Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
J Affect Disord ; 359: 241-252, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768820

RESUMEN

BACKGROUND: Postpartum depression (PPD) is a serious psychiatric disorder that has significantly adverse impacts on maternal health. Metabolic abnormalities in the brain are associated with numerous neurological disorders, yet the specific metabolic signaling pathways and brain regions involved in PPD remain unelucidated. METHODS: We performed behavioral test in the virgin and postpartum mice. We used mass spectrometry imaging (MSI) and targeted metabolomics analyses to investigate the metabolic alternation in the brain of GABAAR Delta-subunit-deficient (Gabrd-/-) postpartum mice, a specific preclinical animal model of PPD. Next, we performed mechanism studies including qPCR, Western blot, immunofluorescence staining, electron microscopy and primary astrocyte culture. In the specific knockdown and rescue experiments, we injected the adeno-associated virus into the central amygdala (CeA) of female mice. RESULTS: We identified that prostaglandin D2 (PGD2) downregulation in the CeA was the most outstanding alternation in PPD, and then validated that lipocalin-type prostaglandin D synthase (L-PGDS)/PGD2 downregulation plays a causal role in depressive behaviors derived from PPD in both wild-type and Gabrd-/- mice. Furthermore, we verified that L-PGDS/PGD2 signaling dysfunction-induced astrocytes atrophy is mediated by Src phosphorylation both in vitro and in vivo. LIMITATIONS: L-PGDS/PGD2 signaling dysfunction may be only responsible for the depressive behavior rather than maternal behaviors in the PPD, and it remains to be seen whether this mechanism is applicable to all depression types. CONCLUSION: Our study identified abnormalities in the L-PGDS/PGD2 signaling in the CeA, which inhibited Src phosphorylation and induced astrocyte atrophy, ultimately resulting in the development of PPD in mice.


Asunto(s)
Astrocitos , Atrofia , Depresión Posparto , Modelos Animales de Enfermedad , Prostaglandina D2 , Transducción de Señal , Animales , Astrocitos/patología , Astrocitos/metabolismo , Femenino , Depresión Posparto/patología , Depresión Posparto/metabolismo , Ratones , Transducción de Señal/fisiología , Prostaglandina D2/metabolismo , Núcleo Amigdalino Central/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Familia-src Quinasas/metabolismo , Ratones Noqueados
2.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645149

RESUMEN

Background: Binge alcohol drinking is a dangerous pattern of consumption that can contribute to the development of more severe alcohol use disorders (AUDs). Importantly, the rate and severity of AUDs has historically differed between men and women, suggesting that there may be sex differences in the central mechanisms that modulate alcohol (ethanol) consumption. Corticotropin releasing factor (CRF) is a centrally expressed neuropeptide that has been implicated in the modulation of binge-like ethanol intake, and emerging data highlight sex differences in central CRF systems. Methods: In the present report we characterized CRF+ neurocircuitry arising from the central nucleus of the amygdala (CeA) and innervating the lateral hypothalamus (LH) in the modulation of binge-like ethanol intake in male and female mice. Results: Using chemogenetic tools we found that silencing the CRF+ CeA to LH circuit significantly blunted binge-like ethanol intake in male, but not female, mice. Consistently, genetic deletion of CRF from neurons of the CeA blunted ethanol intake exclusively in male mice. Furthermore, pharmacological blockade of the CRF type-1 receptor (CRF1R) in the LH significantly reduced binge-like ethanol intake in male mice only, while CRF2R activation in the LH failed to alter ethanol intake in either sex. Finally, a history of binge-like ethanol drinking blunted CRF mRNA in the CeA regardless of sex. Conclusions: These observations provide novel evidence that CRF+ CeA to LH neurocircuitry modulates binge-like ethanol intake in male, but not female mice, which may provide insight into the mechanisms that guide known sex differences in binge-like ethanol intake.

3.
Cell Rep ; 43(3): 113933, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38460131

RESUMEN

Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.


Asunto(s)
Núcleo Amigdalino Central , Núcleos Septales , Animales , Proteína Quinasa C-delta/metabolismo , Anorexia/metabolismo , Neuronas/metabolismo , Núcleo Amigdalino Central/metabolismo , Vías Nerviosas/fisiología , Núcleos Septales/fisiología
4.
Cell Rep ; 43(4): 113990, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551964

RESUMEN

The motivation to eat is suppressed by satiety and aversive stimuli such as nausea. The neural circuit mechanisms of appetite suppression by nausea are not well understood. Pkcδ neurons in the lateral subdivision of the central amygdala (CeA) suppress feeding in response to satiety signals and nausea. Here, we characterized neurons enriched in the medial subdivision (CeM) of the CeA marked by expression of Dlk1. CeADlk1 neurons are activated by nausea, but not satiety, and specifically suppress feeding induced by nausea. Artificial activation of CeADlk1 neurons suppresses drinking and social interactions, suggesting a broader function in attenuating motivational behavior. CeADlk1 neurons form projections to many brain regions and exert their anorexigenic activity by inhibition of neurons of the parabrachial nucleus. CeADlk1 neurons are inhibited by appetitive CeA neurons, but also receive long-range monosynaptic inputs from multiple brain regions. Our results illustrate a CeA circuit that regulates nausea-induced feeding suppression.


Asunto(s)
Proteínas de Unión al Calcio , Núcleo Amigdalino Central , Conducta Alimentaria , Náusea , Neuronas , Animales , Neuronas/metabolismo , Núcleo Amigdalino Central/metabolismo , Proteínas de Unión al Calcio/metabolismo , Ratones , Náusea/metabolismo , Náusea/etiología , Masculino , Ratones Endogámicos C57BL , Péptidos y Proteínas de Señalización Intercelular/metabolismo
5.
J Neurochem ; 168(6): 957-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38413201

RESUMEN

Early life stress, such as childhood abuse and neglect, is one of the major risk factors for the development of antisocial behavior. In rat models, repeated maternal separation (MS) stress, in which the pups are separated from the dams for a few hours each day during the first 2-3 weeks of life, increases aggressive behavior in adult males. This Editorial highlights an article in the current issue of the Journal of Neurochemistry that demonstrates the involvement of the central nucleus of the amygdala (CeA) in the escalation of aggressive behavior in the MS model. The authors show that MS rats exhibit higher c-Fos expression in the CeA during an aggressive encounter compared to non-isolated control rats. Unexpectedly, other amygdala subnuclei did not show differential activation between MS and control groups. Using optogenetics, they provide direct evidence that activation of CeA neurons increases intermale aggressive behavior and that bilateral CeA activation shifts behavioral patterns toward more qualitatively intense aggressive behavior than unilateral CeA activation. These findings highlight the important role of the CeA in the development of abnormal aggression and indicate that this region may be an important therapeutic target for human aggression induced by early life stress.


Asunto(s)
Agresión , Núcleo Amigdalino Central , Privación Materna , Estrés Psicológico , Agresión/fisiología , Agresión/psicología , Animales , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Núcleo Amigdalino Central/metabolismo , Ratas , Humanos , Masculino , Femenino
6.
Neuroscience ; 539: 1-11, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38184069

RESUMEN

Psilocybin has received attention as a treatment for depression, stress disorders and drug and alcohol addiction. To help determine the mechanisms underlying its therapeutic effects, here we examined acute effects of a range of behaviourally relevant psilocybin doses (0.1-3 mg/kg SC) on regional expression of Fos, the protein product of the immediate early gene, c-fos in brain areas involved in stress, reward and motivation in male rats. We also determined the cellular phenotypes activated by psilocybin, in a co-labeling analysis with NeuN, a marker of mature neurons, or Olig1, a marker of oligodendrocytes. In adult male Sprague-Dawley rats, psilocybin increased Fos expression dose dependently in several brain regions, including the frontal cortex, nucleus accumbens, central and basolateral amygdala and locus coeruleus. These effects were most marked in the central amygdala. Double labeling experiments showed that Fos was expressed in both neurons and oligodendrocytes. These results extend previous research by determining Fos expression in multiple brain areas at a wider psilocybin dose range, and the cellular phenotypes expressing Fos. The data also highlight the amygdala, especially the central nucleus, a key brain region involved in emotional processing and learning and interconnected with other brain areas involved in stress, reward and addiction, as a potentially important locus for the therapeutic effects of psilocybin. Overall, the present findings suggest that the central amygdala may be an important site through which the initial brain activation induced by psilocybin is translated into neuroplastic changes, locally and in other regions that underlie its extended therapeutic effects.


Asunto(s)
Encéfalo , Psilocibina , Ratas , Masculino , Animales , Psilocibina/farmacología , Psilocibina/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Locus Coeruleus/metabolismo , Amígdala del Cerebelo/metabolismo
7.
Biol Psychiatry ; 95(3): 207-219, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717844

RESUMEN

BACKGROUND: Exposure to alcohol during adolescence produces many effects that last well into adulthood. Acute alcohol use is analgesic, and people living with pain report drinking alcohol to reduce pain, but chronic alcohol use produces increases in pain sensitivity. METHODS: We tested the acute and lasting effects of chronic adolescent intermittent ethanol (AIE) exposure on pain-related behavioral and brain changes in male and female rats. We also tested the long-term effects of AIE on synaptic transmission in midbrain (ventrolateral periaqueductal gray [vlPAG])-projecting central amygdala (CeA) neurons using whole-cell electrophysiology. Finally, we used circuit-based approaches (DREADDs [designer receptors exclusively activated by designer drugs]) to test the role of vlPAG-projecting CeA neurons in mediating AIE effects on pain-related outcomes. RESULTS: AIE produced long-lasting hyperalgesia in male, but not female, rats. Similarly, AIE led to a reduction in synaptic strength of medial CeA cells that project to the vlPAG in male, but not female, rats. Challenge with an acute painful stimulus (i.e., formalin) in adulthood produced expected increases in pain reactivity, and this effect was exaggerated in male rats with a history of AIE. Finally, CeA-vlPAG circuit activation rescued AIE-induced hypersensitivity in male rats. CONCLUSIONS: Our findings are the first, to our knowledge, to show long-lasting sex-dependent effects of adolescent alcohol exposure on pain-related behaviors and brain circuits in adult animals. This work has implications for understanding the long-term effects of underage alcohol drinking on pain-related behaviors in humans.


Asunto(s)
Núcleo Amigdalino Central , Consumo de Alcohol en Menores , Humanos , Adolescente , Masculino , Ratas , Femenino , Animales , Hiperalgesia , Etanol/farmacología , Dolor
8.
J Comp Neurol ; 532(2): e25569, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104270

RESUMEN

In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.


Asunto(s)
Núcleo Amigdalino Central , Animales , Hormona Liberadora de Corticotropina/metabolismo , Pollos/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Mamíferos
9.
J Neurochem ; 167(6): 778-794, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037675

RESUMEN

Epidemiological studies have indicated that child maltreatment, such as neglect, is a risk factor of escalated aggression, potentially leading to delinquency and violent crime in the future. However, little is known about the mechanisms by which an early adverse environment may later cause violent behavior. In this study, we aimed to thoroughly examine the association between aggression against conspecific animals and the activity of amygdala subnuclei using the maternal separation (MS) model, which is a common model of early life stress. In the MS group, pups of Sprague-Dawley rats were separated from their dam during postnatal days 2-20 (twice a day, 3 h each). We only included 9-week-old male offspring for each analysis and compared the MS group with the mother-reared control group; both groups were raised by the same dam during postnatal days 2-20. The results revealed that the MS group exhibited higher aggression and excessive activity of only the central amygdala (CeA) among the amygdala subnuclei during the aggressive behavior test. Moreover, a significant positive correlation was observed between higher aggression and CeA activation. While CeA activity is known to be involved in hunting behavior for prey, some previous studies have also indicated a relationship between CeA and intraspecific aggression. It remains unclear, however, whether excessive CeA activity directly induces intraspecific aggression. Therefore, we stimulated the CeA using optogenetics with 8-week-old rats to clarify the relationship between intraspecific aggression and CeA activity. Notably, CeA activation resulted in higher aggression, even when the opponent was a conspecific animal. In particular, bilateral CeA activation resulted in more severe displays of aggressive behavior than necessary, such as biting a surrendered opponent. These findings suggest that an adverse environment during early development intensifies aggression through excessive CeA activation, which can increase the risk of escalating to violent behavior in the future.


Asunto(s)
Agresión , Núcleo Amigdalino Central , Animales , Humanos , Masculino , Ratas , Agresión/fisiología , Privación Materna , Ratas Sprague-Dawley
10.
J Neurosci ; 43(50): 8690-8699, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37932105

RESUMEN

Avoidance stress coping, defined as persistent internal and/or external avoidance of stress-related stimuli, is a key feature of anxiety- and stress-related disorders, and contributes to increases in alcohol misuse after stress exposure. Previous work using a rat model of predator odor stress avoidance identified corticotropin-releasing factor (CRF) signaling via CRF Type 1 receptors (CRF1) in the CeA, as well as CeA projections to the lateral hypothalamus (LH) as key mediators of conditioned avoidance of stress-paired contexts and/or increased alcohol drinking after stress. Here, we report that CRF1-expressing CeA cells that project to the LH are preferentially activated in male and female rats that show persistent avoidance of predator odor stress-paired contexts (termed Avoider rats), and that chemogenetic inhibition of these cells rescues stress-induced increases in anxiety-like behavior and alcohol self-administration in male and female Avoider rats. Using slice electrophysiology, we found that prior predator odor stress exposure blunts inhibitory synaptic transmission and increases synaptic drive in CRF1 CeA-LH cells. In addition, we found that CRF bath application reduces synaptic drive in CRF1 CeA-LH cells in Non-Avoiders only. Collectively, these data show that CRF1 CeA-LH cells contribute to stress-induced increases in anxiety-like behavior and alcohol self-administration in male and female Avoider rats.SIGNIFICANCE STATEMENT Stress may lead to a variety of behavioral and physiological negative consequences, and better understanding of the neurobiological mechanisms that contribute to negative stress effects may lead to improved prevention and treatment strategies. This study, performed in laboratory rats, shows that animals that exhibit avoidance stress coping go on to develop heightened anxiety-like behavior and alcohol self-administration, and that these behaviors can be rescued by inhibiting the activity of a specific population of neurons in the central amygdala. This study also describes stress-induced physiological changes in these neurons that may contribute to their role in promoting increased anxiety and alcohol self-administration.


Asunto(s)
Ansiedad , Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Etanol , Trastornos de Estrés Traumático , Animales , Femenino , Masculino , Ratas , Ansiedad/etiología , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/administración & dosificación , Área Hipotalámica Lateral/metabolismo , Neuronas/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Trastornos de Estrés Traumático/complicaciones
11.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873076

RESUMEN

Chronic stress can change how we learn and, thus, how we make decisions by promoting the formation of inflexible, potentially maladaptive, habits. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted approach in male and female mice, we reveal a dual pathway, amygdala-striatal, neuronal circuit architecture by which a recent history of chronic stress shapes learning to disrupt flexible goal-directed behavior in favor of inflexible habits. Chronic stress inhibits activity of basolateral amygdala projections to the dorsomedial striatum to impede the action-outcome learning that supports flexible, goal-directed decisions. Stress also increases activity in direct central amygdala projections to the dorsomedial striatum to promote the formation of rigid, inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to promote premature habit formation. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and other psychiatric conditions.

12.
Neurosci Biobehav Rev ; 153: 105396, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37739328

RESUMEN

The subjective nature of human emotions makes them uniquely challenging to investigate in preclinical models. While behavioral assays in rodents aim to evaluate affect (i.e., anxiety, hypervigilance), they often lack ethological validity. Playback of negatively valenced 22-kHz ultrasonic vocalizations (USVs) in rats shows promise as a translational tool to investigate affective processing. Much like how human facial expressions can communicate internal states, rats emit 22-kHz USVs that similarly convey negative affective states to conspecifics indicating possible threat. 22-kHz USV playback elicits avoidance and hypervigilant behaviors, and recruit brain regions comparable to those seen in human brains evoked by viewing fearful faces. Indeed, 22-kHz playback alters neural activity in brain regions associated with negative valence systems (i.e., amygdala, bed nucleus of the stria terminalis, periaqueductal gray) alongside increases in behaviors typically associated with anxiety. Here, we present evidence from the literature that supports leveraging 22-kHz USV playback in rat preclinical models to obtain clinically relevant and translational findings to identify the neural underpinnings of affective processing and neuropathological dysfunction.

13.
Cell Rep ; 42(9): 113036, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37616162

RESUMEN

The central amygdala (CeA) with its medial (CeM) and lateral (CeL) nuclei is the brain hub for processing stimuli with emotional context. CeL nucleus gives a strong inhibitory input to the CeM, and this local circuitry assigns values (positive or negative) to incoming stimuli, guiding appropriate behavior (approach or avoid). However, the particular involvement of CeA in processing such emotionally relevant information and adaptations of the CeA circuitry are not yet well understood. In this study, we examined synaptic plasticity in the CeA after exposure to two types of rewards, pharmacological (cocaine) and natural (sugar). We found that both rewards engage CeM, where they generate silent synapses resulting in the strengthening of the network. However, only cocaine triggers plasticity in the CeL, which leads to the weakening of its excitatory inputs. Finally, chemogenetic inhibition of CeM attenuates animal preference for sugar, while activation delays cocaine-induced increase in locomotor activity.

14.
eNeuro ; 10(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640541

RESUMEN

To survive, animals must meet their biological needs while simultaneously avoiding danger. However, the neurobiological basis of appetitive and aversive survival behaviors has historically been studied using separate behavioral tasks. While recent studies in mice have quantified appetitive and aversive conditioned responses simultaneously (Jikomes et al., 2016; Heinz et al., 2017), these tasks required different behavioral responses to each stimulus. As many brain regions involved in survival behavior process stimuli of opposite valence, we developed a paradigm in which mice perform the same response (nose poke) to distinct auditory cues to obtain a rewarding outcome (palatable food) or avoid an aversive outcome (mild footshoock). This design allows for both within-subject and between-subject comparisons as animals respond to appetitive and aversive cues. The central nucleus of the amygdala (CeA) is implicated in the regulation of responses to stimuli of either valence. Considering its role in threat processing (Wilensky et al., 2006; Haubensak et al., 2010) and regulation of incentive salience (Warlow and Berridge, 2021), it is important to examine the contribution of the CeA to mechanisms potentially underlying comorbid dysregulation of avoidance and reward (Sinha, 2008; Bolton et al., 2009). Using this paradigm, we tested the role of two molecularly defined CeA subtypes previously linked to consummatory and defensive behaviors. Significant strain differences in the acquisition and performance of the task were observed. Bidirectional chemogenetic manipulation of CeA somatostatin (SOM) neurons altered motivation for reward and perseveration of reward-seeking responses on avoidance trials. Manipulation of corticotropin-releasing factor neurons (CRF) had no significant effect on food reward consumption, motivation, or task performance. This paradigm will facilitate investigations into the neuronal mechanisms controlling motivated behavior across valences.


Asunto(s)
Núcleo Amigdalino Central , Animales , Ratones , Condicionamiento Operante , Motivación , Afecto , Neuronas
15.
Behav Sci (Basel) ; 13(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37504003

RESUMEN

Alcohol use disorder is a significant public health concern, further exacerbated by an increased risk of relapse due to stress. In addition, factors such as biological sex may contribute to the progression of addiction, as females are especially susceptible to stress-induced relapse. While there have been many studies surrounding potential pharmacological interventions for male stress-induced ethanol reinstatement, research regarding females is scarce. Recently, the neuropeptide oxytocin has gained interest as a possible pharmacological intervention for relapse. The present study examines how oxytocin affects yohimbine-induced reinstatement of ethanol-seeking in female rats using a self-administration paradigm. Adult female rats were trained to press a lever to access ethanol in daily self-administration sessions. Rats then underwent extinction training before a yohimbine-induced reinstatement test. Rats administered with yohimbine demonstrated significantly higher lever response indicating a reinstatement of ethanol-seeking behavior. Oxytocin administration, both systemically and directly into the central amygdala, attenuated the effect of yohimbine-induced reinstatement of ethanol-seeking behavior. The findings from this study establish that oxytocin is effective at attenuating alcohol-relapse behavior mediated by the pharmacological stressor yohimbine and that this effect is modulated by the central amygdala in females. This provides valuable insight regarding oxytocin's potential therapeutic effect in female stress-induced alcohol relapse.

16.
Neurobiol Stress ; 24: 100542, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37197395

RESUMEN

Hyperkateifia and stress-induced alcohol cravings drive relapse in individuals with alcohol use disorder (AUD). The brain stress signal norepinephrine (also known as noradrenaline) tightly controls cognitive and affective behavior and was thought to be broadly dysregulated with AUD. The locus coeruleus (LC) is a major source of forebrain norepinephrine, and it was recently discovered that the LC sends distinct projections to addiction-associated regions suggesting that alcohol-induced noradrenergic changes may be more brain region-specific than originally thought. Here we investigated whether ethanol dependence alters adrenergic receptor gene expression in the medial prefrontal cortex (mPFC) and central amgydala (CeA), as these regions mediate the cognitive impairment and negative affective state of ethanol withdrawal. We exposed male C57BL/6J mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and assessed reference memory, anxiety-like behavior and adrenergic receptor transcript levels during 3-6 days of withdrawal. Dependence bidirectionally altered mouse brain α1 and ß receptor mRNA levels, potentially leading to reduced mPFC adrenergic signaling and enhanced noradrenergic influence over the CeA. These brain region-specific gene expression changes were accompanied by long-term retention deficits and a shift in search strategy in a modified Barnes maze task, as well as greater spontaneous digging behavior and hyponeophagia. Current clinical studies are evaluating adrenergic compounds as a treatment for AUD-associated hyperkatefia, and our findings can contribute to the refinement of these therapies by increasing understanding of the specific neural systems and symptoms that may be targeted.

17.
Addict Biol ; 28(5): e13276, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186439

RESUMEN

Calcium/calmodulin-dependent kinase II (CaMKII) is a key enzyme at the glutamatergic synapses. CAMK2A gene variants have been linked with alcohol use disorder (AUD) by an unknown mechanism. Here, we looked for the link between αCaMKII autophosphorylation and the AUD aetiology. Autophosphorylation-deficient heterozygous αCaMKII mutant mice (T286A+/- ) were trained in the IntelliCages to test the role of αCaMKII activity in AUD-related behaviours. The glutamatergic synapses morphology in CeA was studied in the animals drinking alcohol using 3D electron microscopy. We found that T286A+/- mutants consumed less alcohol and were more sensitive to sedating effects of alcohol, as compared to wild-type littermates (WT). After voluntary alcohol drinking, T286A+/- mice had less excitatory synapses in the CeA, as compared to alcohol-naive animals. This change correlated with alcohol consumption was not reversed after alcohol withdrawal and not observed in WT mice. Our study suggests that αCaMKII autophosphorylation affects alcohol consumption by controlling sedative effects of alcohol and preventing synaptic loss in the individuals drinking alcohol. This finding advances our understanding of the molecular processes that regulate alcohol dependence.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Alcoholismo/genética , Alcoholismo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Etanol/farmacología , Etanol/metabolismo , Fosforilación/genética , Síndrome de Abstinencia a Sustancias/metabolismo , Sinapsis/metabolismo
18.
Front Neurosci ; 17: 1178693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214399

RESUMEN

Mammals are frequently exposed to various environmental stimuli, and to determine whether to approach or avoid these stimuli, the brain must assign emotional valence to them. Therefore, it is crucial to investigate the neural circuitry mechanisms involved in the mammalian brain's processing of emotional valence. Although the central amygdala (CeA) and the ventral tegmental area (VTA) individually encode different or even opposing emotional valences, it is unclear whether there are common upstream input neurons that innervate and control both these regions, and it is interesting to know what emotional valences of these common upstream neurons. In this study, we identify three major brain regions containing neurons that project to both the CeA and the VTA, including the posterior bed nucleus of the stria terminalis (pBNST), the pedunculopontine tegmental nucleus (PPTg), and the anterior part of the basomedial amygdala (BMA). We discover that these neural populations encode distinct emotional valences. Activating neurons in the pBNST produces positive valence, enabling mice to overcome their innate avoidance behavior. Conversely, activating neurons in the PPTg produces negative valence and induces anxiety-like behaviors in mice. Neuronal activity in the BMA, on the other hand, does not influence valence processing. Thus, our study has discovered three neural populations that project to both the CeA and the VTA and has revealed the distinct emotional valences these populations encode. These results provide new insights into the neurological mechanisms involved in emotional regulation.

19.
Neurobiol Stress ; 23: 100531, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36879670

RESUMEN

While over 95% of the population has reported experiencing extreme stress or trauma, females of reproductive age develop stress-induced neuropsychiatric disorders at twice the rate of males. This suggests that ovarian hormones may facilitate neural processes that increase stress susceptibility and underlie the heightened rates of these disorders, like depression and anxiety, that result from stress exposure in females. However, there is contradicting evidence in the literature regarding estrogen's role in stress-related behavioral outcomes. Estrogen signaling through estrogen receptor beta (ERß) has been traditionally thought of as anxiolytic, but recent studies suggest estrogen exhibits distinct effects in the context of stress. Furthermore, ERß is found abundantly in many stress-sensitive brain loci, including the central amygdala (CeA), in which transcription of the vital stress hormone, corticotropin releasing factor (CRF), can be regulated by an estrogen response element. Therefore, these experiments sought to identify the role of CeA ERß activity during stress on behavioral outcomes in naturally cycling, adult, female Sprague-Dawley rats. Rats were exposed to an ethological model of vicarious social stress, witness stress (WS), in which they experienced the sensory and psychological aspects of an aggressive social defeat encounter between two males. Following WS, rats exhibited stress-induced anxiety-like behaviors in the marble burying taskand brain analysis revealed increased ERß and CRF specifically within the CeA following exposure to stress cues. Subsequent experiments were designed to target this receptor in the CeA using microinjections of the ERß antagonist, PHTPP, prior to each stress session. During WS, estrogen signaling through ERß was responsible for the behavioral sensitization to repeated social stress. Sucrose preference, acoustic startle, and marble burying tasks determined that blocking ERß in the CeA during WS prevented the development of depressive-, anxiety-like, and hypervigilant behaviors. Additionally, brain analysis revealed a long-term decrease of intra-CeA CRF expression in PHTPP-treated rats. These experiments indicate that ERß signaling in the CeA, likely through its effects on CRF, contributes to the development of negative valence behaviors that result from exposure to repeated social stress in female rats.

20.
Biol Psychiatry ; 94(8): 672-684, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001844

RESUMEN

BACKGROUND: Chronic pain can induce depressive emotion. DNA methyltransferases (DNMTs) have been shown to be involved in the development of chronic pain and depression. However, the role and mechanism of DNMTs in chronic pain-induced depression are not well understood. METHODS: In well-established spared nerve injury (SNI)-induced chronic pain-related depression models, the expression of DNMTs and the functional roles and underlying mechanisms of DNMT1 in central amygdala (CeA) GABAergic (gamma-aminobutyric acidergic) neurons were investigated using molecular, pharmacological, electrophysiological, optogenetic, and chemogenetic techniques and behavioral tests. RESULTS: DNMT1, but not DNMT3a or DNMT3b, was upregulated in the CeA of rats with SNI-induced chronic pain-depression. Inhibition of DNMT1 by 5-Aza or viral knockdown of DNMT1 in GABAergic neurons in the CeA effectively ameliorated the depression-like behaviors induced by chronic pain. The DNMT1 action was associated with methylation at the CpG-rich Gad1 promoter and GAD67 downregulation, leading to a decrease of GABAergic neuronal activity. Optogenetic activation of GABAergic neurons in the CeA improved SNI-induced depression-like behaviors. Moreover, optogenetic or chemogenetic inhibition of GABAergic neurons in the CeA reversed DNMT1 knockdown-induced improvement of depression-like behaviors in SNI mice. CONCLUSIONS: Our findings suggest that DNMT1 is involved in the development of chronic pain-related depression by epigenetic repression of GAD67, leading to the inhibition of GABAergic neuronal activation. This study indicates that DNMT1 could be a potential target for the treatment of chronic pain-related depression.


Asunto(s)
Núcleo Amigdalino Central , Dolor Crónico , Animales , Ratones , Ratas , Núcleo Amigdalino Central/metabolismo , Depresión , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...