Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Lett ; 46(5): 725-737, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39017763

RESUMEN

Pentachlorophenol (PCP) was once used as a pesticide, germicide, and preservative due to its stable properties and resistance to degradation. This study aimed to design a biosensor for the quantitative and prompt detection of capable of PCP. A cell-free fluorescence biosensor was developed while employing NalC, an allosteric Transcription Factor responsive to PCP and In Vitro Transcription. By adding a DNA template and PCP and employing Electrophoretic Mobility Shift Assay while monitoring the dynamic fluorescence changes in RNA, this study offers evidence of NalC's potential applicability in sensor systems developed for the specific detection of PCP. The biosensor showed the capability for the quantitative detection of PCP, with a Limit of Detection (LOD) of 0.21 µM. Following the addition of Nucleic Acid Sequence-Based Amplification, the fluorescence intensity of RNA revealed an excellent linear relationship with the concentration of PCP, showing a correlation coefficient (R2) of 0.9595. The final LOD was determined to be 0.002 µM. This study has successfully translated the determination of PCP into a fluorescent RNA output, thereby presenting a novel approach for detecting PCP within environmental settings.


Asunto(s)
Técnicas Biosensibles , Pentaclorofenol , Pentaclorofenol/análisis , Técnicas Biosensibles/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Límite de Detección , Fluorescencia , Sistema Libre de Células
2.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712145

RESUMEN

Cell-free systems are powerful synthetic biology technologies because of their ability to recapitulate sensing and gene expression without the complications of living cells. Cell-free systems can perform even more advanced functions when genetic circuits are incorporated as information processing components. Here we expand cell-free biosensing by engineering a highly specific isothermal signal amplification circuit called polymerase strand recycling (PSR) that leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits. We develop design rules for PSR circuit components and use these rules to construct modular biosensors that can directly sense different RNA targets with limits of detection in the nM range and high specificity. We then use PSR for signal amplification within allosteric transcription factor-based biosensors for small molecule detection. We use a double equilibrium model of transcription factor:DNA and transcription factor:ligand binding interactions to predict biosensor sensitivity enhancement by PSR, and then demonstrate this approach experimentally by achieving 3.6-4.6-fold decreases in biosensor EC50 to sub micromolar ranges. We believe this work expands the current capabilities of cell-free circuits by incorporating PSR, which we anticipate will have a wide range of uses within biotechnology.

3.
ACS Sens ; 8(7): 2415-2426, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37463359

RESUMEN

Antibodies are among the most relevant biomolecular targets for diagnostic and clinical applications. In this Perspective, we provide a critical overview of recent research efforts focused on the development and characterization of devices, switches, and reactions based on the use of synthetic antigen-conjugated DNA strands designed to be responsive to specific antibodies. These systems can find applications in sensing, drug-delivery, and antibody-antigen binding characterization. The examples described here demonstrate how the programmability and chemical versatility of synthetic nucleic acids can be used to create innovative analytical tools and target-responsive systems with promising potentials.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , ADN/química , Ácidos Nucleicos/química , Anticuerpos , Vacunas Sintéticas
4.
Anal Chim Acta ; 1273: 341538, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423654

RESUMEN

Cell-free biosensors have inspired low-cost and field-applicable methods to detect antibiotic contaminants. However, the satisfactory sensitivity of current cell-free biosensors is mostly achieved by sacrificing the rapidity, which prolongs turnaround time by hours. Additionally, the software-based result interpretation provides an obstacle for delivering these biosensors to untrained individuals. Here, we present a bioluminescence-based cell-free biosensor, termed enhanced Bioluminescence sensing of Ligand-Unleashed RNA Expression (eBLUE). The eBLUE leveraged antibiotic-responsive transcription factors to regulate the transcription of RNA arrays that can serve as scaffolds for reassembling and activating multiple luciferase fragments. This process converted target recognition into an amplified bioluminescence response, enabling smartphone-based quantification of tetracycline and erythromycin directly in milk within 15 min. Moreover, the detection threshold of eBLUE can be easily tuned according to the maximum residue limits (MRLs) established by government agencies. Owing to this tunable nature, the eBLUE was further repurposed as an on-demand semi-quantification platform, allowing for fast (∼20 min) and software-free identification of safe and MRL-exceeding milk samples only by glancing over the smartphone photographs. Overall, the sensitivity, rapidity and user-friendliness of eBLUE demonstrate its potentials for practical applications, especially in resource-limited and household settings.


Asunto(s)
Antibacterianos , Técnicas Biosensibles , Humanos , ARN , Eritromicina , Luciferasas , Técnicas Biosensibles/métodos
5.
Biosensors (Basel) ; 12(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35884273

RESUMEN

Microorganisms are omnipresent and inseparable from our life. Many of them are beneficial to humans, while some are not. Importantly, foods and beverages are susceptible to microbial contamination, with their toxins causing illnesses and even death in some cases. Therefore, monitoring and detecting harmful microorganisms are critical to ensuring human health and safety. For several decades, many methods have been developed to detect and monitor microorganisms and their toxicants. Conventionally, nucleic acid analysis and antibody-based analysis were used to detect pathogens. Additionally, diverse chromatographic methods were employed to detect toxins based on their chemical and structural properties. However, conventional techniques have several disadvantages concerning analysis time, sensitivity, and expense. With the advances in biotechnology, new approaches to detect pathogens and toxins have been reported to compensate for the disadvantages of conventional analysis from different research fields, including electrochemistry, nanotechnology, and molecular biology. Among them, we focused on the recent studies of transcription factor (TF)-based biosensors to detect microorganisms and discuss their perspectives and applications. Additionally, the other biosensors for detecting microorganisms reported in recent studies were also introduced in this review.


Asunto(s)
Técnicas Biosensibles , Toxinas Biológicas , Técnicas Biosensibles/métodos , Electroquímica/métodos , Contaminación de Alimentos , Humanos , Nanotecnología/métodos , Factores de Transcripción
6.
Environ Monit Assess ; 194(8): 525, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737169

RESUMEN

Arsenic is a ubiquitously found metalloid in our ecosystem because of natural and anthropogenic activities. People exposed to a higher level of arsenic become susceptible to several disorders, including cancer. According to current statistics, the population chronically exposed to arsenic has surpassed 200 million. Therefore, its detection in our environment is of great importance. There are many analytical techniques for the assessment of arsenic in different kinds of environmental samples. Among these techniques, the biosensor is considered a convenient platform and a widely applied analytical device for rapid qualitative and quantitative analysis in the field of environmental monitoring, food safety, and disease diagnosis. Today, there is a trend of including nanomaterials in sensors and biosensors because it empowers researchers to explore new arsenic detection methods and to enhance their analytical capabilities. In this review article, we summarized the latest developments in arsenic biosensors in particular with emphasis on the works based on cell-free approaches that are protein/enzyme-based, DNA-based, and aptamer-based utilizing various transduction platforms. In the meantime, we compared the capabilities that were related to these cell-free arsenic biosensors. This review article also highlights the development and application of novel nanomaterials for arsenic detection.


Asunto(s)
Arsénico , Técnicas Biosensibles , Nanoestructuras , Arsénico/análisis , Técnicas Biosensibles/métodos , Ecosistema , Monitoreo del Ambiente , Humanos
7.
Biosensors (Basel) ; 12(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35624619

RESUMEN

In recent years, the application of cell-free protein synthesis systems in biosensing has been developing rapidly. Cell-free synthetic biology, with its advantages of high biosafety, fast material transport, and high sensitivity, has overcome many defects of cell-based biosensors and provided an abiotic substitute for biosensors. In addition, the application of freeze-drying technology has improved the stability of such systems, making it possible to realize point-of-care application of field detection and broadening the application prospects of cell-free biosensors. However, despite these advancements, challenges such as the risk of sample interference due to the lack of physical barriers, maintenance of activity during storage, and poor robustness still need to be addressed before the full potential of cell-free biosensors can be realized on a larger scale. In this review, current strategies and research results for improving the performance of cell-free biosensors are summarized, including a comprehensive discussion of the existing challenges, future trends, and potential investments needed for improvement.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Sistemas de Atención de Punto
8.
Sheng Wu Gong Cheng Xue Bao ; 35(12): 2269-2283, 2019 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-31880135

RESUMEN

Cell-free synthetic biology system can perform biological transcription and translation process in vitro. Because of its advanced features, such as flexible openness, easy control, short expression time and high tolerance to cytotoxicity, this systemhas been successfully used to synthesize proteins that are difficult to express in cells. With the continuous development of cell-free biosensing technology and the lyophilization technology, its applications have widely expanded into many biomedical fields. This review discusses the current research progress of cell-free synthetic biology system in on-demand biopharmaceutical synthesis, portable diagnostics, and others. Further development of the system can lead to even more complicated synthesis of therapeutic proteins with post-translational modifications and evolution of different cell-free biosensors with high sensitivity. Cell-free synthetic biology as an emerging engineering strategy can be a better means applied to high-throughput screening of pharmaceutical proteins, detection of new pathogens, and other important health-care fields in the future.


Asunto(s)
Técnicas Biosensibles , Biología Sintética , Sistema Libre de Células , Industrias
9.
Chinese Journal of Biotechnology ; (12): 2269-2283, 2019.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-781639

RESUMEN

Cell-free synthetic biology system can perform biological transcription and translation process in vitro. Because of its advanced features, such as flexible openness, easy control, short expression time and high tolerance to cytotoxicity, this systemhas been successfully used to synthesize proteins that are difficult to express in cells. With the continuous development of cell-free biosensing technology and the lyophilization technology, its applications have widely expanded into many biomedical fields. This review discusses the current research progress of cell-free synthetic biology system in on-demand biopharmaceutical synthesis, portable diagnostics, and others. Further development of the system can lead to even more complicated synthesis of therapeutic proteins with post-translational modifications and evolution of different cell-free biosensors with high sensitivity. Cell-free synthetic biology as an emerging engineering strategy can be a better means applied to high-throughput screening of pharmaceutical proteins, detection of new pathogens, and other important health-care fields in the future.


Asunto(s)
Técnicas Biosensibles , Sistema Libre de Células , Industrias , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA