Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Adv Sci (Weinh) ; : e2400354, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120568

RESUMEN

The mechanisms of anxiety disorders, the most common mental illness, remain incompletely characterized. The ventral hippocampus (vHPC) is critical for the expression of anxiety. However, current studies primarily focus on vHPC neurons, leaving the role for vHPC astrocytes in anxiety largely unexplored. Here, genetically encoded Ca2+ indicator GCaMP6m and in vivo fiber photometry calcium imaging are used to label vHPC astrocytes and monitor their activity, respectively, genetic and chemogenetic approaches to inhibit and activate vHPC astrocytes, respectively, patch-clamp recordings to measure glutamate currents, and behavioral assays to assess anxiety-like behaviors. It is found that vHPC astrocytic activity is increased in anxiogenic environments and by 3-d subacute restraint stress (SRS), a well-validated mouse model of anxiety disorders. Genetic inhibition of vHPC astrocytes exerts anxiolytic effects on both innate and SRS-induced anxiety-related behaviors, whereas hM3Dq-mediated chemogenetic or SRS-induced activation of vHPC astrocytes enhances anxiety-like behaviors, which are reversed by intra-vHPC application of the ionotropic glutamate N-methyl-d-aspartate receptor antagonists. Furthermore, intra-vHPC or systemic application of the N-methyl-d-aspartate receptor antagonist memantine, a U.S. FDA-approved drug for Alzheimer's disease, fully rescues SRS-induced anxiety-like behaviors. The findings highlight vHPC astrocytes as critical regulators of stress and anxiety and as potential therapeutic targets for anxiety and anxiety-related disorders.

2.
Biomolecules ; 14(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062535

RESUMEN

Allostatic adaptations to a perceived threat are crucial for survival and may tap into mechanisms serving the homeostatic control of energy balance. We previously established that exposure to predator odor (PO) in rats significantly increases skeletal muscle thermogenesis and energy expenditure (EE). Evidence highlights steroidogenic factor 1 (SF1) cells within the central and dorsomedial ventromedial hypothalamus (c/dmVMH) as a modulator of both energy homeostasis and defensive behavior. However, the brain mechanism driving elevated EE and muscle thermogenesis during PO exposure has yet to be elucidated. To assess the ability of SF1 neurons of the c/dmVMH to induce muscle thermogenesis, we used the combined technology of chemogenetics, transgenic mice, temperature transponders, and indirect calorimetry. Here, we evaluate EE and muscle thermogenesis in SF1-Cre mice exposed to PO (ferret odor) compared to transgenic and viral controls. We detected significant increases in muscle temperature, EE, and oxygen consumption following the chemogenetic stimulation of SF1 cells. However, there were no detectable changes in muscle temperature in response to PO in either the presence or absence of chemogenetic stimulation. While the specific role of the VMH SF1 cells in PO-induced thermogenesis remains uncertain, these data establish a supporting role for SF1 neurons in the induction of muscle thermogenesis and EE similar to what is seen after predator threats.


Asunto(s)
Metabolismo Energético , Ratones Transgénicos , Neuronas , Factor Esteroidogénico 1 , Termogénesis , Animales , Termogénesis/efectos de los fármacos , Ratones , Factor Esteroidogénico 1/metabolismo , Factor Esteroidogénico 1/genética , Neuronas/metabolismo , Músculo Esquelético/metabolismo , Masculino , Núcleo Hipotalámico Ventromedial/metabolismo , Odorantes
3.
Cell Chem Biol ; 31(7): 1305-1323.e9, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029456

RESUMEN

K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K+ channels to clamp membrane potential) that leverages the discovery of a K2P modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K2P channel activity that should facilitate molecular and systems level studies of K2P function and enable the search for new K2P modulators.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Animales , Células HEK293 , Ratones , Potenciales de la Membrana/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratas
4.
Elife ; 132024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990919

RESUMEN

Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.


Asunto(s)
Conducta Animal , Hipocampo , Animales , Ratones , Masculino , Hipocampo/metabolismo , Femenino , Miedo , Memoria/fisiología , Ansiedad , Ratones Endogámicos C57BL , Neuronas/fisiología , Neuronas/metabolismo
5.
Neurosci Biobehav Rev ; 165: 105831, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074672

RESUMEN

Alzheimer's disease (AD) is a severe and progressive neurodegenerative condition that exerts detrimental effects on brain function. As of now, there is no effective treatment for AD patients. This review explores two distinct avenues of research. The first revolves around the use of animal studies and preclinical models to gain insights into AD's underlying mechanisms and potential treatment strategies. Specifically, it delves into the effectiveness of interventions such as Optogenetics and Chemogenetics, shedding light on their implications for understanding pathophysiological mechanisms and potential therapeutic applications. The second avenue focuses on non-invasive brain stimulation (NiBS) techniques in the context of AD. Evidence suggests that NiBS can successfully modulate cognitive functions associated with various neurological and neuropsychiatric disorders, including AD, as demonstrated by promising findings. Here, we critically assessed recent findings in AD research belonging to these lines of research and discuss their potential impact on the clinical horizon of AD treatment. These multifaceted approaches offer hope for advancing our comprehension of AD pathology and developing novel therapeutic interventions.

6.
Front Neurosci ; 18: 1433993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050664

RESUMEN

Traumatic stress, particularly during critical developmental periods such as adolescence, has been strongly linked to an increased propensity and severity of aggression. Existing literature underscores that being a victim of abuse can exacerbate aggressive behaviors, with the amygdala playing a pivotal role in mediating these effects. Historically, animal models have demonstrated that traumatic stressors can increase attack behavior, implicating various amygdala nuclei. Building on this foundation, our previous work has highlighted how traumatic stress invokes long-lasting aggression via an excitatory pathway within the posterior ventral medial amygdala (MeApv). In the current study, we sought to further delineate this mechanism by examining the effects of acute social defeat during adolescence on aggressive behaviors and neural activation in mice. Using a common social defeat paradigm, we first established that acute social defeat during late adolescence indeed promotes long-lasting aggression, measured as attack behavior 7 days after the defeat session. Immunolabeling with c-Fos demonstrated that acute social defeat activates the MeApv and ventrolateral aspect of the ventromedial hypothalamus (VmHvl), consistent with our previous studies that used foot shock as an acute stressor. Finally, chemogenetically inhibiting excitatory MeApv neurons during social defeat significantly mitigated the aggression increase without affecting non-aggressive social behavior. These results strongly suggest that the MeApv plays a critical role in the onset of aggression following traumatic social experience, and offer the MeA as a potential target for therapeutic interventions.

7.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826339

RESUMEN

Rationale: Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. Objective: We determined how 14 daily THC injections (5mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. Methods: In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impacts probabilistic discounting. Results: AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. Conclusions: These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine projections to mPFC, or via alterations of non-VTA dopamine neurons.

8.
Mol Brain ; 17(1): 38, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877480

RESUMEN

Memory retrieval can become difficult over time, but it is important to note that memories that appear to be forgotten might still be stored in the brain, as shown by their occasional spontaneous retrieval. Histamine in the central nervous system is a promising target for facilitating the recovery of memory retrieval. Our previous study demonstrated that histamine H3 receptor (H3R) inverse agonists/antagonists, activating histamine synthesis and release, enhance activity in the perirhinal cortex and help in retrieving forgotten long-term object recognition memories. However, it is unclear whether enhancing histaminergic activity alone is enough for the recovery of memory retrieval, considering that H3Rs are also located in other neuron types and affect the release of multiple neurotransmitters. In this study, we employed a chemogenetic method to determine whether specifically activating histamine neurons in the tuberomammillary nucleus facilitates memory retrieval. In the novel object recognition test, control mice did not show a preference for objects based on memory 1 week after training, but chemogenetic activation of histamine neurons before testing improved memory retrieval. This selective activation did not affect the locomotor activity or anxiety-related behavior. Administering an H2R antagonist directly into the perirhinal cortex inhibited the recovery of memory retrieval induced by the activation of histamine neurons. Furthermore, we utilized the Barnes maze test to investigate whether chemogenetic activation of histamine neurons influences the retrieval of forgotten spatial memories. Control mice explored all the holes in the maze equally 1 week after training, whereas mice with chemogenetically activated histamine neurons spent more time around the target hole. These findings indicate that chemogenetic activation of histamine neurons in the tuberomammillary nucleus can promote retrieval of seemingly forgotten object recognition and spatial memories.


Asunto(s)
Histamina , Neuronas , Animales , Histamina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Masculino , Recuerdo Mental/efectos de los fármacos , Recuerdo Mental/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones , Ansiedad/fisiopatología , Área Hipotalámica Lateral/fisiología , Área Hipotalámica Lateral/efectos de los fármacos , Antagonistas de los Receptores H2 de la Histamina/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología
9.
Mol Brain ; 17(1): 36, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858755

RESUMEN

Chronic perturbations of neuronal activity can evoke homeostatic and new setpoints for neurotransmission. Using chemogenetics to probe the relationship between neuronal cell types and behavior, we recently found reversible decreases in dopamine (DA) transmission, basal behavior, and amphetamine (AMPH) response following repeated stimulation of DA neurons in adult mice. It is unclear, however, whether altering DA neuronal activity via chemogenetics early in development leads to behavioral phenotypes that are reversible, as alterations of neuronal activity during developmentally sensitive periods might be expected to induce persistent effects on behavior. To examine the impact of developmental perturbation of DA neuron activity on basal and AMPH behavior, we expressed excitatory hM3D(Gq) in postnatal DA neurons in TH-Cre and WT mice. Basal and CNO- or AMPH-induced locomotion and stereotypy was evaluated in a longitudinal design, with clozapine N-oxide (CNO, 1.0 mg/kg) administered across adolescence (postnatal days 15-47). Repeated CNO administration did not impact basal behavior and only minimally reduced AMPH-induced hyperlocomotor response in adolescent TH-CrehM3Dq mice relative to WThM3Dq littermate controls. Following repeated CNO administration, however, AMPH-induced stereotypic behavior robustly decreased in adolescent TH-CrehM3Dq mice relative to controls. A two-month CNO washout period rescued the diminished AMPH-induced stereotypic behavior. Our findings indicate that the homeostatic compensations that take place in response to chronic hM3D(Gq) stimulation during adolescence are temporary and are dependent on ongoing chemogenetic stimulation.


Asunto(s)
Anfetamina , Neuronas Dopaminérgicas , Conducta Estereotipada , Animales , Anfetamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Conducta Estereotipada/efectos de los fármacos , Clozapina/farmacología , Clozapina/análogos & derivados , Locomoción/efectos de los fármacos , Ratones , Masculino , Actividad Motora/efectos de los fármacos , Ratones Transgénicos , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Conducta Animal/efectos de los fármacos , Integrasas
10.
Cell Rep ; 43(6): 114278, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795347

RESUMEN

Astrocytic receptors influence cognitive function and can promote behavioral deficits in disease. These effects may vary based on variables such as biological sex, but it is not known if the effects of astrocytic receptors are dependent on sex. We leveraged in vivo gene editing and chemogenetics to examine the roles of astrocytic receptors in spatial memory and other processes. We show that reductions in metabotropic glutamate receptor 3 (mGluR3), the main astrocytic glutamate receptor in adults, impair memory in females but enhance memory in males. Similarly, increases in astrocytic mGluR3 levels have sex-dependent effects and enhance memory in females. mGluR3 manipulations also alter spatial search strategies during recall in a sex-specific manner. In addition, acute chemogenetic stimulation of Gi/o-coupled or Gs-coupled receptors in hippocampal astrocytes induces bidirectional and sex-dimorphic effects on memory. Thus, astrocytes are sex-dependent modulators of cognitive function and may promote sex differences in aging and disease.


Asunto(s)
Astrocitos , Hipocampo , Memoria , Receptores de Glutamato Metabotrópico , Caracteres Sexuales , Astrocitos/metabolismo , Animales , Masculino , Femenino , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Ratones , Memoria/fisiología , Ratones Endogámicos C57BL , Memoria Espacial/fisiología
11.
Front Neurosci ; 18: 1396978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726028

RESUMEN

Introduction: Chemogenetic techniques, specifically the use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), have become invaluable tools in neuroscience research. Yet, the understanding of how Gq- and Gicoupled DREADDs alter local field potential (LFP) oscillations in vivo remains incomplete. Methods: This study investigates the in vivo electrophysiological effects of DREADD actuation by deschloroclozapine, on spontaneous firing rate and LFP oscillations recorded from the anterior cingulate cortex in lightly anesthetized male rats. Results: Unexpectedly, in response to the administration of deschloroclozapine, we observed inhibitory effects with pan-neuronal hM3D(Gq) stimulation, and excitatory effects with pan-neuronal hM4D(Gi) stimulation in a significant portion of neurons. These results emphasize the need to account for indirect perturbation effects at the local neuronal network level in vivo, particularly when not all neurons express the chemogenetic receptors uniformly. In the current study, for instance, the majority of cells that were transduced with both hM3D(Gq) and hM4D(Gi) were GABAergic. Moreover, we found that panneuronal cortical chemogenetic modulation can profoundly alter oscillatory neuronal activity, presenting a potential research tool or therapeutic strategy in several neuropsychiatric models and diseases. Discussion: These findings help to optimize the use of chemogenetic techniques in neuroscience research and open new possibilities for novel therapeutic strategies.

12.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791587

RESUMEN

Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Interneuronas , Parvalbúminas , Humanos , Interneuronas/metabolismo , Interneuronas/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Parvalbúminas/metabolismo , Animales , Epilepsia/fisiopatología , Epilepsia/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología
13.
Neurosci Lett ; 832: 137805, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38705453

RESUMEN

BACKGROUND CONTEXT: The medial prefrontal cortex (mPFC) has been implicated in modulating anxiety and depression. Manipulation of Drd1 neurons in the mPFC resulted in variable neuronal activity and, consequently, strikingly different behaviors. The acute regulation of anxiety- and depression-like behaviors by Drd1 neurons, a major neuronal subtype in the mPFC, has not yet been investigated. PURPOSE: The purpose of this study was to investigate whether acute manipulation of Drd1 neurons in the mPFC affects anxiety- and depression-like behaviors. STUDY DESIGN: Male Drd1-Cre mice were injected with an adeno-associated virus (AAV) expressing hM3DGq or hM4DGi. Clozapine-n-oxide (CNO, 1 mg/kg, i.p.) was injected 30 min before the behavioral tests. METHODS: Male Drd1-Cre mice were injected with AAV-Ef1α-DIO-hM4DGi-mCherry-WPRE-pA, AAV-Ef1α-DIO-hM3DGq-mCherry-WPRE-pA or AAV-Ef1α-DIO-mCherry-WPRE-pA. Three weeks later, whole-cell recordings after CNO (5 µM) were applied to the bath were used to validate the functional expression of hM4DGi and hM3DGq. Four groups of mice underwent all the behavioral tests, and after each of the tests, the mice were allowed to rest for 3-4 days. CNO (1 mg/kg) was injected intraperitoneally 30 min before the behavior test. Anxiety-like behaviors were evaluated by the open field test (OFT), the elevated plus maze test (EPMT), and the novelty-suppressed feeding test (NSFT). Depression-like behaviors were evaluated by the sucrose preference test (SPT) and force swimming test (FST). For all experiments, coronal sections of the targeted brain area were used to confirm virus expression. RESULTS: Whole-cell recordings from brain slices demonstrated that infusions of CNO (5 µM) into mPFC slices dramatically increased the firing activity of hM3DGq-mCherry+ neurons and abolished the firing activity of hM4DGi-mCherry+ neurons. Acute chemogenetic activation of Drd1 neurons in the mPFC increased the time spent in the central area in the OFT, increased the time spent in the open arms in the EMPT, decreased the latency to bite the food in the NSFT, increased the sucrose preference in the SPT, and decreased the immobility time in the FST. Acute chemogenetic inhibition of Drd1 neurons in the mPFC decreased the time spent in the central area in the OFT, decreased the time spent in the open arms in the EMPT, increased the latency to bite the food in the NSFT, decreased the sucrose preference in the SPT, and increased the immobility time in the FST. CONCLUSIONS: The present study showed that acute activation of Drd1 neurons in the mPFC produced rapid anxiolytic- and antidepressant-like effects, and acute inhibition had the opposite effect, revealing that Drd1 neurons in the mPFC bidirectionally regulate anxiety- and depression-like behaviors. CLINICAL SIGNIFICANCE: The findings of the present study regarding the acute effects of stimulating Drd1 neurons in the mPFC on anxiety and depression suggest that Drd1 neurons in the mPFC are a focus for the treatment of anxiety disorders and depression.


Asunto(s)
Ansiedad , Depresión , Corteza Prefrontal , Receptores de Dopamina D1 , Animales , Corteza Prefrontal/metabolismo , Receptores de Dopamina D1/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Conducta Animal/fisiología , Clozapina/análogos & derivados , Clozapina/farmacología
14.
J Hazard Mater ; 472: 134559, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735189

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disease and approximately one third of patients with PD are estimated to experience depression. Paraquat (PQ) is the most widely used herbicide worldwide and PQ exposure is reported to induce PD with depression. However, the specific brain region and neural networks underlying the etiology of depression in PD, especially in the PQ-induced model, have not yet been elucidated. Here, we report that the VGluT2-positive glutamatergic neurons in the paraventricular thalamic nucleus (PVT) promote depression in the PQ-induced PD mouse model. Our results show that PVTVGluT2 neurons are activated by PQ and their activation increases the susceptibility to depression in PD mice. Conversely, inhibition of PVTVGluT2 neurons reversed the depressive-behavioral changes induced by PQ. Similar to the effects of intervention the soma of PVTVGluT2 neurons, stimulation of their projections into the central amygdaloid nucleus (CeA) also strongly influenced depression in PD mice. PQ induced malfunctioning of the glutamate system and changes in the dendritic and synaptic morphology in the CeA through its role on PVTVGluT2 neuronal activation. In summary, our results demonstrate that PVTVGluT2 neurons are key neuronal subtypes for depression in PQ-induced PD and promote depression processes through the PVTVGluT2-CeA pathway.


Asunto(s)
Núcleos Talámicos de la Línea Media , Neuronas , Paraquat , Proteína 2 de Transporte Vesicular de Glutamato , Animales , Paraquat/toxicidad , Masculino , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Neuronas/efectos de los fármacos , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Núcleos Talámicos de la Línea Media/metabolismo , Depresión/inducido químicamente , Depresión/metabolismo , Ratones Endogámicos C57BL , Herbicidas/toxicidad , Ratones , Enfermedad de Parkinson/metabolismo
15.
Neuropharmacology ; 256: 110003, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38789078

RESUMEN

Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Núcleo Subtalámico , Zona Incerta , Núcleo Subtalámico/fisiología , Animales , Estimulación Encefálica Profunda/métodos , Zona Incerta/fisiología , Trastornos Mentales/terapia , Humanos , Enfermedades del Sistema Nervioso/terapia , Roedores
16.
Bioengineering (Basel) ; 11(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38790353

RESUMEN

Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders.

17.
Neuron ; 112(12): 2045-2061.e10, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38636524

RESUMEN

Cholecystokinin-expressing interneurons (CCKIs) are hypothesized to shape pyramidal cell-firing patterns and regulate network oscillations and related network state transitions. To directly probe their role in the CA1 region, we silenced their activity using optogenetic and chemogenetic tools in mice. Opto-tagged CCKIs revealed a heterogeneous population, and their optogenetic silencing triggered wide disinhibitory network changes affecting both pyramidal cells and other interneurons. CCKI silencing enhanced pyramidal cell burst firing and altered the temporal coding of place cells: theta phase precession was disrupted, whereas sequence reactivation was enhanced. Chemogenetic CCKI silencing did not alter the acquisition of spatial reference memories on the Morris water maze but enhanced the recall of contextual fear memories and enabled selective recall when similar environments were tested. This work suggests the key involvement of CCKIs in the control of place-cell temporal coding and the formation of contextual memories.


Asunto(s)
Colecistoquinina , Hipocampo , Interneuronas , Optogenética , Células Piramidales , Animales , Masculino , Ratones , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/genética , Miedo/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Interneuronas/metabolismo , Aprendizaje/fisiología , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Piramidales/fisiología , Células Piramidales/metabolismo , Ritmo Teta/fisiología
18.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684363

RESUMEN

A dynamic environment, such as the one we inhabit, requires organisms to continuously update their knowledge of the setting. While the prefrontal cortex is recognized for its pivotal role in regulating such adaptive behavior, the specific contribution of each prefrontal area remains elusive. In the current work, we investigated the direct involvement of two major prefrontal subregions, the medial prefrontal cortex (mPFC, A32D + A32V) and the orbitofrontal cortex (OFC, VO + LO), in updating pavlovian stimulus-outcome (S-O) associations following contingency degradation in male rats. Specifically, animals had to learn that a particular cue, previously fully predicting the delivery of a specific reward, was no longer a reliable predictor. First, we found that chemogenetic inhibition of mPFC, but not of OFC, neurons altered the rats' ability to adaptively respond to degraded and non-degraded cues. Next, given the growing evidence pointing at noradrenaline (NA) as a main neuromodulator of adaptive behavior, we decided to investigate the possible involvement of NA projections to the two subregions in this higher-order cognitive process. Employing a pair of novel retrograde vectors, we traced NA projections from the locus ceruleus (LC) to both structures and observed an equivalent yet relatively segregated amount of inputs. Then, we showed that chemogenetic inhibition of NA projections to the mPFC, but not to the OFC, also impaired the rats' ability to adaptively respond to the degradation procedure. Altogether, our findings provide important evidence of functional parcellation within the prefrontal cortex and point at mPFC NA as key for updating pavlovian S-O associations.


Asunto(s)
Norepinefrina , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Masculino , Ratas , Norepinefrina/metabolismo , Condicionamiento Clásico/fisiología , Recompensa , Señales (Psicología) , Adaptación Psicológica/fisiología , Transmisión Sináptica/fisiología , Ratas Long-Evans
19.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659846

RESUMEN

Impaired diaphragm activation contributes to morbidity and mortality in many neurodegenerative diseases and neurologic injuries. We conducted experiments to determine if expression of an excitatory DREADD (designer receptors exclusively activation by designer drugs) in the mid-cervical spinal cord would enable respiratory-related activation of phrenic motoneurons to increase diaphragm activation. Wild type (C57/bl6) and ChAT-Cre mice received bilateral intraspinal (C4) injections of an adeno-associated virus (AAV) encoding the hM3D(Gq) excitatory DREADD. In wild type mice, this produced non-specific DREADD expression throughout the mid-cervical ventral horn. In ChAT-Cre mice, a Cre-dependent viral construct was used to drive DREADD expression in C4 ventral horn motoneurons, targeting the phrenic motoneuron pool. Diaphragm EMG was recorded during spontaneous breathing at 6-8 weeks post-AAV delivery. The selective DREADD ligand JHU37160 (J60) caused a bilateral, sustained (>1 hr) increase in inspiratory EMG bursting in both groups; the relative increase was greater in ChAT-Cre mice. Additional experiments in a ChAT-Cre rat model were conducted to determine if spinal DREADD activation could increase inspiratory tidal volume (VT) during spontaneous breathing without anesthesia. Three to four months after intraspinal (C4) injection of AAV driving Cre-dependent hM3D(Gq) expression, intravenous J60 resulted in a sustained (>30 min) increase in VT assessed using whole-body plethysmography. Subsequently, direct nerve recordings confirmed that J60 evoked a >50% increase in inspiratory phrenic output. The data show that mid-cervical spinal DREADD expression targeting the phrenic motoneuron pool enables ligand-induced, sustained increases in the neural drive to the diaphragm. Further development of this technology may enable application to clinical conditions associated with impaired diaphragm activation and hypoventilation.

20.
Curr Opin Cell Biol ; 88: 102360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640790

RESUMEN

Cells generate a highly diverse microtubule network to carry out different activities. This network is comprised of distinct tubulin isotypes, tubulins with different post-translational modifications, and many microtubule-based structures. Defects in this complex system cause numerous human disorders. However, how different microtubule subtypes in this network regulate cellular architectures and activities remains largely unexplored. Emerging tools such as photosensitive pharmaceuticals, chemogenetics, and optogenetics enable the spatiotemporal manipulation of structures, dynamics, post-translational modifications, and cross-linking with actin filaments in target microtubule subtypes. This review summarizes the design rationale and applications of these new approaches and aims to provide a roadmap for researchers navigating the intricacies of microtubule dynamics and their post-translational modifications in cellular contexts, thereby opening new avenues for therapeutic interventions.


Asunto(s)
Microtúbulos , Microtúbulos/metabolismo , Microtúbulos/química , Humanos , Animales , Procesamiento Proteico-Postraduccional , Optogenética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA