Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biosens Bioelectron ; 266: 116725, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232434

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a powerful method in analytical chemistry, but its application in real-life medical settings has been limited due to technical challenges. In this work, we introduce an innovative approach that is meant to advance the automation of microfluidics SERS to improve reproducibility and label-free quantification of two widely used therapeutic drugs, methotrexate (MTX) and lamotrigine (LTG), in human serum. Our methodology involves a miniaturized solid-phase extraction (µ-SPE) method coupled to a centrifugal microfluidics disc with incorporated SERS substrates (CD-SERS). The CD-SERS platform enables simultaneous controlled sample wetting and accurate SERS mapping. Together with the assay we implemented a machine learning method based on Partial Least Squares Regression (PLSR) for robust data analysis and drug quantification. The results indicate that combining µ-SPE with CD-SERS (µ-SPE to CD-SERS) led to a substantial improvement in the signal-to-noise ratio compared to combining CD-SERS with ultrafiltration or protein precipitation. The PLSR model enabled us to obtain the limit of detection and quantification for MTX as 2.90 and 8.92 µM, respectively, and for LTG as 10.76 and 32.29 µM. We also validated our µ-SPE to CD-SERS method for MTX against HPLC and immunoassay (p-value <0.05), using patient samples undergoing MTX therapy. In addition, we achieved a satisfactory recovery rate (80%) for LTG when quantifying it in patient samples. Our results show the potential of this newly developed approach as a strategy for therapeutic drugs in point-of-care clinical settings and highlight the benefits of automating label-free SERS assays.

2.
Biosensors (Basel) ; 14(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39194630

RESUMEN

Static well plates remain the gold standard to study viral infections in vitro, but they cannot accurately mimic dynamic viral infections as they occur in the human body. Therefore, we established a dynamic cell culture platform, based on centrifugal microfluidics, to study viral infections in perfusion. To do so, we used human primary periodontal dental ligament (PDL) cells and herpes simplex virus-1 (HSV-1) as a case study. By microscopy, we confirmed that the PDL cells efficiently attached and grew in the chip. Successful dynamic viral infection of perfused PDL cells was monitored using fluorescent imaging and RT-qPCR-based experiments. Remarkably, viral infection in flow resulted in a gradient of HSV-1-infected cells gradually decreasing from the cell culture chamber entrance towards its end. The perfusion of acyclovir in the chip prevented HSV-1 spreading, demonstrating the usefulness of such a platform for monitoring the effects of antiviral drugs. In addition, the innate antiviral response of PDL cells, measured by interferon gene expression, increased significantly over time in conventional static conditions compared to the perfusion model. These results provide evidence suggesting that dynamic viral infections differ from conventional static infections, which highlights the need for more physiologically relevant in vitro models to study viral infections.


Asunto(s)
Herpesvirus Humano 1 , Ligamento Periodontal , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/virología , Técnicas de Cultivo de Célula , Microfluídica , Herpes Simple/virología , Células Cultivadas , Antivirales/farmacología
3.
Talanta ; 278: 126511, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986307

RESUMEN

The application of advances in personalized medicine requires the support of in vitro diagnostic techniques aimed at the accurate, fast, sensitive, and precise determination of selected biomarkers. Herein, a novel optical centrifugal microfluidic device is developed for clinical analysis and point-of-care diagnostics. Based on compact disc technology, the integrated biophotonic system enables multiple immunoassays in miniaturized mode. The disposable microfluidic discs are made in cyclic olefin copolymer (COP), containing arrays of immobilized probes. In the developed approach, up to six patient samples can each be tested simultaneously. A portable instrument (<2 kg) controls the assay and the high-sensitive reproducible optical detection in transmission mode. Also, the instrument incorporates specific functionalities for personalized telemedicine. The device (analytical method, disc platform, reader, and software) has been validated to diagnose IgE-mediated drug allergies, such as amoxicillin and penicillin G. The total and specific IgE to ß-lactam antibiotics were determined in human serum from patients (25 µL). The excellent analytical performances (detection limit 0.24 ng/mL, standard deviation 7-20 %) demonstrated that the developed system could have the potential for a broader impact beyond the allergy field, as it applies to other IVD tests.


Asunto(s)
Biomarcadores , Inmunoglobulina E , Humanos , Biomarcadores/sangre , Inmunoglobulina E/sangre , Inmunoensayo/métodos , Dispositivos Laboratorio en un Chip , Límite de Detección , Hipersensibilidad a las Drogas/diagnóstico , Hipersensibilidad a las Drogas/sangre , Técnicas Analíticas Microfluídicas/instrumentación , Amoxicilina/sangre
4.
Anal Chim Acta ; 1310: 342719, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811136

RESUMEN

BACKGROUND: Separation, classification, and focusing of microparticles are essential issues in microfluidic devices that can be implemented in two categories: using labeling and label-free methods. Label-free methods differentiate microparticles based on their inherent properties, including size, density, shape, electrical conductivity/permittivity, and magnetic susceptibility. Dielectrophoresis is an advantageous label-free technique for this objective. Besides, centrifugal microfluidic devices exploit centrifugal forces to move liquid and particles. The simultaneous combination of dielectrophoretic and centrifugal forces exerted on microparticles still needs to be scrutinized more to predict their trajectories in such devices. RESULTS: An integrated system utilizing two categories in microfluidics is proposed: dielectrophoretic manipulation of microparticles and centrifugal-driven microfluidics, followed by a numerical analysis. In this regard, we assumed a rectangular microchannel with internal unilateral planar electrodes equipped with three equal-sized outlets placed radially on a centrifugal platform where microparticles flow toward the disc's outer edge. The effect of different coordinate-based parameters, including radial and lateral distances (X and Y offsets)/tilting angles toward the radius direction (α), on the particles' movement was investigated. Additionally, the effect of operational parameters, including applied voltage, the microchannel width, the number of enabled electrodes, the diameter of particles, and the configuration of electrodes, were analyzed, and the distributions of particles toward the outlets were monitored. It was found that enhanced particle focusing becomes possible at lower rotation speeds and higher electric field values. Furthermore, the proposed centrifugal-DEP system's efficiency for classifying red blood cells/platelets and Live/Dead yeast cells systems was evaluated. SIGNIFICANCE: Our integrated system is introduced as a novel method for focusing and classifying various microparticles with no need for sheath flows, having the ability to conduct particles at desired routes and focusing width. Furthermore, the system effectively separates various bioparticles and offers ease of operation and high-efficiency throughput over conventional dielectrophoretic devices.

5.
Biomed Microdevices ; 26(2): 22, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592604

RESUMEN

We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.


Asunto(s)
Microfluídica , Espectrometría de Masa por Ionización de Electrospray , Centrifugación , Dispositivos Laboratorio en un Chip , Rotación
6.
Anal Chim Acta ; 1287: 342033, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182334

RESUMEN

The abuse of antibiotics has become a global public safety issue, leading to the development of antimicrobial resistance (AMR). The development of antimicrobial susceptibility testing (AST) is crucial in reducing the growth of AMR. However, traditional AST methods are time-consuming (e.g., 24-72 h), labor-intensive, and costly. Here, we propose a controlled-diffusion centrifugal microfluidic platform (CCM) for rapid AST to obtain highly precise minimum inhibitory concentration (MIC) values. Antibiotic concentration gradients are generated by controlled moving and diffusing of antibiotic and buffer solution along the main microchannel within 3 min. The solution and bacterial suspension are then injected into the outermost reaction chamber by simple centrifugation. The CCM successfully determined the MIC for three commonly used antibiotics in clinical settings within 4-9 h. To further enhance practicality, reduce costs, and meet point-of-care testing demands, we have developed an integrated mobile detection platform for automated MIC value acquisition. The proposed CCM is a simple, low-cost, and portable method for rapid AST with broad clinical and in vitro applications.


Asunto(s)
Antibacterianos , Microfluídica , Antibacterianos/farmacología , Centrifugación , Difusión , Pruebas de Sensibilidad Microbiana
7.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1039541

RESUMEN

【Objective】 To evaluate the screening efficacy and practical value of the portable microfluidic biochemical analyzer in the detection of blood donors before blood donation. 【Methods】 Blood donor samples, clinical blood samples and constant quality control products were collected. Referring to the documents of ISO15189 and National Health Industry Standard, the precision and accuracy of hemoglobin (Hb) and alanine aminotransferase (ALT) were verified and compared with other detection systems. 【Results】 The MS200 biochemistry instrument has an intra-batch precision of 1.40% to 1.46%, inter-batch precision of 1.91% to 1.94%, and correctness bias of -0.9% to -1.3% for Hb test, and an intra-batch precision of 3.77% to 4.86%, inter-batch precision of 4.92% to 6.02%, and correctness bias of -3.0% to -4.8% for ALT test, which were within the range of quality requirements of industry standard. Comparison of Hb test results between MS200 biochemistry and Hb201 analyser on 1 189 peripheral blood samples from donors showed no statistically significant difference (P>0.05). 65 samples showed positive correlation between MS200 biochemistry and XS-900i automated hematology analyzer on Hb test results (R2=0.986, P=0.000). Correlation analysis of all the results of ALT detection by MS200 biochemical analyzer and AU480 biochemical analyzer in 1 065 samples showed a positive correlation (R2=0.965, P=0.000). The elevated ALT samples did not affect the Hb test results, and the samples with abnormal Hb value did not affect the ALT test results, with no interference between the two items in the detection. 【Conclusion】 The MS200 biochemical analyzer based on microfluidic technology has reliable methodological performance and can meet the need of pre-donation testing.

8.
Anal Chim Acta ; 1280: 341859, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858565

RESUMEN

BACKGROUND: Lab-on-a-disc (LoaD) technology has emerged as a transformative approach for point-of-care diagnostics and high-throughput testing. The promise of integrating multiple laboratory functions onto a single integrated platform has significant implications for healthcare, especially in resource-limited settings. However, one of the primary challenges faced in the design and manufacture of LoaD devices is the integration of effective valving mechanisms. These valves are essential for fluid control and routing, but their intricacy often leads to complexities in design and increased vulnerability to failure. This emphasizes the need for improved designs and manufacturing processes without complex, integrated valving mechanisms. (96) RESULTS: We describe a fully automated biological workflow and reagent actuation on a LoaD device without an integrated valving system. The Two Degrees-of-Freedom (2DoF) custom centrifuge alters the centre of rotation, facilitating fluid flow direction changes on the microfluidic platform through a custom programmed interface. A novel 360-degree fluid manipulation approach via secondary planetary gear motion enabled sequential assay reagent actuation without embedded valve triggering, with the addition of infinite incubation times and efficient use of platform realty. The simplified LoaD platform uses clever design, with intermediate flow chambers to avoid cross contamination between reagent steps. Notably, the optimized LoaD platform demonstrated a two-fold DNA yield at higher HEK-293 cell concentrations compared to commercially available spin-column kits. This significantly simplified LoaD platform successfully automated a common, complex workflow without inhibiting DNA purification. (129) SIGNIFICANCE: This system exhibits the clever coupling of both 2DoF and centrifugal microfluidics to create an autonomous testing package capable of eradicating the need for complex valving systems to automate biological workflows on LoaDs. This automated system has outperformed commercially available DNA extraction kits for higher cell counts. The platform's elimination of valve requirements ensures unlimited sample incubation times and enhances reliability, making it a straightforward option for automated biological workflows, particularly in diagnostics. (73).


Asunto(s)
ADN , Técnicas Analíticas Microfluídicas , Humanos , Células HEK293 , Reproducibilidad de los Resultados , Microfluídica , Pruebas en el Punto de Atención , Dispositivos Laboratorio en un Chip
9.
J Chromatogr A ; 1705: 464211, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37480725

RESUMEN

A reversed-phase chromatographic process is developed on a centrifugal platform to separate and collect water-soluble dyes from a mixture. A separation column filled with C18-reversed phase silica gel was used to separate the components from a mixture and the eluate was collected by a series of collecting chambers. The purified components can then be identified and extracted from the collecting chambers. The effects of the silica gel's particle size (7-10, 20-45, and 46-63 µm) and the platform's rotational speed (1000, 1500, 2000 RPM) on the separation and collection efficiency were investigated. Experimental results showed that dye separation could be well performed in the column with smaller-sized silica gels (7-10 µm) under a low rotational speed (1000 RPM). However, for the eluate collection, the high eluent flowrate and long processing time resulted in a convective band-broadening problem in the collecting chambers, which affected the recovery ratio of the dyes. Experimental results showed that the convective band broadening effect can be reduced by reducing the flowrate, shortening the collecting time, and switching the eluent to a different composition. The best recovery ratio of the dyes in the current design can be achieved by using the column with a powder size distribution of 46-63 µm and operating at the rotational speed of 1500 RPM. This platform can process a sample volume of 1 µL and the processing time is about 30 min. Since the only instrument used is a motor, the complete chromatographic process, from separation to fraction collection, can be carried out on a centrifugal platform at a low cost.


Asunto(s)
Colorantes , Agua , Gel de Sílice , Cromatografía Liquida , Cromatografía de Fase Inversa/métodos , Indicadores y Reactivos , Cromatografía Líquida de Alta Presión/métodos
10.
HardwareX ; 15: e00449, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37457307

RESUMEN

We present an unconventional approach to a common Lab-on-a-Disc (LoD) that combines a quadcopter propulsion system, a miniaturized 2.4 GHz Wi-Fi spy camera, 9.74 Watt Qi wireless power, and an Arduino into an open-source, miniaturized All-in-one powered lab-on-disc platform (APELLA). The quadcopter propulsion generates thrust to rotate (from 0.1 to 24.5 Hz) or shake the LoD device, while the spy camera enables a real-time (30 frames per second) and high definition (1280 × 720 pixels) visualization of microfluidic channels without requiring a bulky and heavy stroboscopic imaging setup. A mobile device can communicate with an Arduino microcontroller inside the APELLA through a Bluetooth interface for closed loop and sequential frequency control. In a proof-of-concept study, the APELLA achieved comparable mixing efficiency to a traditional spin stand and can capture rapid microfluidic events at low rotational frequencies (<5Hz). The APELLA is low-cost (c.a. 100 Euro), compact (15.6 × 15.6 × 10 cm3), lightweight (0.59 kg), portable (powered by a 5 V USB power bank), and energy efficient (uses < 6% power of the conventional system), making it ideal for field deployment, education, resource-limited labs.

11.
Biosens Bioelectron ; 236: 115403, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37271096

RESUMEN

Water is one of the most indispensable elements for human beings. People can live without food for a couple of weeks but cannot live without water for a couple of days. Unfortunately, drinking water is not always safe around the world; in many areas, the water for drinking could be contaminated with various microbes. However, the total viable microbe count in water still relies on culture-based methods in laboratories. Therefore, in this work, we report a novel, simple, and highly efficient strategy to detect live bacteria in water via a nylon membrane-integrated centrifugal microfluidic device. A handheld fan and a rechargeable hand warmer were utilized as the centrifugal rotor and the heat resource for reactions, respectively. The bacteria in water can be rapidly concentrated >500-fold by our centrifugation system. After incubation with water-soluble tetrazolium-8 (WST-8), the color change of the nylon membranes can be visually interpreted directly by the naked eye or recorded with a smartphone camera. The whole process can be finished in 3 h, and the detection limit can reach 102 CFU/mL. The detection range ranges from 102 CFU/mL to 105 CFU/mL. The cell counting results of our platform are highly positively correlated with the results of cell counting by the conventional lysogeny broth (LB) agar plate approach or the commercial 3 M Petrifilm™ cell counting plate. Our platform provides a convenient and sensitive strategy for rapid monitoring. We highly anticipate that this platform can improve water quality monitoring in resource-poor countries in the near future.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Humanos , Nylons , Bacterias , Teléfono Inteligente
12.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772748

RESUMEN

Numerous immunoassays have been successfully integrated on disc-based centrifugal platforms (CDs) over the last 20 years. These CD devices can be used as portable point-of-care (POC) platforms with sample-to-answer capabilities where bodily fluids such as whole blood can be used as samples directly without pre-processing. In order to use whole blood as a sample on CDs, centrifugation is used to separate red blood cells from plasma on CDs. There are several techniques for using specific fluidic patterns in the centrifugal fluidic network, such as reciprocation, that enhances the sensitivity of the immunoassays, including those using microarray antigen membranes. Present work demonstrates, for the first time, simultaneous integration of blood plasma separation (BPS) and reciprocation on the CD platform. The integrated design allows plasma that is separated from the red blood cells in a sedimentation chamber to flow into the reciprocation chamber via a narrow connecting channel of 0.5 mm × 0.5 mm cross-section. Due to the small cross-section of the connecting channel, there is no inflow of the red blood cell into the reciprocation chamber during subsequent fluidic operations of the CD. While no inflow of the red blood cells into the reciprocation chamber was observed, the conditions of 20 g jerk acceleration were also simulated in ANSYS finite element analysis software, and it was found that the CD design that was used is capable of retaining red blood cells in the sedimentation chamber. Experimentally, the isolation of red blood cells in the sedimentation chamber was confirmed using the ImageJ image processor to detect the visible color-based separation of the plasma from the blood. A fluorescent analyte testing on the bio-sensing array of the presented novel integrated design and on the standard reciprocation design CD was conducted for 7 min of reciprocation in each case. The test analyte was Europium Streptavidin Polystyrene analyte (10-3 mg/mL) and the microarray consisted of Biotin bovine serum albumin (BSA) dots. The fluorescent signals for the standard and integrated designs were nearly identical (within the margin of error) for the first several minutes of reciprocation, but the fluorescent signal for the integrated design was significantly higher when the reciprocation time was increased to 7 min.


Asunto(s)
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Centrifugación/métodos , Inmunoensayo/métodos , Plasma
13.
Talanta ; 252: 123856, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027623

RESUMEN

This study presents a portable multichannel microfluidic device for parallel and digital analysis of red cell antigen typing. A zigzag-shaped precise metering channel was designed for the simultaneous aliquoting of samples, which is independent of the volume of the predeposited blood-typing reagents in the reaction chambers. The entire assay protocol can be conducted using a sequential-step spinning protocol, which resembles that of conventional tube tests for blood typing; however, the manual procedure is largely reduced compared to that of conventional systems. After loading the samples, the disc is centrifuged in a defined program with five sequential steps, each of which can be completed in a few seconds. Through step-wise centrifugation, predeposited antibodies react with red blood cells, enabling the parallel identification of multiple red blood cell antigens without cross-contamination in 1 min. This is combined with gentle mixing to rapidly concentrate the agglutinates, making both visual and digital determination of agglutination straightforward. A customized image analysis algorithm for automatically determining the agglutination state was developed to complement this microfluidic system. The acquired image is processed after the test. The blood type is determined using a machine learning algorithm based on a histogram of oriented gradients (HOG) and support vector machines (SVM). This allows digital analysis to mirror the classical laboratory procedure for blood-type determination more accurately. The system was trained using a validated dataset of 150 blood samples, presenting 750 different agglutination patterns. The combination of SVM and HOG achieved 94.10% in the micro-weighted performance evaluation. This integrated microfluidic chip-based platform provides a "sample-in and answer out" demonstration for red blood cell typing, ensuring fast and reliable results because minimum manual steps are involved.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Dispositivos Laboratorio en un Chip , Tipificación y Pruebas Cruzadas Sanguíneas , Centrifugación , Aglutinación
14.
Micromachines (Basel) ; 13(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36557411

RESUMEN

Centrifugal microfluidics enables fully automated molecular diagnostics at the point-of-need. However, the integration of solid-phase nucleic acid extraction remains a challenge. Under this scope, we developed the magnetophoresis under continuous rotation for magnetic bead-based nucleic acid extraction. Four stationary permanent magnets are arranged above a cartridge, creating a magnetic field that enables the beads to be transported between the chambers of the extraction module under continuous rotation. The centrifugal force is maintained to avoid uncontrolled spreading of liquids. We concluded that below a frequency of 5 Hz, magnetic beads move radially inwards. In support of magnetophoresis, bead inertia and passive geometrical design features allow to control the azimuthal bead movement between chambers. We then demonstrated ferrimagnetic bead transfer in liquids with broad range of surface tension and density values. Furthermore, we extracted nucleic acids from lysed Anopheles gambiae mosquitoes reaching comparable results of eluate purity (LabDisk: A260/A280 = 1.6 ± 0.04; Reference: 1.8 ± 0.17), and RT-PCR of extracted RNA (LabDisk: Ct = 17.9 ± 1.6; Reference: Ct = 19.3 ± 1.7). Conclusively, magnetophoresis at continuous rotation enables easy cartridge integration and nucleic acid extraction at the point-of-need with high yield and purity.

15.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36433550

RESUMEN

Centrifugal microfluidic platforms (CDs) have opened new possibilities for inexpensive point-of-care (POC) diagnostics. They are now widely used in applications requiring polymerase chain reaction steps, blood plasma separation, serial dilutions, and many other diagnostic processes. CD microfluidic devices allow a variety of complex processes to transfer onto the small disc platform that previously were carried out by individual expensive laboratory equipment requiring trained personnel. The portability, ease of operation, integration, and robustness of the CD fluidic platforms requires simple, reliable, and scalable designs to control the flow of fluids. Valves play a vital role in opening/closing of microfluidic channels to enable a precise control of the flow of fluids on a centrifugal platform. Valving systems are also critical in isolating chambers from the rest of a fluidic network at required times, in effectively directing the reagents to the target location, in serial dilutions, and in integration of multiple other processes on a single CD. In this paper, we review the various available fluidic valving systems, discuss their working principles, and evaluate their compatibility with CD fluidic platforms. We categorize the presented valving systems into either "active", "passive", or "hybrid"-based on their actuation mechanism that can be mechanical, thermal, hydrophobic/hydrophilic, solubility-based, phase-change, and others. Important topics such as their actuation mechanism, governing physics, variability of performance, necessary disc spin rate for valve actuation, valve response time, and other parameters are discussed. The applicability of some types of valves for specialized functions such as reagent storage, flow control, and other applications is summarized.


Asunto(s)
Líquidos Corporales , Microfluídica , Dispositivos Laboratorio en un Chip , Catéteres , Plasma
16.
Anal Chim Acta ; 1221: 340063, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35934337

RESUMEN

Rotationally-driven lab-on-a-disc (LoaD) microfluidic systems are among the most promising methods for realizing complex nucleic acid (NA) testing at the point-of-need (PoN). However, despite significant advancements in NA amplification methods, very few sample-to-answer centrifugal microfluidic platforms have been realized due, in part, to a lack of on-disc sample preparation. In many instances, NA extraction (NAE) and/or lysis must be performed off-disc using conventional laboratory equipment and methods, thus tethering the assay to centralized facilities. Omission of in-line cellular lysis and NAE can be partially attributed to the nature of centrifugally-driven fluidics. Since flow is directed radially outward relative to the center of rotation (CoR), the number of possible sequential unit operations is limited by the disc radius. To address this, we report a simple, practical, automatable, and easy-to-implement method for inward fluid displacement (IFD) compatible with downstream nucleic acid amplification tests (NAATs). This approach leverages carbon dioxide (CO2) gas generated from on-board acid-base neutralization to drive liquid from the disc periphery towards the CoR. Large architectural features or highly corrosive chemicals required in other approaches were replaced with safe-to-handle IFD reagents that maintained their reactivity for at least six months of storage on-disc. Further, spatiotemporal control over neutralization initiation and containment of the resultant pneumatic pressure head was reliably achieved using a single diode for both laser-actuated valve opening and channel sealing, which eliminated the need for manual intervention (e.g., taping over vents) required in other IFD methods. Following initial characterization via dye recovery studies, we demonstrated for the first time that CO2-driven displacement does not inhibit downstream NAATs; NAs isolated direct-from-swab on disc were compatible with both 'gold standard' polymerase chain reaction (PCR) techniques and loop-mediated isothermal amplification (LAMP). The IFD approach described here stands to significantly ease integration of an increased number of sequential on-board processes, including cellular lysis, nucleic acid extraction, amplification, and detection, to greatly lower barriers towards automatable sample-to-answer LoaDs amenable for use on-site operation by non-technical personnel.


Asunto(s)
Ácidos Nucleicos , Dióxido de Carbono , Indicadores y Reactivos , Microfluídica , Técnicas de Amplificación de Ácido Nucleico/métodos , Ácidos Nucleicos/análisis , Reacción en Cadena de la Polimerasa
17.
Theranostics ; 12(8): 3676-3689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664056

RESUMEN

Understanding cancer heterogeneity is essential to finding diverse genetic mutations in metastatic cancers. Thus, it is critical to isolate all types of CTCs to identify accurate cancer information from patients. Moreover, full automation robustly capturing the full spectrum of CTCs is an urgent need for CTC diagnosis to be routine clinical practice. Methods: Here we report the full capture of heterogeneous CTC populations using fully automated, negative depletion-based continuous centrifugal microfluidics (CCM). Results: The CCM system demonstrated high performance (recovery rates exceeding 90% and WBC depletion rate of 99.9%) across a wide range of phenotypes (EpCAM(+), EpCAM(-), small-, large-sized, and cluster) and cancers (lung, breast, and bladder). Applied in 30 lung adenocarcinoma patients harboring epidermal growth factor receptor (EGFR) mutations, the system isolated diverse phenotypes of CTCs in marker expression and size, implying the importance of unbiased isolation. Genetic analyses of intra-patient samples comparing cell-free DNA with CCM-isolated CTCs yielded perfect concordance, and CTC enumeration using our technique was correlated with clinical progression as well as response to EGFR inhibitors. Conclusion: Our system also introduces technical advances which assure rapid, reliable, and reproducible results, thus enabling a more comprehensive application of robust CTC analysis in clinical practice.


Asunto(s)
Células Neoplásicas Circulantes , Automatización , Línea Celular Tumoral , Separación Celular/métodos , Molécula de Adhesión Celular Epitelial/genética , Receptores ErbB/genética , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo
18.
Biosensors (Basel) ; 12(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35735560

RESUMEN

In this paper, we present the ImmunoDisk, a fully automated sample-to-answer centrifugal microfluidic cartridge, integrating a heterogeneous, wash-free, magnetic- and fluorescent bead-based immunoassay (bound-free phase detection immunoassay/BFPD-IA). The BFPD-IA allows the implementation of a simple fluidic structure, where the assay incubation, bead separation and detection are performed in the same chamber. The system was characterized using a C-reactive protein (CRP) competitive immunoassay. A parametric investigation on air drying of protein-coupled beads for pre-storage at room temperature is presented. The key parameters were buffer composition, drying temperature and duration. A protocol for drying two different types of protein-coupled beads with the same temperature and duration using different drying buffers is presented. The sample-to-answer workflow was demonstrated measuring CRP in 5 µL of human serum, without prior dilution, utilizing only one incubation step, in 20 min turnaround time, in the clinically relevant concentration range of 15-115 mg/L. A reproducibility assessment over three disk batches revealed an average signal coefficient of variation (CV) of 5.8 ± 1.3%. A CRP certified reference material was used for method verification with a concentration CV of 8.6%. Our results encourage future testing of the CRP-ImmunoDisk in clinical studies and its point-of-care implementation in many diagnostic applications.


Asunto(s)
Proteína C-Reactiva , Microfluídica , Humanos , Inmunoensayo/métodos , Indicadores y Reactivos , Reproducibilidad de los Resultados
19.
Micromachines (Basel) ; 13(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744496

RESUMEN

The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles' size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle's ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets.

20.
Biosens Bioelectron ; 206: 114130, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35245866

RESUMEN

Point-of-care testing (POCT) has shown great advantages for public health monitoring in resource-limited settings. However, developing of POCT tools with automated and accurate quantitative dispensing of multiple reagents and samples is challenging. Here, we demonstrate a novel multi-reagents dispensing centrifugal microfluidics (MDCM) that allows rapid and automated dispensing of multiple reagents and samples with high throughput and accuracy. The MDCM was designed with multiple aliquoting units with the hydrophobic valve at different radial positions. All reagents and samples were loaded simultaneously, dispensed in parallel by centrifugation at low speed, and then introduced into the reaction chamber sequentially by centrifugation at high speed. Two MDCM chips are demonstrated, including a uniform concentration generator and a gradient concentration generator. The concentration coefficient of variation (CV) among the independent reaction chambers was lower than 0.56%, and the theoretical quantitative concentration gradient was strongly correlated with the actual concentration gradient (R2 = 0.9938). We have successfully applied the MDCM to loop-mediated isothermal amplification (LAMP)-based nucleic acid detection for multiple infectious pathogens and antimicrobial susceptibility testing (AST) for kanamycin sulfate against E. coli. To further extend the applications, the MDCM has also been applied to bicinchoninic acid (BCA) protein assays with online calibration, reducing the detection time from 2 h to 10 min with a twenty-fold reduction in reagent consumption. These results indicated that the MDCM is a high potential platform for POCT.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Técnicas Biosensibles/métodos , Escherichia coli , Indicadores y Reactivos , Microfluídica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pruebas en el Punto de Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA