Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39200313

RESUMEN

Hepatic fibrosis, arising from prolonged liver injury, entails the activation of hepatic stellate cells (HSCs) into myofibroblast-like cells expressing alpha-smooth muscle actin (α-SMA), thereby driving extracellular matrix deposition and fibrosis progression. Strategies targeting activated HSC reversal and hepatocyte regeneration show promise for fibrosis management. Previous studies suggest that extracellular vesicles (EVs) from mesenchymal stromal cells (MSCs) can suppress HSC activation, but ensuring EV purity is essential for clinical use. This study investigated the effects of MSC-derived EVs cultured in chemically defined conditions on liver spheroids and activated HSCs. Umbilical cord- and bone marrow-derived MSCs were expanded in chemically defined media, and EVs were isolated using filtration and differential ultracentrifugation. The impact of MSC-EVs was evaluated on liver spheroids generated in Sphericalplate 5D™ and on human HSCs, both activated by transforming growth factor beta 1 (TGF-ß1). MSC-EVs effectively reduced the expression of profibrotic markers in liver spheroids and activated HSCs induced by TGF-ß1 stimulation. These results highlight the potential of MSC-EVs collected under chemically defined conditions to mitigate the activated phenotype of HSCs and liver spheroids, suggesting MSC-EVs as a promising treatment for hepatic fibrosis.

2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339088

RESUMEN

Three-dimensional (3D) bioprinting is one of the most promising methodologies that are currently in development for the replacement of animal experiments. Bioprinting and most alternative technologies rely on animal-derived materials, which compromises the intent of animal welfare and results in the generation of chimeric systems of limited value. The current study therefore presents the first bioprinted liver model that is entirely void of animal-derived constituents. Initially, HuH-7 cells underwent adaptation to a chemically defined medium (CDM). The adapted cells exhibited high survival rates (85-92%) after cryopreservation in chemically defined freezing media, comparable to those preserved in standard medium (86-92%). Xeno-free bioink for 3D bioprinting yielded liver models with high relative cell viability (97-101%), akin to a Matrigel-based liver model (83-102%) after 15 days of culture. The established xeno-free model was used for toxicity testing of a marine biotoxin, okadaic acid (OA). In 2D culture, OA toxicity was virtually identical for cells cultured under standard conditions and in CDM. In the xeno-free bioprinted liver model, 3-fold higher concentrations of OA than in the respective monolayer culture were needed to induce cytotoxicity. In conclusion, this study describes for the first time the development of a xeno-free 3D bioprinted liver model and its applicability for research purposes.


Asunto(s)
Bioimpresión , Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
3.
Protein Expr Purif ; 215: 106404, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37979630

RESUMEN

Fragment of antigen-binding region (Fab) of antibodies are important biomolecules, with a broad spectrum of functionality in the biomedical field. While full length antibodies are usually produced in mammalian cells, the smaller size, lack of N-glycosylation and less complex structure of Fabs make production in microbial cell factories feasible. Since Fabs contain disulfide bonds, such production is often done in the periplasm, but there the formation of the inter-molecular disulfide bond between light and heavy chains can be problematic. Here we studied the use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) to express two Fabs (Herceptin and Maa48) in the cytoplasm of E. coli in fed-batch fermentation using a generic chemically defined media. We were able to solubly express both Fabs with purified yields of 565 mg/L (Maa48) and 660 mg/L (Herceptin) from low density fermentation. Both proteins exhibited CD spectra consistent with natively folded protein and both were biologically active. To our knowledge this is the first demonstration of high-level production of biological active Fabs in the cytoplasm of E. coli in industrially relevant fermentation conditions.


Asunto(s)
Escherichia coli , Fragmentos Fab de Inmunoglobulinas , Animales , Citoplasma/metabolismo , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Trastuzumab , Fragmentos Fab de Inmunoglobulinas/biosíntesis
4.
BMC Biotechnol ; 23(1): 25, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507713

RESUMEN

BACKGROUND: One critical parameter in microbial cultivations is the composition of the cultivation medium. Nowadays, the application of chemically defined media increases, due to a more defined and reproducible fermentation performance than in complex media. In order, to improve cost-effectiveness of fermentation processes using chemically defined media, the media should not contain nutrients in large excess. Additionally, to obtain high product yields, the nutrient concentrations should not be limiting. Therefore, efficient medium optimization techniques are required which adapt medium compositions to the specific nutrient requirements of microorganisms. RESULTS: Since most Paenibacillus cultivation protocols so far described in literature are based on complex ingredients, in this study, a chemically defined medium for an industrially relevant Paenibacillus polymyxa strain was developed. A recently reported method, which combines a systematic experimental procedure in combination with online monitoring of the respiration activity, was applied and extended to identify growth limitations for Paenibacillus polymyxa. All cultivations were performed in microtiter plates. By systematically increasing the concentrations of different nutrient groups, nicotinic acid was identified as a growth-limiting component. Additionally, an insufficient buffer capacity was observed. After optimizing the growth in the chemically defined medium, the medium components were systematically reduced to contain only nutrients relevant for growth. Vitamins were reduced to nicotinic acid and biotin, and amino acids to methionine, histidine, proline, arginine, and glutamate. Nucleobases/-sides could be completely left out of the medium. Finally, the cultivation in the reduced medium was reproduced in a laboratory fermenter. CONCLUSION: In this study, a reliable and time-efficient high-throughput methodology was extended to investigate limitations in chemically defined media. The interpretation of online measured respiration activities agreed well with the growth performance of samples measured in parallel via offline analyses. Furthermore, the cultivation in microtiter plates was validated in a laboratory fermenter. The results underline the benefits of online monitoring of the respiration activity already in the early stages of process development, to avoid limitations of medium components, oxygen limitation and pH inhibition during the scale-up.


Asunto(s)
Ácidos Nicotínicos , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Reactores Biológicos , Fermentación , Medios de Cultivo/química , Ácidos Nicotínicos/metabolismo
5.
J Extracell Vesicles ; 12(7): e12337, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367299

RESUMEN

Human small extracellular vesicles (sEVs) derived from adipose-derived mesenchymal stromal cells (ASC) have been reported to suppress the progression of osteoarthritis (OA) in animal studies and subsequently, translation of this potential to assess their clinical efficacy is anticipated. However, fabrication protocols for sEVs to eliminate potential contamination by culture medium-derived components need to be established prior to their clinical use. The purpose of the present studies was to elucidate the influence of medium-derived contaminants on the biological effects of sEVs, and to establish isolation methods for sEVs using a new clinical grade chemically-defined media (CDM). The quantity and purity of ASC-derived sEVs cultured in four different CDMs (CDM1, 2, 3 and 4) were evaluated. The concentrates of the four media incubated without cells were used as the background (BG) control for each set of sEVs. The biological effect of sEVs fabricated in the four different CDMs on normal human articular chondrocytes (hACs) were evaluated in vitro using a variety of methodological assessments. Finally, the sEVs with the highest purity were tested for their ability to suppress the progression of knee OA mouse model. Analysis of the BG controls revealed that CDM1-3 contained detectable particles, while there was no visible contamination of culture media-derived components detected with CDM4. Accordingly, the sEVs fabricated with CDM4 (CDM4-sEVs) exhibited the highest purity and yield. Notably, the CDM4-sEVs were the most efficient in promoting the cellular proliferation, migration, chondrogenic differentiation, and anti-apoptotic activity of hACs. Furthermore, CDM4-sEVs significantly suppressed the osteochondral degeneration in vivo model. Small EVs derived from ASCs cultured in a CDM without detectable contaminants demonstrated enhanced biological effects on hACs and the progression of OA. Thus, sEVs isolated with CDM4 most optimally meet the requirements of efficacy and safety for assessment in their future clinical applications.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratones , Humanos , Condrocitos , Osteoartritis/terapia , Modelos Animales de Enfermedad
6.
Methods Mol Biol ; 2645: 165-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37202617

RESUMEN

The human lung adenocarcinoma cell line A549 is commonly used in cancer research as a model of malignant alveolar type II epithelial cells. A549 cells are frequently cultured in Ham's F12K (Kaighn's) or Dulbecco's Modified Eagle's Medium (DMEM), supplemented with glutamine and 10% fetal bovine serum (FBS). However, the use of FBS presents significant scientific concerns, such as the presence of undefined components and batch-to-batch variation leading to possible reproducibility issues in experiments and readouts. This chapter describes how to transition A549 cells to FBS-free medium and gives some insights on the further characterizations and functionality assays that would be necessary to perform for the validation of the cultured cells.


Asunto(s)
Adenocarcinoma del Pulmón , Humanos , Medios de Cultivo , Reproducibilidad de los Resultados , Células Cultivadas , Línea Celular
7.
Sci Total Environ ; 868: 161454, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36638987

RESUMEN

The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.


Asunto(s)
Alternativas a las Pruebas en Animales , Pruebas de Toxicidad , Animales , Humanos , Ratas , Benzo(a)pireno/química , Receptor alfa de Estrógeno/química , Pruebas de Micronúcleos/métodos , Organización para la Cooperación y el Desarrollo Económico , Reproducibilidad de los Resultados , Alternativas a las Pruebas en Animales/métodos , Alternativas a las Pruebas en Animales/normas , Células A549 , Pruebas de Toxicidad/métodos
8.
Biotechnol Bioeng ; 120(3): 715-725, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36411514

RESUMEN

Due to the favorable attributes of Chinese hamster ovary (CHO) cells for therapeutic proteins and antibodies biomanufacturing, companies generate proprietary cells with desirable phenotypes. One key attribute is the ability to stably express multi-gram per liter titers in chemically defined media. Cell, media, and feed diversity has limited community efforts to translate knowledge. Moreover, academic, and nonprofit researchers generally cannot study "industrially relevant" CHO cells due to limited public availability, and the time and knowledge required to generate such cells. To address these issues, a university-industrial consortium (Advanced Mammalian Biomanufacturing Innovation Center, AMBIC) has acquired two CHO "reference cell lines" from different lineages that express monoclonal antibodies. These reference cell lines have relevant production titers, key performance outcomes confirmed by multiple laboratories, and a detailed technology transfer protocol. In commercial media, titers over 2 g/L are reached. Fed-batch cultivation data from shake flask and scaled-down bioreactors is presented. Using productivity as the primary attribute, two academic sites aligned with tight reproducibility at each site. Further, a chemically defined media formulation was developed and evaluated in parallel to the commercial media. The goal of this work is to provide a universal, industrially relevant CHO culture platform to accelerate biomanufacturing innovation.


Asunto(s)
Anticuerpos Monoclonales , Reactores Biológicos , Cricetinae , Animales , Cricetulus , Células CHO , Reproducibilidad de los Resultados , Técnicas de Cultivo Celular por Lotes/métodos
9.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499413

RESUMEN

Extracellular vesicles (EVs) derived from human mesenchymal stem cells (hMSCs) have been widely known to have therapeutic effects by representing characteristics of the origin cells as an alternative for cell-based therapeutics. Major limitations of EVs for clinical applications include low production yields, unknown effects from serum impurities, and relatively low bioactivities against dose. In this study, we proposed a cell modulation method with melatonin for human umbilical cord MSCs (hUCMSCs) cultured in serum-free chemically defined media (CDM) to eliminate the effects of serum-derived impurities and promote regeneration-related activities. miRNAs highly associated with regeneration were selected and the expression levels of them were comparatively analyzed among various types of EVs depending on culture conditions. The EVs derived from melatonin-stimulated hUCMSCs in CDM (CDM mEVs) showed the highest expression levels of regeneration-related miRNAs, and 7 times more hsa-let-7b-5p, 5.6 times more hsa-miR-23a-3p, and 5.7 times more hsa-miR-100-5p than others, respectively. In addition, the upregulation of various functionalities, such as wound healing, angiogenesis, anti-inflammation, ROS scavenging, and anti-apoptosis, were proven using in vitro assays by simulating the characteristics of EVs with bioinformatics analysis. The present results suggest that the highly regenerative properties of hUCMSC-derived EVs were accomplished with melatonin stimulation in CDM and provided the potential for clinical uses of EVs.


Asunto(s)
Vesículas Extracelulares , Melatonina , Células Madre Mesenquimatosas , MicroARNs , Humanos , Células Madre Mesenquimatosas/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cordón Umbilical/metabolismo , Medio de Cultivo Libre de Suero
10.
Nano Converg ; 9(1): 57, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36534191

RESUMEN

Human mesenchymal stem cells (hMSCs)-derived extracellular vesicles (EVs) have been known to possess the features of the origin cell with nano size and have shown therapeutic potentials for regenerative medicine in recent studies as alternatives for cell-based therapies. However, extremely low production yield, unknown effects derived from serum impurities, and relatively low bioactivities on doses must be overcome for translational applications. As several reports have demonstrated the tunability of secretion and bioactivities of EVs, herein, we introduced three-dimensional (3D) culture and cell priming approaches for MSCs in serum-free chemically defined media to exclude side effects from serum-derived impurities. Aggregates (spheroids) with 3D culture dramatically enhanced secretion of EVs about 6.7 times more than cells with two-dimensional (2D) culture, and altered surface compositions. Further modulation with cell priming with the combination of TNF-α and IFN-γ (TI) facilitated the production of EVs about 1.4 times more than cells without priming (9.4 times more than cells with 2D culture without priming), and bioactivities of EVs related to tissue regenerations. Interestingly, unlike changing 2D to 3D culture, TI priming altered internal cytokines of MSC-derived EVs. Through simulating characteristics of EVs with bioinformatics analysis, the regeneration-relative properties such as angiogenesis, wound healing, anti-inflammation, anti-apoptosis, and anti-fibrosis, for three different types of EVs were comparatively analyzed using cell-based assays. The present study demonstrated that a combinatory strategy, 3D cultures and priming MSCs in chemically defined media, provided the optimum environments to maximize secretion and regeneration-related bioactivities of MSC-derived EVs without impurities for future translational applications.

11.
Toxicol In Vitro ; 83: 105423, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35753526

RESUMEN

Scientists are using in vitro methods to answer important research questions and implementing strategies to maximize the reliability and human relevance of these methods. One strategy is to replace the use of fetal bovine serum (FBS)-an undefined and variable mixture of biomolecules-in cell culture media with chemically defined or xeno-free medium. In this study, A549 cells, a human lung alveolar-like cell line commonly used in respiratory research, were transitioned from a culture medium containing FBS to media without FBS. A successful transition was determined based on analysis of cell morphology and functionality. Following transition to commercially available CnT-Prime Airway (CELLnTEC) or X-VIVO™ 10 (Lonza) medium, the cells were characterized by microscopic evaluation and calculation of doubling time. Their genotype, morphology, and functionality were assessed by monitoring the expression of gene markers for lung cell types, surfactant production, cytokine release, the presence of multilamellar bodies, and cell viability following sodium dodecyl sulphate exposure. Our results showed that A549 cells successfully transitioned to FBS-free media under submerged and air-liquid-interface conditions. Cells grown in X-VIVO™ 10 medium mimicked cellular characteristics of FBS-supplemented media while those grown in CnT-Prime Airway medium demonstrated characteristics possibly more reflective of normal human alveolar epithelial cells.


Asunto(s)
Técnicas de Cultivo de Célula , Albúmina Sérica Bovina , Células A549 , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Medios de Cultivo/química , Medio de Cultivo Libre de Suero , Humanos , Reproducibilidad de los Resultados
12.
Methods Mol Biol ; 2278: 1-12, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33649943

RESUMEN

Since their discovery, bifidobacteria have been considered to represent cornerstone commensal microorganisms in the host-microbiome interface at the intestinal level. Bifidobacteria have therefore enjoyed increasing scientific and commercial interest as a source of microorganisms with probiotic potential. However, since functional and probiotic traits are strictly strain-dependent, there is a constant need to isolate, cultivate, and characterize novel strains, activities that require the utilization of appropriate media, as well as robust isolation, cultivation, and preservation techniques. Besides, effective isolation of bifidobacteria from natural environments might require different manipulation and cultivation media and conditions depending on the specific characteristics of the sample material, the presence of competitive microbiota, the metabolic state in which bifidobacteria might be encountered within the sample and the particular metabolic traits of the bifidobacterial species adapted to such inhabitation.A wide array of culture media recipes have been described in the literature to routinely isolate and grow bifidobacteria under laboratory conditions. However, there is not a single and universally applicable medium for effective isolation, recovery, and cultivation of bifidobacteria, as each growth medium has its own particular advantages and limitations. Besides, the vast majority of these media formulations was not specifically formulated for these microorganisms, and thus information on bifidobacterial cultivation options is scarce while being scattered throughout literature. This chapter intends to serve as a resource summarizing the options to cultivate bifidobacteria that have been described to date, highlighting the main advantages and limitations of each of them.


Asunto(s)
Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/aislamiento & purificación , Medios de Cultivo/química , Probióticos/aislamiento & purificación , Bifidobacterium/metabolismo , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/metabolismo , Microbioma Gastrointestinal , Humanos , Probióticos/metabolismo , Simbiosis
13.
J Pharm Sci ; 110(4): 1635-1642, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33096139

RESUMEN

Growth of mammalian cells in the production of biotherapeutics often require the benefits of chemically defined media (CDM). Storage, handling and stability advantages of CDM powders govern the preponderance of their use across the industry. Physico-chemical property lot-to-lot variation of these multicomponent powders, however, continues to be a challenge. Process imposed degradation of amino acids and vitamins, for example, can influence cell density, specific titer, and the quality profile of the molecule expressed due to the lack of process understanding and suitable mitigation controls. Such degradation can materialize in either their manufacture or in downstream media dissolution steps. Colorimetry, in lieu of visual appearance, can be an effective surveillance method for the direct assessment of CDM quality as color change is indicative of chemical-physical variations. This work describes a series of studies aimed to establish relationships between quantitative color change and physico-chemical attribute variation of glucose-free and glucose-based powders. The results illustrate color change is indicative of amino acid glycation, vitamin degradation and particle size shifts. These relationships enable a colorimetric control strategy for the sensitive and rapid detection of relevant CDM variation to drive additional targeted assessments to improve the productivity and robustness of cell culture processes.


Asunto(s)
Colorimetría , Glucosa , Aminoácidos , Animales , Medios de Cultivo , Polvos
14.
Cell Mol Bioeng ; 13(6): 605-619, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33281990

RESUMEN

INTRODUCTION: Multicellular platforms and linked multi organ on chip devices are powerful tools for drug discovery, and basic mechanistic studies. Often, a critical constraint is defining a culture medium optimal for all cells present in the system. In this study, we focused on the key cells of the neuromuscular junction i.e., skeletal muscle and motor neurons. METHODS: Formulation of a chemically defined medium for the co-culture of C2C12 skeletal muscle cells and human induced pluripotent stem cell (hiPSC) derived spinal spheroids (SpS) was optimized. C2C12 cells in 10 experimental media conditions and 2 topographies were evaluated over a 14-day maturation period to determine the ideal medium formulation for skeletal muscle tissue development. RESULTS: During early maturation, overexpression of genes for myogenesis and myopathy was observed for several media conditions, corresponding to muscle delamination and death. Together, we identified 3 media formulations that allowed for more controlled differentiation, healthier muscle tissue, and long-term culture duration. This evidence was then used to select media formulations to culture SpS and subsequently assessed axonal growth. As axonal growth in SpS cultures was comparable in all selected media conditions, our data suggest that the neuronal basal medium with no added supplements is the ideal medium formulation for both cell types. CONCLUSIONS: Optimization using both topographical cues and culture media formulations provides a comprehensive analyses of culture conditions that are vital to future applications for in vitro NMJ models.

15.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32561588

RESUMEN

Cupriavidus necator H16 is gaining significant attention as a microbial chassis for range of biotechnological applications. While the bacterium is a major producer of bioplastics, its lithoautotrophic and versatile metabolic capabilities make the bacterium a promising microbial chassis for biofuels and chemicals using renewable resources. It remains necessary to develop appropriate experimental resources to permit controlled bioengineering and system optimization of this microbe. In this study, we employed statistical design of experiments to gain understanding of the impact of components of defined media on C. necator growth and built a model that can predict the bacterium's cell density based on medium components. This highlighted medium components, and interaction between components, having the most effect on growth: fructose, amino acids, trace elements, CaCl2, and Na2HPO4 contributed significantly to growth (t values of <-1.65 or >1.65); copper and histidine were found to interact and must be balanced for robust growth. Our model was experimentally validated and found to correlate well (r2 = 0.85). Model validation at large culture scales showed correlations between our model-predicted growth ranks and experimentally determined ranks at 100 ml in shake flasks (ρ = 0.87) and 1 liter in a bioreactor (ρ = 0.90). Our approach provides valuable and quantifiable insights on the impact of medium components on cell growth and can be applied to model other C. necator responses that are crucial for its deployment as a microbial chassis. This approach can be extended to other nonmodel microbes of medical and industrial biotechnological importance.IMPORTANCE Chemically defined media (CDM) for cultivation of C. necator vary in components and compositions. This lack of consensus makes it difficult to optimize new processes for the bacterium. This study employed statistical design of experiments (DOE) to understand how basic components of defined media affect C. necator growth. Our growth model predicts that C. necator can be cultivated to high cell density with components held at low concentrations, arguing that CDM for large-scale cultivation of the bacterium for industrial purposes will be economically competitive. Although existing CDM for the bacterium are without amino acids, addition of a few amino acids to growth medium shortened lag phase of growth. The interactions highlighted by our growth model show how factors can interact with each other during a process to positively or negatively affect process output. This approach is efficient, relying on few well-structured experimental runs to gain maximum information on a biological process, growth.


Asunto(s)
Medios de Cultivo/metabolismo , Cupriavidus necator/crecimiento & desarrollo , Medios de Cultivo/química , Cupriavidus necator/metabolismo , Modelos Estadísticos
16.
J Biotechnol ; 320: 44-49, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32526262

RESUMEN

Chinese hamster ovary (CHO) cells cultured in serum-free chemically-defined media (CDM) are used for manufacturing of therapeutic proteins. Growth factors, such as insulin are commonly utilized in manufacturing platforms to enhance CHO cell viability and growth. Here we report that insulin is degraded in the culture media over time mainly due to the activity of the insulin degrading enzyme (IDE). Insulin degradation was faster in cell lines that released more IDE, which negatively impacted cell growth and in turn, production titers. Deletion of the IDE gene in a representative CHO cell line nearly abolished insulin degradation in seed train and end-of-production media. In summary, our data suggests that selecting cell lines that have lower IDE expression or targeted-deletion of the IDE gene can improve culture viability and growth for insulin-dependent CHO production platforms.


Asunto(s)
Medio de Cultivo Libre de Suero , Insulina , Insulisina , Animales , Reactores Biológicos , Células CHO , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cricetinae , Cricetulus , Medio de Cultivo Libre de Suero/química , Medio de Cultivo Libre de Suero/metabolismo , Técnicas de Inactivación de Genes , Insulina/análisis , Insulina/metabolismo , Insulina/farmacología , Insulisina/genética , Insulisina/metabolismo , Insulisina/farmacología
17.
AMB Express ; 10(1): 93, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415509

RESUMEN

Recent cell culture media for mammalian cells can be abundantly formulated with nutrients supporting production, but such media can be limited to use in host cell culture, transfection, cell cloning, and cell growth under the low cell density conditions. In many cases, appropriate platform media are used for cell line development, and then replaced with rich media for production. In this study, we demonstrate rich chemically defined media for Chinese hamster ovary (CHO) cells that are suitable as basal media both for cell line development and for final production of culture process. Set up for transfection, semi-solid media optimization, mini-pool screening, and single cell cloning media development were performed, and final clones were obtained with higher productivity in fed-batch culture mode using rich formulated media comparing with lean formulated media. Developed methods may remove the requirements for cell adaptation to production media after cell line development, and relieve the clonality issues associated with changing the culture media. Furthermore, established methods have advantages over traditional approaches, including saving resources and decreasing the time and the effort required to optimize the production process.

18.
Viruses ; 11(6)2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167384

RESUMEN

Foot-and-mouth disease virus (FMDV) is endemic in many parts of the world. Vaccination is an important control measure, limits viral spread, and can help to eradicate the disease. However, vaccination programs are cost-intensive because of the short shelf life of vaccines and the need for frequent re-vaccination. Animal-component-free (ACF) or chemically defined media (CDM) at high cell densities are a promising approach for the production of inexpensive high-quality vaccines, but the occurrence of cell density effects has been reported for various virus-cell systems in vaccine production. For FMDV, the use of CDM or ACF media for vaccine production has not been studied and no information about cell density effects is available. This work describes the propagation of FMDV in ACF or in CDM. Cells were grown at increasing cell densities and either 100% media exchange or addition of 30% fresh media was performed before infection with FMDV. Increasing cell densities reduced the viral titer and increased yield variability in all media except BHK300G. This effect can be mitigated by performing a 100% media exchange before infection or when using the controlled environment of a bioreactor. The media composition and also a fragile relationship between virus and cell metabolism seem to be causal for that phenomenon.


Asunto(s)
Recuento de Células , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Animales , Línea Celular , Virus de la Fiebre Aftosa/metabolismo , Replicación Viral
19.
Methods Mol Biol ; 1968: 3-10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30929201

RESUMEN

Control of Streptococcus pneumoniae is mainly achieved by the use of existing vaccines. Capsular polysaccharides are the major antigenic component and are also the main virulence factor.Capsular polysaccharides must fulfill requirements of purity, uniformity, and an accurate molecular weight to be used as vaccine antigens. Vaccine production largely relies on cultivation of the pathogen in appropriate conditions.Here we describe widely used techniques to culture S. pneumoniae based on solid or complex liquid media, which are successfully applied in the diagnosis of the pathogen and in development and production of S. pneumoniae vaccines. Furthermore, we present a new chemically defined medium that can be used at lab scale.


Asunto(s)
Medios de Cultivo/farmacología , Streptococcus pneumoniae/metabolismo , Antígenos Bacterianos/metabolismo , Vacunas Bacterianas/metabolismo , Polisacáridos Bacterianos , Streptococcus pneumoniae/efectos de los fármacos
20.
J Tissue Eng Regen Med ; 12(7): 1567-1578, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29701896

RESUMEN

Two decades after the first report on endothelial progenitor cells (EPC), their key role in postnatal vasculogenesis and vascular repair is well established. The therapeutic potential of EPC and their growing use in clinical trials calls for the development of more robust, reproducible, and safer methods for the in vitro expansion and maintenance of these cells. Despite many limitations associated with its usage, fetal bovine serum (FBS) is still widely applied as a cell culture supplement. Although different approaches aiming at establishing FBS-free culture have been developed for many cell types, adequate solutions for endothelial cells, and for EPC in particular, are still scarce, possibly due to the multiple challenges that have to be faced when culturing these cells. In this review, we provide a brief overview on the therapeutic relevance of EPC and critically analyse the available literature on FBS-free endothelial cell culture methods, including xeno-free, serum-free, and chemically defined systems.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Neovascularización Fisiológica , Animales , Bovinos , Medio de Cultivo Libre de Suero/química , Medio de Cultivo Libre de Suero/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA