Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Alzheimers Dement ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041435

RESUMEN

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.

2.
Acad Radiol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39003227

RESUMEN

RATIONALE AND OBJECTIVES: Prior to clinical presentations of Alzheimer's Disease (AD), neuropathological changes, such as amyloid-ß and brain atrophy, have accumulated at the earlier stages of the disease. The combination of such biomarkers assessed by multiple modalities commonly improves the likelihood of AD etiology. We aimed to explore the discriminative ability of Aß PET features and whether combining Aß PET and structural MRI features can improve the classification performance of the machine learning model in older healthy control (OHC) and mild cognitive impairment (MCI) from AD. MATERIAL AND METHODS: We collected 94 AD patients, 82 MCI patients, and 85 OHC from three different cohorts. 17 global/regional Aß features in Centiloid, 122 regional volume, and 68 regional cortical thickness were extracted as imaging features. Single or combined modality features were used to train the random forest model on the testing set. The top 10 features were sorted based on the Gini index in each binary classification. RESULTS: The results showed that AUC scores were 0.81/0.86 and 0.69/0.68 using sMRI/Aß PET features on the testing set in differentiating OHC and MCI from AD. The performance was improved while combining two-modality features with an AUC of 0.89 and an AUC of 0.71 in two classifications. Compared to sMRI features, particular Aß PET features contributed more to differentiating AD from others. CONCLUSION: Our study demonstrated the discriminative ability of Aß PET features in differentiating AD from OHC and MCI. A combination of Aß PET and structural MRI features can improve the RF model performance.

3.
medRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947044

RESUMEN

Background: Differences in amyloid positron emission tomography (PET) radiotracer pharmacokinetics and binding properties lead to discrepancies in amyloid-ß uptake estimates. Harmonization of tracer-specific biases is crucial for optimal performance of downstream tasks. Here, we investigated the efficacy of ComBat, a data-driven harmonization model, for reducing tracer-specific biases in regional amyloid PET measurements from [18F]-florbetapir (FBP) and [11C]-Pittsburgh Compound-B (PiB). Methods: One-hundred-thirteen head-to-head FBP-PiB scan pairs, scanned from the same subject within ninety days, were selected from the Open Access Series of Imaging Studies 3 (OASIS-3) dataset. The Centiloid scale, ComBat with no covariates, ComBat with biological covariates, and GAM-ComBat with biological covariates were used to harmonize both global and regional amyloid standardized uptake value ratios (SUVR). Intraclass correlation coefficient (ICC) and mean standardized absolute error (MsAE) were computed to measure the absolute agreement between tracers. Additionally, longitudinal amyloid SUVRs from an anti-amyloid drug trial were simulated using linear mixed effects modeling. Differences in rates-of-change between simulated treatment and placebo groups were tested, and change in statistical power/Type-I error after harmonization was quantified. Results: In the head-to-head tracer comparison, the best ICC and MsAE were achieved after harmonizing with ComBat with no covariates for the global summary SUVR. ComBat with no covariates also performed the best in harmonizing regional SUVRs. In the clinical trial simulation, harmonization with both Centiloid and ComBat increased statistical power of detecting true rate-of-change differences between groups and decreased false discovery rate in the absence of a treatment effect. The greatest benefit of harmonization was observed when groups exhibited differing FPB-to-PiB proportions. Conclusions: ComBat outperformed the Centiloid scale in harmonizing both global and regional amyloid estimates. Additionally, ComBat improved the detection of rate-of-change differences between clinical trial groups. Our findings suggest that ComBat is a viable alternative to Centiloid for harmonizing regional amyloid PET analyses.

4.
Ann Nucl Med ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902587

RESUMEN

OBJECTIVE: Centiloid (CL) scales play an important role in semiquantitative analyses of amyloid-ß (Aß) PET. CLs are derived from the standardized uptake value ratio (SUVR), which needs Aß positron emission tomography (PET) normalization processing. There are two methods to collect the T1-weighted imaging (T1WI) for normalization: (i) anatomical standardization using simultaneously acquired T1WI (PET/MRI), usually adapted to PET images from PET/MRI scanners, and (ii) T1WI from a separate examination (PET + MRI), usually adapted to PET images from PET/CT scanners. This study aimed to elucidate the correlations and differences in CLs between when using the above two T1WI collection methods. METHODS: Among patients who underwent Aß PET/MRI (using 11C-Pittuberg compound B (11C-PiB) or 18F-flutemetamol (18F-FMM)) at our institution from 2015 to 2023, we selected 49 patients who also underwent other additional MRI examinations, including T1WI for anatomic standardization within 3 years. Thirty-one of them underwent 11C-PiB PET/MRI, and 18 participants underwent 18F-FMM PET/MRI. Twenty-five of them, additional MRI acquisition parameters were identical to simultaneous MRI during PET, and 24 participants were different. After normalization using PET/MRI or PET + MRI method each, SUVR was measured using the Global Alzheimer's Association Initiative Network cerebral cortical and striatum Volume of Interest templates (VOI) and whole cerebellum VOI. Subsequently, CLs were calculated using the previously established equations for each Aß PET tracer. RESULTS: Between PET/MRI and PET + MRI methods, CLs correlated linearly in 11C-PiB PET (y = 1.00x - 0.11, R2 = 0.999), 18F-FMM PET (y = 0.97x - 0.12, 0.997), identical additional MRI acquisition (y = 1.00x + 0.33, 0.999), different acquisition (y = 0.98x - 0.43, 0.997), and entire study group (y = 1.00x - 0.24, 0.999). Wilcoxon signed-rank test revealed no significant differences: 11C-PiB (p = 0.49), 18F-FMM (0.08), and whole PET (0.46). However, significant differences were identified in identical acquisition (p = 0.04) and different acquisition (p = 0.02). Bland-Altman analysis documented only a small bias between PET/MRI and PET + MRI in 11C-PiB PET, 18F-FMM PET, identical additional MRI acquisition, different acquisition, and whole PET (- 0.05, 0.67, - 0.30, 0.78, and 0.21, respectively). CONCLUSIONS: Anatomical standardizations using PET/MRI and using PET + MRI can lead to almost equivalent CL. The CL values obtained using PET/MRI or PET + MRI normalization methods are consistent and comparable in clinical studies.

5.
Alzheimers Res Ther ; 16(1): 130, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886831

RESUMEN

BACKGROUND: There is good evidence that elevated amyloid-ß (Aß) positron emission tomography (PET) signal is associated with cognitive decline in clinically normal (CN) individuals. However, it is less well established whether there is an association between the Aß burden and decline in daily living activities in this population. Moreover, Aß-PET Centiloids (CL) thresholds that can optimally predict functional decline have not yet been established. METHODS: Cross-sectional and longitudinal analyses over a mean three-year timeframe were performed on the European amyloid-PET imaging AMYPAD-PNHS dataset that phenotypes 1260 individuals, including 1032 CN individuals and 228 participants with questionable functional impairment. Amyloid-PET was assessed continuously on the Centiloid (CL) scale and using Aß groups (CL < 12 = Aß-, 12 ≤ CL ≤ 50 = Aß-intermediate/Aß± , CL > 50 = Aß+). Functional abilities were longitudinally assessed using the Clinical Dementia Rating (Global-CDR, CDR-SOB) and the Amsterdam Instrumental Activities of Daily Living Questionnaire (A-IADL-Q). The Global-CDR was available for the 1260 participants at baseline, while baseline CDR-SOB and A-IADL-Q scores and longitudinal functional data were available for different subsamples that had similar characteristics to those of the entire sample. RESULTS: Participants included 765 Aß- (61%, Mdnage = 66.0, IQRage = 61.0-71.0; 59% women), 301 Aß± (24%; Mdnage = 69.0, IQRage = 64.0-75.0; 53% women) and 194 Aß+ individuals (15%, Mdnage = 73.0, IQRage = 68.0-78.0; 53% women). Cross-sectionally, CL values were associated with CDR outcomes. Longitudinally, baseline CL values predicted prospective changes in the CDR-SOB (bCL*Time = 0.001/CL/year, 95% CI [0.0005,0.0024], p = .003) and A-IADL-Q (bCL*Time = -0.010/CL/year, 95% CI [-0.016,-0.004], p = .002) scores in initially CN participants. Increased clinical progression (Global-CDR > 0) was mainly observed in Aß+ CN individuals (HRAß+ vs Aß- = 2.55, 95% CI [1.16,5.60], p = .020). Optimal thresholds for predicting decline were found at 41 CL using the CDR-SOB (bAß+ vs Aß- = 0.137/year, 95% CI [0.069,0.206], p < .001) and 28 CL using the A-IADL-Q (bAß+ vs Aß- = -0.693/year, 95% CI [-1.179,-0.208], p = .005). CONCLUSIONS: Amyloid-PET quantification supports the identification of CN individuals at risk of functional decline. TRIAL REGISTRATION: The AMYPAD PNHS is registered at www.clinicaltrialsregister.eu with the EudraCT Number: 2018-002277-22.


Asunto(s)
Actividades Cotidianas , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Femenino , Masculino , Estudios Transversales , Estudios Longitudinales , Anciano , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Anciano de 80 o más Años
6.
Phys Med ; 121: 103345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581963

RESUMEN

PURPOSE: To evaluate whether the Centiloid Scale may be used to diagnose Alzheimer's Disease (AD) pathology effectively with the only use of amyloid PET imaging modality from a brain-dedicated PET scanner. METHODS: This study included 26 patients with amyloid PET images with 3 different radiotracers. All patients were acquired both on a PET/CT and a brain-dedicated PET scanner (CareMiBrain, CMB), from which 4 different reconstructions were implemented. A new pipeline was proposed and used for the PET image analysis based on the original Centiloid Scale processing pipeline, but with only PET images. The Youden's Index was employed to calculate the optimal cutoffs for diagnosis and evaluated by the AUC, accuracy, precision, and recall metrics. RESULTS: The Centiloid Scale (CL) processing pipeline was validated with and without the use of MR images. The CL cutoffs for AD pathology diagnosis on the PET/CT and the 4 CMB reconstructions were 34.4 ±â€¯2.2, 43.5 ±â€¯3.5, 51.9 ±â€¯12.5, 57.5 ±â€¯6.8 and 41.8 ±â€¯1.2 respectively. Overall, for these cutoffs all metrics obtained the maximum score. CONCLUSION: The Centiloid scale applied to PET images allows for AD pathology diagnosis. The CMB scanner can be used with the Centiloid scale to automatically assist in the diagnosis of AD pathology, relieving the large burden of neurodegenerative diseases on a traditional PET/CT.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Encéfalo , Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Encéfalo/diagnóstico por imagen , Amiloide/metabolismo , Anciano , Masculino , Tomografía de Emisión de Positrones/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Anciano de 80 o más Años , Persona de Mediana Edad
7.
Brain Sci ; 14(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38672055

RESUMEN

BACKGROUND: Standard methods for deriving Centiloid scales from amyloid PET images are time-consuming and require considerable expert knowledge. We aimed to develop a deep learning method of automating Centiloid scale calculations from amyloid PET images with 11C-Pittsburgh Compound-B (PiB) tracer and assess its applicability to 18F-labeled tracers without retraining. METHODS: We trained models on 231 11C-PiB amyloid PET images using a 50-layer 3D ResNet architecture. The models predicted the Centiloid scale, and accuracy was assessed using mean absolute error (MAE), linear regression analysis, and Bland-Altman plots. RESULTS: The MAEs for Alzheimer's disease (AD) and young controls (YC) were 8.54 and 2.61, respectively, using 11C-PiB, and 8.66 and 3.56, respectively, using 18F-NAV4694. The MAEs for AD and YC were higher with 18F-florbetaben (39.8 and 7.13, respectively) and 18F-florbetapir (40.5 and 12.4, respectively), and the error rate was moderate for 18F-flutemetamol (21.3 and 4.03, respectively). Linear regression yielded a slope of 1.00, intercept of 1.26, and R2 of 0.956, with a mean bias of -1.31 in the Centiloid scale prediction. CONCLUSIONS: We propose a deep learning means of directly predicting the Centiloid scale from amyloid PET images in a native space. Transferring the model trained on 11C-PiB directly to 18F-NAV4694 without retraining was feasible.

8.
Alzheimers Dement ; 20(5): 3429-3441, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574374

RESUMEN

INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-ß (Aß) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aß-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Compuestos de Anilina , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Anciano , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Pronóstico , Persona de Mediana Edad , Estudios Longitudinales , Estilbenos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Benzotiazoles
9.
Neuroradiology ; 66(9): 1537-1551, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38676749

RESUMEN

PURPOSE: The Centiloid project helps calibrate the quantitative amyloid-ß (Aß) load into a unified Centiloid (CL) scale that allows data comparison across multi-site. How the smaller regional amyloid converted into CL has not been attempted. We first aimed to express regional Aß deposition in CL using [18F]Flutemetamol and evaluate regional Aß deposition in CL with that in standardized uptake value ratio (SUVr). Second, we aimed to determine the presence or absence of focal Aß deposition by measuring regional CL in equivocal cases showing negative global CL. METHODS: Following the Centiloid project pipeline, Level-1 replication, Level-2 calibration, and quality control were completed to generate corresponding Centiloid conversion equations to convert SUVr into Centiloid at regional levels. In equivocal cases, the regional CL was compared with visual inspection to evaluate regional Aß positivity. RESULTS: 14 out of 16 regional conversions from [18F]Flutemetamol SUVr to Centiloid successfully passed the quality control, showing good reliability and relative variance, especially precuneus/posterior cingulate and prefrontal regions with good stability for Centiloid scaling. The absence of focal Aß deposition could be detected by measuring regional CL, showing a high agreement rate with visual inspection. The regional Aß positivity in the bilateral anterior cingulate cortex was most prevalent in equivocal cases. CONCLUSION: The expression of regional brain Aß deposition in CL with [18F]Flutemetamol has been attempted in this study. Equivocal cases had focal Aß deposition that can be detected by measuring regional CL.


Asunto(s)
Péptidos beta-Amiloides , Compuestos de Anilina , Benzotiazoles , Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Péptidos beta-Amiloides/metabolismo , Femenino , Masculino , Anciano , Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Calibración
10.
J Nucl Med ; 65(5): 670-678, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38514082

RESUMEN

Since the development of amyloid tracers for PET imaging, there has been interest in quantifying amyloid burden in the brains of patients with Alzheimer disease. Quantitative amyloid PET imaging is poised to become a valuable approach in disease staging, theranostics, monitoring, and as an outcome measure for interventional studies. Yet, there are significant challenges and hurdles to overcome before it can be implemented into widespread clinical practice. On November 17, 2022, the U.S. Food and Drug Administration, Society of Nuclear Medicine and Molecular Imaging, and Medical Imaging and Technology Alliance cosponsored a public workshop comprising experts from academia, industry, and government agencies to discuss the role of quantitative brain amyloid PET imaging in staging, prognosis, and longitudinal assessment of Alzheimer disease. The workshop discussed a range of topics, including available radiopharmaceuticals for amyloid imaging; the methodology, metrics, and analytic validity of quantitative amyloid PET imaging; its use in disease staging, prognosis, and monitoring of progression; and challenges facing the field. This report provides a high-level summary of the presentations and the discussion.


Asunto(s)
Amiloide , Encéfalo , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Amiloide/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo
11.
Ann Nucl Med ; 38(6): 460-467, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512444

RESUMEN

OBJECTIVE: The Centiloid (CL) scale is a standardized measure for quantifying amyloid deposition in amyloid positron emission tomography (PET) imaging. We aimed to assess the agreement among 3 CL calculation methods: CapAIBL, VIZCalc, and Amyquant. METHODS: This study included 192 participants (mean age: 71.5 years, range: 50-87 years), comprising 55 with Alzheimer's disease, 65 with mild cognitive impairment, 13 with non-Alzheimer's dementia, and 59 cognitively normal participants. All the participants were assessed using the three CL calculation methods. Spearman's rank correlation, linear regression, Friedman tests, Wilcoxon signed-rank tests, and Bland-Altman analysis were employed to assess data correlations, linear associations, method differences, and systematic bias, respectively. RESULTS: Strong correlations (rho = 0.99, p < .001) were observed among the CL values calculated using the three methods. Scatter plots and regression lines visually confirmed these strong correlations and met the validation criteria. Despite the robust correlations, a significant difference in CL value between CapAIBL and Amyquant was observed (36.1 ± 39.7 vs. 34.9 ± 39.4; p < .001). In contrast, no significant differences were found between CapAIBL and VIZCalc or between VIZCalc and Amyquant. The Bland-Altman analysis showed no observable systematic bias between the methods. CONCLUSIONS: The study demonstrated strong agreement among the three methods for calculating CL values. Despite minor variations in the absolute values of the Centiloid scores obtained using these methods, the overall agreement suggests that they are interchangeable.


Asunto(s)
Amiloide , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Masculino , Femenino , Persona de Mediana Edad , Amiloide/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
12.
Alzheimers Dement ; 20(3): 2165-2172, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38276892

RESUMEN

INTRODUCTION: Machine learning (ML) can optimize amyloid (Aß) comparability among positron emission tomography (PET) radiotracers. Using multi-regional florbetapir (FBP) measures and ML, we report better Pittsburgh compound-B (PiB)/FBP harmonization of mean-cortical Aß (mcAß) than Centiloid. METHODS: PiB-FBP pairs from 92 subjects in www.oasis-brains.org and 46 in www.gaain.org/centiloid-project were used as the training/testing sets. FreeSurfer-extracted FBP multi-regional Aß and actual PiB mcAß in the training set were used to train ML models generating synthetic PiB mcAß. The correlation coefficient (R) between the synthetic/actual PiB mcAß in the testing set was assessed. RESULTS: In the testing set, the synthetic/actual PiB mcAß correlation R = 0.985 (R2  = 0.970) using artificial neural network was significantly higher (p ≤ 6.6e-4) than the FBP/PiB correlation R = 0.927 (R2  = 0.860), improving total variance percentage (R2 ) from 86% to 97%. Other ML models such as partial least square, ensemble, and relevance vector regressions also improved R (p = 9.677e-05 /0.045/0.0017). DISCUSSION: ML improved mcAß comparability. Additional studies are needed for the generalizability to other amyloid tracers, and to tau PET. Highlights Centiloid is a calibration of the amyloid scale, not harmonization. Centiloid unifies the amyloid scale without improving inter-tracer association (R2 ). Machine learning (ML) can harmonize the amyloid scale by improving R2 . ML harmonization maps multi-regional florbetapir SUVRs to PiB mean-cortical SUVR. Artificial neural network ML increases Centiloid R2 from 86% to 97%.


Asunto(s)
Enfermedad de Alzheimer , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Compuestos de Anilina , Glicoles de Etileno , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas , Placa Amiloide , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen
13.
Alzheimers Res Ther ; 15(1): 149, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667408

RESUMEN

BACKGROUND: Plasma biomarkers have emerged as promising screening tools for Alzheimer's disease (AD) because of their potential to detect amyloid ß (Aß) accumulation in the brain. One such candidate is the plasma Aß42/40 ratio (Aß42/40). Unlike previous research that used traditional immunoassay, recent studies that measured plasma Aß42/40 using fully automated platforms reported promising results. However, its utility should be confirmed using a broader patient population, focusing on the potential for early detection. METHODS: We recruited 174 participants, including healthy controls (HC) and patients with clinical diagnoses of AD, frontotemporal lobar degeneration, dementia with Lewy bodies/Parkinson's disease, mild cognitive impairment (MCI), and others, from a university memory clinic. We examined the performance of plasma Aß42/40, measured using the fully automated high-sensitivity chemiluminescence enzyme (HISCL) immunoassay, in detecting amyloid-positron emission tomography (PET)-derived Aß pathology. We also compared its performance with that of Simoa-based plasma phosphorylated tau at residue 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). RESULTS: Using the best cut-off derived from the Youden Index, plasma Aß42/40 yielded an area under the receiver operating characteristic curve (AUC) of 0.949 in distinguishing visually assessed 18F-Florbetaben amyloid PET positivity. The plasma Aß42/40 had a significantly superior AUC than p-tau181, GFAP, and NfL in the 167 participants with measurements for all four biomarkers. Next, we analyzed 99 participants, including only the HC and those with MCI, and discovered that plasma Aß42/40 outperformed the other plasma biomarkers, suggesting its ability to detect early amyloid accumulation. Using the Centiloid scale (CL), Spearman's rank correlation coefficient between plasma Aß42/40 and CL was -0.767. Among the 15 participants falling within the CL values indicative of potential future amyloid accumulation (CL between 13.5 and 35.7), plasma Aß42/40 categorized 61.5% (8/13) as Aß-positive, whereas visual assessment of amyloid PET identified 20% (3/15) as positive. CONCLUSION: Plasma Aß42/40 measured using the fully automated HISCL platform showed excellent performance in identifying Aß accumulation in the brain in a well-characterized cohort. This equipment may be useful for screening amyloid pathology because it has the potential to detect early amyloid pathology and is readily applied in clinical settings.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Proteínas Amiloidogénicas , Inmunoensayo , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen
14.
Quant Imaging Med Surg ; 13(8): 4806-4815, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581034

RESUMEN

Background: 18F-florbetaben (FBB) positron emission tomography (PET) scan has been widely used in research and routine clinical practice. Most studies used late-phase (scanning from 90 to 110 min after injection) FBB scans to generate beta-amyloid accumulation data. The feasibility of middle-phase scan is seldom discussed. Using the middle-phase data can shorten the patients' waiting between the injection and scan, and hospital can acquire more flexible schedule of routine scan. Methods: Paired middle-phase (60-80 min) FBB scans and standard (90-110 min) FBB scans were obtained from 27 subjects (12 neurodegenerative dementia, 8 mild cognitive impairment, 3 normal control, and 4 patients not suffering from neurodegenerative dementia). Standardized uptake value ratios (SUVRs) were calculated and converted to centiloid (CL) scale to investigate the impact on image quantification. CL pipeline validation were performed to build an equation converting the middle-phase data into equivalent standard scans. Cohen's kappa of binary interpretation and brain amyloid plaque load (BAPL) score were also used to evaluate the intrareader agreement of the FBB image from the two protocols. Results: The middle-phase FBB SUVR showed an excellent correlation, which provided a linear regression equation of SUVRFBB60-80 = 0.88 × SUVRFBB90-110 + 0.07, with R2=0.98. The slope of the equation indicated that there was bias between the middle and standard acquisition. This can be converted into the CL scale using CL = 174.68 × SUVR - 166.39. Cohen's kappa of binary interpretation and BAPL score were 1.0 (P<0.0001). Conclusions: Our findings indicate that the middle-phase FBB protocol is feasible in clinical applications for scans that are at either end of beta-amyloid spectrum, which provides comparable semiquantitative results to standard scan. Patient's waiting time between the injection and scan can be shortened.

15.
Alzheimers Dement (Amst) ; 15(3): e12457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492802

RESUMEN

INTRODUCTION: The Centiloid (CL) project was developed to harmonize the quantification of amyloid beta (Aß) positron emission tomography (PET) scans to a unified scale. The CL neocortical mask was defined using 11C Pittsburgh compound B (PiB), overlooking potential differences in regional distribution among Aß tracers. We created a universal mask using an independent dataset of five Aß tracers, and investigated its impact on inter-tracer agreement, tracer variability, and group separation. METHODS: Using data from the Alzheimer's Dementia Onset and Progression in International Cohorts (ADOPIC) study (Australian Imaging Biomarkers and Lifestyle + Alzheimer's Disease Neuroimaging Initiative + Open Access Series of Imaging Studies), age-matched pairs of mild Alzheimer's disease (AD) and healthy controls (HC) were selected: 18F-florbetapir (N = 147 pairs), 18F-florbetaben (N = 22), 18F-flutemetamol (N = 10), 18F-NAV (N = 42), 11C-PiB (N = 63). The images were spatially and standardized uptake value ratio normalized. For each tracer, the mean AD-HC difference image was thresholded to maximize the overlap with the standard neocortical mask. The universal mask was defined as the intersection of all five masks. It was evaluated on the Global Alzheimer's Association Interactive Network (GAAIN) head-to-head datasets in terms of inter-tracer agreement and variance in the young controls (YC) and on the ADOPIC dataset comparing separation between HC/AD and HC/mild cognitive impairment (MCI). RESULTS: In the GAAIN dataset, the universal mask led to a small reduction in the variance of the YC, and a small increase in the inter-tracer agreement. In the ADOPIC dataset, it led to a better separation between HC/AD and HC/MCI at baseline. DISCUSSION: The universal CL mask led to an increase in inter-tracer agreement and group separation. Those increases were, however, very small, and do not provide sufficient benefits to support departing from the existing standard CL mask, which is suitable for the quantification of all Aß tracers. HIGHLIGHTS: This study built an amyloid universal mask using a matched cohort for the five most commonly used amyloid positron emission tomography tracers.There was a high overlap between each tracer-specific mask.Differences in quantification and group separation between the standard and universal mask were small.The existing standard Centiloid mask is suitable for the quantification of all amyloid beta tracers.

16.
Brain Behav ; 13(7): e3092, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287410

RESUMEN

BACKGROUND AND PURPOSE: Quantitative measures have been proposed to aid the visual interpretation of amyloid PET. Our objective was to develop and validate quantitative software that enables calculation of the Centiloid (CL) scale and Z-score for amyloid PET with 18 F-florbetapir. METHODS: This software was developed as a toolbox in statistical parametric mapping 12 running on MATLAB Runtime. For each participant's amyloid PET, this software calculates the CL scale using the standard MRI-guided pipeline proposed by the Global Alzheimer's Association Interactive Network (GAAIN) and generates a Z-score map for comparison with a new amyloid-negative database constructed from 20 healthy controls. In 23 cognitively impaired patients with suspected Alzheimer's disease, Z-score values for a target cortical area from the new database were compared with those from the GAAIN database constructed from 13 healthy controls. The CL values obtained using low-dose CT of PET/CT equipment were then compared with those obtained using MRI. RESULTS: The CL calculation was validated with the 18 F-florbetapir dataset in the GAAIN repository. Z-score values obtained from the new database were significantly higher (mean ± standard deviation, 1.05 ± 0.77; p < .0001) than those obtained from the GAAIN database. The use of low-dose CT provided CL scales that were highly correlated with those obtained with MRI (R2  = .992) but showed a slight yet significant underestimation (-2.1 ± 4.2; p = .013). CONCLUSIONS: Our quantification software provides the CL scale and Z-score for measuring overall and local amyloid accumulation with the use of MRI or low-dose CT.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen
17.
Eur J Nucl Med Mol Imaging ; 50(11): 3276-3289, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300571

RESUMEN

PURPOSE: Amyloid positron emission tomography (PET) with [18F]florbetaben (FBB) is an established tool for detecting Aß deposition in the brain in vivo based on visual assessment of PET scans. Quantitative measures are commonly used in the research context and allow continuous measurement of amyloid burden. The aim of this study was to demonstrate the robustness of FBB PET quantification. METHODS: This is a retrospective analysis of FBB PET images from 589 subjects. PET scans were quantified with 15 analytical methods using nine software packages (MIMneuro, Hermes BRASS, Neurocloud, Neurology Toolkit, statistical parametric mapping (SPM8), PMOD Neuro, CapAIBL, non-negative matrix factorization (NMF), AmyloidIQ) that used several metrics to estimate Aß load (SUVR, centiloid, amyloid load, and amyloid index). Six analytical methods reported centiloid (MIMneuro, standard centiloid, Neurology Toolkit, SPM8 (PET only), CapAIBL, NMF). All results were quality controlled. RESULTS: The mean sensitivity, specificity, and accuracy were 96.1 ± 1.6%, 96.9 ± 1.0%, and 96.4 ± 1.1%, respectively, for all quantitative methods tested when compared to histopathology, where available. The mean percentage of agreement between binary quantitative assessment across all 15 methods and visual majority assessment was 92.4 ± 1.5%. Assessments of reliability, correlation analyses, and comparisons across software packages showed excellent performance and consistent results between analytical methods. CONCLUSION: This study demonstrated that quantitative methods using both CE marked software and other widely available processing tools provided comparable results to visual assessments of FBB PET scans. Software quantification methods, such as centiloid analysis, can complement visual assessment of FBB PET images and could be used in the future for identification of early amyloid deposition, monitoring disease progression and treatment effectiveness.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Estudios Retrospectivos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/metabolismo , Compuestos de Anilina , Tomografía de Emisión de Positrones/métodos , Amiloide , Programas Informáticos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología
18.
Alzheimers Dement (Amst) ; 15(2): e12434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37201176

RESUMEN

INTRODUCTION: The Centiloid scale aims to harmonize amyloid beta (Aß) positron emission tomography (PET) measures across different analysis methods. As Centiloids were created using PET/computerized tomography (CT) data and are influenced by scanner differences, we investigated the Centiloid transformation with data from Insight 46 acquired with PET/magnetic resonanceimaging (MRI). METHODS: We transformed standardized uptake value ratios (SUVRs) from 432 florbetapir PET/MRI scans processed using whole cerebellum (WC) and white matter (WM) references, with and without partial volume correction. Gaussian-mixture-modelling-derived cutpoints for Aß PET positivity were converted. RESULTS: The Centiloid cutpoint was 14.2 for WC SUVRs. The relationship between WM and WC uptake differed between the calibration and testing datasets, producing implausibly low WM-based Centiloids. Linear adjustment produced a WM-based cutpoint of 18.1. DISCUSSION: Transformation of PET/MRI florbetapir data to Centiloids is valid. However, further understanding of the effects of acquisition or biological factors on the transformation using a WM reference is needed. HIGHLIGHTS: Centiloid conversion of amyloid beta positron emission tomography (PET) data aims to standardize results.Centiloid values can be influenced by differences in acquisition.We converted florbetapir PET/magnetic resonance imaging data from a large birth cohort.Whole cerebellum referenced values could be reliably transformed to Centiloids.White matter referenced values may be less generalizable between datasets.

19.
Alzheimers Dement ; 19(11): 4922-4934, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37070734

RESUMEN

INTRODUCTION: It remains unclear whether functional brain networks are consistently altered in individuals with subjective cognitive decline (SCD) of diverse ethnic and cultural backgrounds and whether the network alterations are associated with an amyloid burden. METHODS: Cross-sectional resting-state functional magnetic resonance imaging connectivity (FC) and amyloid-positron emission tomography (PET) data from the Chinese Sino Longitudinal Study on Cognitive Decline and German DZNE Longitudinal Cognitive Impairment and Dementia cohorts were analyzed. RESULTS: Limbic FC, particularly hippocampal connectivity with right insula, was consistently higher in SCD than in controls, and correlated with SCD-plus features. Smaller SCD subcohorts with PET showed inconsistent amyloid positivity rates and FC-amyloid associations across cohorts. DISCUSSION: Our results suggest an early adaptation of the limbic network in SCD, which may reflect increased awareness of cognitive decline, irrespective of amyloid pathology. Different amyloid positivity rates may indicate a heterogeneous underlying etiology in Eastern and Western SCD cohorts when applying current research criteria. Future studies should identify culture-specific features to enrich preclinical Alzheimer's disease in non-Western populations. HIGHLIGHTS: Common limbic hyperconnectivity across Chinese and German subjective cognitive decline (SCD) cohorts was observed. Limbic hyperconnectivity may reflect awareness of cognition, irrespective of amyloid load. Further cross-cultural harmonization of SCD regarding Alzheimer's disease pathology is required.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Estudios Transversales , Pueblos del Este de Asia , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones
20.
Alzheimers Dement ; 19(10): 4641-4650, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36988152

RESUMEN

BACKGROUND: A combination of plasma phospho-tau (p-tau), amyloid beta (Aß)-positron emission tomography (PET), brain magnetic resonance imaging, cognitive function tests, and other biomarkers might predict future cognitive decline. This study aimed to investigate the efficacy of combining these biomarkers in predicting future cognitive stage transitions within 3 years. METHODS: Among the participants in the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE-V) study, 49 mild cognitive impairment (MCI) and 113 cognitively unimpaired (CU) participants with Aß-PET and brain imaging data were analyzed. RESULTS: Older age, increased plasma p-tau181, Aß-PET positivity, and decreased semantic fluency were independently associated with cognitive stage transitions. Combining age, p-tau181, the Centiloid scale, semantic fluency, and hippocampal volume produced high predictive value in predicting future cognitive stage transition (area under the curve = 0.879). CONCLUSIONS: Plasma p-tau181 and Centiloid scale alone or in combination with other biomarkers, might predict future cognitive stage transition in non-dementia patients. HIGHLIGHTS: -Plasma p-tau181 and Centiloid scale might predict future cognitive stage transition. -Combining them or adding other biomarkers increased the predictive value. -Factors that independently associated with cognitive stage transition were demonstrated.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides , Proteínas tau , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Tomografía de Emisión de Positrones , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA