soil moisture content maintained at 45%-55%, and 70%-80% of field capacity, representing mild drought and normal water condition, respectively). The results showed that elevated CO2 concentration increased the number of starch grains, the area of single starch grains, and the total area of starch grains in the chloroplast of millet mesophyll cells. Under mild drought condition, elevated CO2 concentration increased net photosynthetic rate of millet leaves at the booting stage by 37.9%, but did not affect water use efficiency at this stage. Elevated CO2 concentration increased net photosynthetic rate and water use efficiency of millet leaves under mild drought condition at the filling stage by 15.0% and 44.2%, respectively. Under mild drought condition, elevated CO2 concentration increased the content of peroxidase (POD) and soluble sugar in millet leaves at the booting stage by 39.3% and 8.0%, respectively, but decreased proline content by 31.5%. It increased the content of POD in millet leaves at the filling stage by 26.5% but decreased the content of MDA and proline by 37.2% and 39.3%, respectively. Under mild drought condition, elevated CO2 concentration significantly increased the number of grain spikes by 44.7% and yield by 52.3% in both years compared with normal water condition. The effect of elevated CO2 concentration on grain yield under mild drought conditions was higher than that under normal water condition. Under mild drought conditions, elevated CO2 concentration increased leaf thickness, vascular bundle sheath cross-sectional area, net photosynthetic rate, and water use efficiency of millet, improved the antioxidant oxidase activity, and changed the concentration of osmotic regulatory substances, alleviated the nega-tive effect of drought on foxtail millet, and finally increased the number of grains per ear and yield of foxtail millet. This study would provide a theoretical basis for millet production and sustainable agricultural development in arid areas under future climate change.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/fisiología , Dióxido de Carbono , Antioxidantes , Sequías , Prolina , Almidón/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA