Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Can J Microbiol ; 68(5): 341-352, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35050808

RESUMEN

This study aimed to elucidate the fungal diversity of Changli vineyard soil in China. High-throughput sequencing technology was used to investigate the diversity and composition of soil fungi in five vineyards from different geographical locations in Changli. Although the five vineyards had similar fungal communities, the diversity, composition, and distribution of the high-abundance species differed. Ascomycota, Basidiomycota, and Mortierellomycota were dominant phyla. Among the 14 high-abundance genera of fungi, Odiodendron, Pleotrichocladium, and Plectosephalella have rarely been reported in other vineyards and are unique to the Changli region. In addition, Solicoccozyma aeria and Solicoccozyma terrea were the dominant species in the five vineyards and have rarely been reported in domestic vineyards. Additionally, Rhizophagus, Wardomyces, Mortierella, Volutella, and Cryptococcus were significantly different among the five vineyard soils. Among these species, Mortierella was highly abundant in each vineyard, but its contents were significantly different across vineyards. These findings enrich the information on the composition and diversity of soil fungi in the vineyard of the Changli region, which helps to explore the regional or distinctive sensorial attributes of wine from the perspective of microbial biogeography.


Asunto(s)
Ascomicetos , Micobioma , Vitis , Vino , China , Granjas , Hongos/genética , Suelo , Microbiología del Suelo , Vitis/microbiología , Vino/microbiología
2.
Can J Microbiol ; 64(4): 265-275, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29390194

RESUMEN

Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.


Asunto(s)
Cicer/genética , Cicer/microbiología , Endófitos/fisiología , Variación Genética/fisiología , Micorrizas/fisiología , Biomasa , Ecosistema , Hongos/crecimiento & desarrollo , Genotipo , Desarrollo de la Planta , Raíces de Plantas/microbiología , Suelo , Simbiosis
3.
J Mycol Med ; 24(4): 319-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25442920

RESUMEN

One hundred and twenty-five samples were collected from eight different sites in the vicinity of Sanjay Gandhi National Park (SGNP) and screened for the presence of keratinophilic fungi using hair baiting technique for isolation. Seventy-three isolates were recovered and identified. The cultures were identified using macro- and micro-morphological features. Their identification was also confirmed by the BLAST search of sequences of the ITS1-5.8S-ITS2 rDNA region against the NCBI/Genbank data and compared with deposited sequences for identification purpose. Thirteen species of nine genera were isolated viz. Aphanoascus durus (2.4%), Arthroderma corniculatum (1.6%), Auxarthron umbrinum (0.8%), Chrysosporium evolceanui (1.6%), Chrysosporium indicum (16.0%), Chrysosporium tropicum (2.4%), Chrysosporium zonatum (4.0%), Chrysosporium states of Arthroderma tuberculatum (0.8%), Chrysosporium state of Ctenomyces serratus (11.2%), Gymnascella dankaliensis (3.2%), Microsporum gypseum (12.0%), Myriodontium keratinophilum (0.8%) and Trichophyton mentagrophytes (1.6%). Representative of all thirteen species can release the protein in the range of 152.2-322.4 µg/mL in liquid media when grown on human hair in shake flask culture and also decompose 18.4-40.2% of human hair after four weeks of incubation. This study indicates that the soils of SGNP, Mumbai may be significant reservoirs of certain keratinophilic fungi. The keratinolytic activity of these fungi may be playing significant role in superficial infections to man and animals and recycling of keratinic material of this environment.


Asunto(s)
Hongos/aislamiento & purificación , Parques Recreativos , Microbiología del Suelo , Animales , Hongos/genética , Hongos/metabolismo , Humanos , India , Queratinas/metabolismo , Técnicas de Tipificación Micológica , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA