Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39236017

RESUMEN

A method for the determination of eight benzenes (BTEXs) and twelve chlorobenzenes (CBs) in goat's milk by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS/MS) was developed. The study investigated the impact of various factors such as extraction fiber type, salt amount, equilibrium conditions, and desorption conditions on the outcomes. Target analytes were separated on a DB-HeavyWAX column and quantified using the external standard method. The results showed that the target compounds had a good linear relationship in the range of 0.01 ∼ 50 µg/L (R2 > 0.997), the limit of detection (LOD) was 0.003 ∼ 0.150 µg/L, and the limit of quantification (LOQ) was 0.01 ∼ 0.50 µg/L. The average recoveries were 82%-116% and the relative standard deviation (RSD) was 0.8%-17.3% under the three addition levels of 1×, 2×, and 10 × LOQ. In a survey of twenty goat's milk samples, only ethylbenzene, xylenes, cumene, chlorobenzene, and 1,4-dichlorobenzene were detected at levels exceeding their respective limits of quantification. The method was evaluated using two ecological scales (Eco-Scale), GAPI and AGREEN, to verify its environmental friendliness and applicability. This method is simple, green, and efficient, which provides a certain theoretical basis for the production and quality safety evaluation of dairy products.

2.
Chemosphere ; 364: 143065, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39128778

RESUMEN

In this study, a novel strain Burkholderia stabilis TF-2 capable of assimilatory and co-metabolic degradation of chlorobenzenes was obtained. The interaction between chlorobenzene (CB) and target enzymes, as well as the metabolic pathways in TF-2, were elucidated using multi-omics and molecular docking techniques. Results of degradation experiments indicated that TF-2 assimilated CB at a rate of 0.22-0.66 mg·gcell-1·h-1 in concentrations of 20-200 mg L-1. Additionally, TF-2 also used sodium succinate and sodium citrate as substrates to co-metabolize CB, with degradation rates of 0.26-2.00 and 0.31-1.72 mol·gcell-1·h-1, respectively. Whole-genome sequencing revealed over 18 novel genes associated with aromatic hydrocarbon degradation in TF-2. Transcriptomic analysis showed that CB induced the high expression of 119 genes involved in CB metabolism and late mineralization. The significant up-regulation of the bedC1 (encoding a ring-hydroxylated dioxygenase), CatA (chlorocatechol 1,2-dioxygenase), pcaJ (3-oxoadipate CoA-transferase alpha subunit) and fadA (acetyl-CoA acyltransferase) genes facilitated CB metabolism. Based on these findings, a metabolic pathway for CB was constructed, with the key step involving ortho cleavage of the aromatic ring under the action of the catA gene. Furthermore, molecular docking revealed that CB bound to bedC1 with -4.5 kcal mol-1 through hydrophobic bonds, π-stacking, and a halogen bond. These results provide strong support for development of efficient strains to enhance the removal of chlorinated organic compounds.

3.
Physiol Behav ; 283: 114597, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830445

RESUMEN

Environmental exposures may have endocrine disruptor (ED) effects, e.g., a role for halogenated hydrocarbon chlorobenzenes in increasing vasopressin (AVP), oxytocin (OT) secretion and, in association, anxiety and aggression in male rats has been shown. Our aim is to investigate whether 1,2,4-trichlorobenzenehexachlorobenzene= 1:1 (mClB) treatment of female rats also shows ED effects and reproductive biology differences, and whether AVP may have a mediator role in this? Female Wistar rats were treated (0.1; 1.0; 10.0 µg/bwkg/day) with mClB (by gastrictube) and then 30; 60; 90 days after treatment anxiety (open field test) and aggressive (resident intruder test) behaviors AVP, OT concentrations from blood plasma samples were detected by radioimmunoassay on 30; 60; 90 days. Treated female rats were mated with untreated males. Mating success, number of newborn and maternal aggression on the neonates were monitored. Results showed that AVP, OT levels; and anxiety, aggressive behaviors; and mothers' aggression towards their offspring increased significantly in relation to the duration and the dose of mClB treatment. But mating propensity and number of offspring decreased. Patterns of AVP, OT release and anxiety, aggression behaviors, and reproductive-related behaviors were correlated. Consistent with the literature, our studies confirmed the role of AVP and OT in different behavioral effects.


Asunto(s)
Agresión , Ansiedad , Disruptores Endocrinos , Oxitocina , Animales , Femenino , Masculino , Embarazo , Ratas , Agresión/efectos de los fármacos , Agresión/fisiología , Animales Recién Nacidos , Arginina Vasopresina/sangre , Clorobencenos/administración & dosificación , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Hexaclorobenceno/sangre , Conducta Materna/efectos de los fármacos , Conducta Materna/fisiología , Oxitocina/sangre , Ratas Wistar , Reproducción/efectos de los fármacos , Reproducción/fisiología , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología
4.
Chemosphere ; 355: 141779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537709

RESUMEN

To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente/métodos , Alcanos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Aerosoles/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis
5.
Polymers (Basel) ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337229

RESUMEN

With the rapid development of the economy and the demands of people's lives, the usage amount of polymer materials is significantly increasing globally. Chlorobenzenes (CBS) are widely used in the industrial, agriculture and chemical industries, particularly as important chemical raw materials during polymers processes. CBS are difficult to remove due to their properties, such as being hydrophobic, volatile and persistent and biotoxic, and they have caused great harm to the ecological environment and human health. Electrochemical oxidation technology for the treatment of refractory pollutants has been widely used due to its high efficiency and easiness of operation. Thus, the electrochemical oxidation system was established for the efficient treatment of monochlorobenzene (MCB) waste gas. The effect of a single factor, such as anode materials, cathode materials, the electrolyte concentration, current density and electrode distance on the removal efficiency (RE) of MCB gas were first studied. The response-surface methodology (RSM) was used to investigate the relationships between different factors' conditions (current density, electrolyte concentration, electrode distance), and a prediction model was established using the Design-Expert 10.0.1 software to optimize the reaction conditions. The results of the one-factor experiments showed that when treating 2.90 g/m3 MCB gas with a 0.40 L/min flow rate, Ti/Ti4O7 as an anode, stainless steel wire mesh as a cathode, 0.15 mol/L NaCl electrolyte, 10.0 mA/cm2 current density and 4.0 cm electrode distance, the average removal efficiency (RE), efficiency capacity (EC) and energy consumption (Esp) were 57.99%, 20.18 g/(m3·h) and 190.2 (kW·h)/kg, respectively. The results of the RSM showed that the effects of the process parameters on the RE of MBC were as follows: current density > electrode distance > electrolyte concentration; the interactions effects on the RE of MBC were in the order of electrolyte concentration and current density > current density and electrode distance > electrolyte concentration and electrode distance; the optimal experimental conditions were as follows: the concentration of electrolyte was 0.149 mol/L, current density was 18.11 mA, electrode distance was 3.804 cm. Under these conditions, the RE achieved 66.43%. The response-surface variance analysis showed that the regression model reached a significant level, and the validation results were in agreement with the predicted results, which proved the feasibility of the model. The model can be applied to treat the CBS waste gas of polymer processes through electrochemical oxidation.

6.
Environ Pollut ; 344: 123311, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38195025

RESUMEN

The road dust and roadside soil can act as both sinks and sources of hexachlorobutadiene (HCBD) and chlorobenzenes (CBzs), but comparative research on these two adjacent media is extremely limited. In this study, HCBD and CBzs were simultaneously analyzed in road dust and roadside soil samples from an area containing both industrial factories and residential communities in Eastern China. The road dust there was found to have 2-6 times higher contents of HCBD (mean 1.14 ng/g, maximum 6.44 ng/g) and ∑Cl3-Cl6CBzs (22.8 ng/g, 90.6 ng/g) than those in the roadside soil. The spatial distributions of HCBD and CBzs in road dusts were affected by various types of sources, showing no significant discrepancy among the sites. On the contrast, HCBD and CBzs contamination in roadside soils occurring near several factories were strongly correlated to their industrial point sources. Risk assessments showed, at current contamination levels in the road dust and roadside soil, HCBD and CBzs are not likely to induce carcinogenic or non-carcinogenic risks to residents in the studied area. Nevertheless, road dust ingestion, as the major exposure pathway of HCBD and CBzs, should be avoided to reduce the exposure risk. These findings based on the contamination differences between two media provide a new perspective and evidence for screening important sources and exposure pathway of HCBD and CBzs, which would be helpful to their source identification and risk control.


Asunto(s)
Butadienos , Metales Pesados , Contaminantes del Suelo , Suelo , Monitoreo del Ambiente , Clorobencenos/análisis , Polvo/análisis , Contaminantes del Suelo/análisis , China , Medición de Riesgo , Metales Pesados/análisis , Ciudades
7.
Environ Sci Pollut Res Int ; 30(52): 111748-111765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37843707

RESUMEN

The global industrial structure had undertaken significant changes since the twenty-first century, making a severe problem of chlorobenzene pollution in soil and groundwater (CBsPSG). CBsPSG receives increasing attention due to the high toxicity, persistence, and bioaccumulation of chlorobenzenes. To date, despite the gravity of this issue, no bibliometric analysis (BA) of CBsPSG does exist. This study fills up the gap by conducting a BA of 395 articles related to CBsPSG from the Web of Science Core Collection database using CiteSpace. Based on a comprehensive analysis of various aspects, including time-related, related disciplines, keywords, journal contribution, author productivity, and institute and country distribution, the status, development, and hotspots of research in the field were shown visually and statistically. Moreover, this study has also delved into the environmental behavior and remediation techniques of CBsPSG. In addition, four challenges (unequal research development, insufficient cooperation, deeply mechanism research, and developing new technologies) have been identified, and corresponding suggestions have been proposed for the future development of research in the field. Afterwards, the limitations of BA were discussed. This work provides a powerful insight into CBsPSG, enabling to quickly identify the hotspot and direction of future studies by relevant researchers.


Asunto(s)
Contaminación Ambiental , Agua Subterránea , Bibliometría , Clorobencenos , Suelo
8.
Polymers (Basel) ; 14(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145908

RESUMEN

Chlorobenzenes (CBs) are persistent and potentially have a carcinogenic effect on mammals. Thus, the determination of CBs is essential for human health. Hence, in this study, novel polyurethane−polysulfone/calix[4]arene (PU-PSU/calix[4]arene) nanofibers were synthesized using an electrospinning approach over in-situ coating on a stainless-steel wire. The nanosorbent was comprehensively characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques. The SEM analysis depicted the nanofiber's unique morphology and size distribution in the range of 50−200 nm. To determine the levels of 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, and 1,2,3,4-tetrachlorobenzene in water samples, freshly prepared nanosorbent was employed using headspace-solid phase microextraction (HS-SPME) in combination with gas chromatography micro electron capture detector (GC-µECD). Other calixarenes, such as sulfonated calix[4]arene, p-tert-calixarene, and calix[6]arene were also examined, and among the fabricated sorbents, the PU−PSU/calix[4]arene showed the highest efficiency. The key variables of the procedure, including ionic strength, extraction temperature, extraction duration, and desorption conditions were examined. Under optimal conditions, the LOD (0.1−1.0 pg mL−1), the LDR (0.4−1000 pg mL−1), and the R2 > 0.990 were determined. Additionally, the repeatability from fiber to fiber and the intra-day and inter-day reproducibility were determined to be 1.4−6.0, 4.7−10.1, and 0.9−9.7%, respectively. The nanofiber adsorption capacity was found to be 670−720 pg/g for CBs at an initial concentration of 400 pg mL−1. A satisfactory recovery of 80−106% was attained when the suggested method's application for detecting chlorobenzenes (CBs) in tap water, river water, sewage water, and industrial water was assessed.

9.
J Environ Sci (China) ; 118: 204-213, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35305769

RESUMEN

Biodegradation of lower chlorinated benzenes (tri-, di- and monochlorobenzene) was assessed at a coastal aquifer contaminated with multiple chlorinated aromatic hydrocarbons. Field-derived microcosms, established with groundwater from the source zone and amended with a mixture of lower chlorinated benzenes, evidenced biodegradation of monochlorobenzene (MCB) and 1,4-dichlorobenzene (1,4-DCB) in aerobic microcosms, whereas the addition of lactate in anaerobic microcosms did not enhance anaerobic reductive dechlorination. Aerobic microcosms established with groundwater from the plume consumed several doses of MCB and concomitantly degraded the three isomers of dichlorobenzene with no observable inhibitory effect. In the light of these results, we assessed the applicability of compound stable isotope analysis to monitor a potential aerobic remediation treatment of MCB and 1,4-DCB in this site. The carbon isotopic fractionation factors (ε) obtained from field-derived microcosms were -0.7‰ ± 0.1 ‰ and -1.0‰ ± 0.2 ‰ for MCB and 1,4-DCB, respectively. For 1,4-DCB, the carbon isotope fractionation during aerobic biodegradation was reported for the first time. The weak carbon isotope fractionation values for the aerobic pathway would only allow tracing of in situ degradation in aquifer parts with high extent of biodegradation. However, based on the carbon isotope effects measured in this and previous studies, relatively high carbon isotope shifts (i.e., ∆δ13C > 4.0 ‰) of MCB or 1,4-DCB in contaminated groundwater would suggest that their biodegradation is controlled by anaerobic reductive dechlorination.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Isótopos de Carbono , Fraccionamiento Químico , Contaminantes Químicos del Agua/análisis
10.
J Hazard Mater ; 429: 128384, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236041

RESUMEN

Lotus-like Ni@NiO embedded porous carbons (Ni@NiO/PCs) were fabricated by pyrolysis of MOF-74/cellulose nanocrystal hybrids, and used as a solid phase microextraction (SPME) coating for ultrasensitive determination of chlorobenzenes (CBs) from water combined with gas chromatography-mass spectrometry. Owing to its abundant chemical groups, high porosity, and excellent thermal stability, the as-prepared Ni@NiO/PCs presented superior extraction performance compared to commercial SPME coatings. Notably, Ni@NiO/PCs derived from MOF-74/CNC hybrids presented higher extraction efficiencies towards CBs than that derived from pristine CNC and MOF-74 due to the formation of micro/mesopores and more abundant oxygen-containing groups. Under the optimum extraction conditions, the proposed analytical method presented wide linearity range (0.5-1500 ng L-1), ultra-low detection of limit (0.005-0.049 ng L-1), and excellent precision with relative standard deviations of 4.7-9.2% for a single fiber and 8.8-10.9% for 5 fibers, and long lifetime (≥160 times). The proposed analytical method was finally applied for determination of CBs from real water samples, and the recoveries were in the range of 93.2-116.8% towards eight CBs. This study delivered a novel and efficient sorbent as SPME coating to extraction and determination of CBs from water.


Asunto(s)
Lotus , Nanopartículas , Contaminantes Químicos del Agua , Carbono , Celulosa , Clorobencenos , Nanopartículas/análisis , Porosidad , Microextracción en Fase Sólida/métodos , Agua/química , Contaminantes Químicos del Agua/análisis
11.
J Hazard Mater ; 429: 128349, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35101763

RESUMEN

Since little is known about the sorption/desorption behaviors of the mixed chlorobenzenes (CBs) on fresh and aged biochar, this study evaluated the co-sorption/co-desorption mechanism of the mixed monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB) and 1,2,4-tirchlorobenzene (1,2,4-TCB) on the fresh bulk biochar derived from pinewood sawdust and corn straw under the heat treatment temperature (HTT) of 300 and 500 °C, and elucidated the aging-induced changes in the sorption/desorption of mixed CBs by biochar. The distinct sorption capacities of MCB< 1,2-DCB< 1,2,4-TCB were observed on all the tested biochar with the differences being further enhanced following the rise of HTT, as the main sorption mechanism was converted from phase partitioning to π-π interaction between graphitized biochar moieties and more hydrophobic aromatic chemicals. In comparison to the fresh biochar, the sorption suppression of the mixed CBs on the aged biochar was likely attributable to the reduction in accessibility to the aromatic carbon in biochar by introducing O-containing polar moieties on the biochar surfaces. Intriguingly, the kinetics of desorption was decreased with the aging of biochar may be caused by the increase in surface steric hindrance. These findings can provide new insights on understanding the co-sorption/co-desorption mechanism of the mixed CBs and help assess and manage the application of biochar on the treatment of contaminated soil and groundwater under field conditions.


Asunto(s)
Carbón Orgánico , Contaminantes del Suelo , Adsorción , Carbono , Carbón Orgánico/química , Clorobencenos/química , Suelo/química , Contaminantes del Suelo/análisis
12.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159684

RESUMEN

In this work, carbon dot-decorated graphite carbon nitride composites (CDs/g-C3N4) were synthesized and innovatively used as a SPME coating for the sensitive determination of chlorobenzenes (CBs) from water samples, coupled with gas chromatography-mass spectrometry. The CDs/g-C3N4 coating presented superior extraction performance in comparison to pristine g-C3N4, owing to the enhancement of active groups by CDs. The extraction capacities of as-prepared SPME coatings are higher than those of commercial coatings due to the functions of nitrogen-containing and oxygen-containing group binding, π-π stacking, and hydrophobic interactions. Under optimized conditions, the proposed method exhibits a wide linearity range (0.25-2500 ng L-1), extremely low detection of limits (0.002-0.086 ng L-1), and excellent precision, with relative standard deviations of 5.3-9.7% for a single fiber and 7.5-12.6% for five fibers. Finally, the proposed method was successfully applied for the analysis of CBs from real river water samples, with spiked recoveries ranging from 73.4 to 109.1%. This study developed a novel and efficient SPME coating material for extracting organic pollutants from environmental samples.

13.
Chemosphere ; 277: 130356, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34384189

RESUMEN

Numerous reports have elucidated different statistical approaches to identify temporal trends in atmospheric persistent organic pollutant (POP) time series. However, the correlation of industrial activity with concentrations of atmospheric POPs in Japan has not yet been determined. Herein, a panel data analysis of a 16-year monitoring program (2003-2018) conducted by the Japanese Ministry of Environment was used to investigate a range of POPs in the atmosphere above Japan. This work focuses on polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), polybrominated diphenyl ethers (PBDEs), hexachlorobenzene (HCB), and pentachlorobenzene (PeCBz) collected each year at 53 sites across Japan. The panel analysis revealed that PCB, PCN, and PBDE concentrations were influenced by a combination of factors including year, industrial activity (municipal and industrial waste incinerators, cement kilns, steel industry, and secondary zinc production), population, temperature, and atmospheric boundary layer. However, HCB and PeCBz were not significantly affected by these factors. Industrial activity showed stronger positive correlations with all homologues of PCBs, PCNs, and PBDEs as compared to those demonstrated by population. Significant decreasing trends were identified for the atmospheric ∑PBDEs (half-life t1/2 = 9.4 years), ∑PCNs (t1/2 = 8.9 years), and ∑PCBs (t1/2 = 13.5 years) concentrations, while HCB and PeCBz showed slightly increasing or steady levels. As a statistical tool, panel data analysis can contribute to the assessment of spatial and temporal trends of POPs at a national scale, while elucidating different behavioral responses to numerous environmental variables.


Asunto(s)
Contaminantes Atmosféricos , Bifenilos Policlorados , Contaminantes Atmosféricos/análisis , Análisis de Datos , Monitoreo del Ambiente , Éteres Difenilos Halogenados/análisis , Japón , Contaminantes Orgánicos Persistentes , Bifenilos Policlorados/análisis
14.
Food Chem ; 363: 130330, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157556

RESUMEN

An online micro solid-phase extraction (online-µSPE) using electrospun nanofibers, as an efficient sorbent, was developed to extract chlorobenzenes (CBs) from paddy soil, agricultural wastewater, and food samples (fruit juices, vegetables, rice samples) followed by high performance liquid chromatography analysis. Electrospun nanofibers were fabricated using a nanocomposite containing polyacrylonitrile and Zn-metal organic framework 74 @graphene oxide (PAN/Zn-MOF-74@GO), and subsequently characterized. Under the optimal conditions, acceptable linearity was obtained in the range of 0.25-700.00 ng mL-1 for 1,2-dichlorobenzene (1,2-DCB) and 2.50-700.00 ng mL-1 for both 1,2,3-trichlorobenzene (1,2,3-TCB) and 1,2,4-trichlorobenzene (1,2,4-TCB) with determination coefficients ≥ 0.9991. The limits of detection ranged from 0.08 to 1.10 ng mL-1. The intra-day and inter-day single fiber and fiber to fiber relative standard deviations were observed in the range of 4.1%-9.5% and 5.8%-12.1%, respectively. The performance of this method was examined by determining the target analytes in the different spiked samples.


Asunto(s)
Nanocompuestos , Agua , Resinas Acrílicas , Clorobencenos , Cromatografía Líquida de Alta Presión , Límite de Detección , Suelo , Extracción en Fase Sólida , Zinc
15.
Chemosphere ; 280: 130645, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33933998

RESUMEN

Concentrations and distributions of PAHs and chlorinated aromatic compounds including PCDD/Fs, dl-PCBs, chlorophenols (CPs), and chlorobenzenes (CBz) in the municipal waste incinerator are investigated to characterize their formation and emission via intensive stack sampling. In addition, the toxicity of fly ash contribution by PCDD/Fs and dl-PCBs is evaluated in this study. The results reveal that concentrations of PCDD/Fs and dl-PCBs in flue gas are significantly lower than those of CPs, CBz, and PAHs. Additionally, the removal efficiencies of PAHs and chlorinated aromatic compounds achieved with existing air pollution control devices are evaluated, indicating that the removal efficiencies achieved with activated carbon injection + baghouse (95-99%) are higher than those with semi-dry scrubber (SDS). Besides, PCDD/Fs and PCBs TEQ concentrations in SDS and BH ashes are within 1.61-2.66 WHO-TEQ/g and 0.09-0.19 WHO-TEQ/g, respectively. Furthermore, the calculated mass flow rates suggest that the input rate of PCDD/Fs and dl-PCBs of SDS are 60.24 mg/h and 59.74 mg/h, respectively. The mass flow rates of PCDD/Fs and dl-PCBs after SDS in flue gas are 32.47 mg/h and 49.73 mg/h, respectively. However, the discharge rates of PCDD/Fs and dl-PCBs from SDS are 120.60 mg/h and 27.05 mg/h, respectively, indicating that PCDD/Fs are significantly formed within the SDS. PCDD/Fs formation is attributed to the operating temperature of SDS (240 ± 11.5 °C), which is within the temperature window for de novo synthesis. Thus, operating parameters of the APCDs should be optimized to reduce the formation of PAHs and chlorinated aromatic pollutants from MWI.


Asunto(s)
Contaminantes Atmosféricos , Clorofenoles , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Contaminantes Atmosféricos/análisis , Clorobencenos/análisis , Dibenzofuranos , Dibenzofuranos Policlorados/análisis , Incineración , Residuos Industriales/análisis , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análisis
16.
Environ Sci Pollut Res Int ; 28(42): 59416-59429, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33415621

RESUMEN

Microplastics are ubiquitous in aqueous media, and the importance of considering their impact on the behaviour of other compounds in water has often been highlighted. This work thus investigates the adsorption mechanism of six priority substances (as defined by European Union legislation: trichlorobenzenes (1,2,3-TeCB, 1,3,5-TeCB, 1,2,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HeCB), and trifluralin (TFL)) on primary polyethylene (PE) microplastics (polyethylene standard and polyethylene microparticles isolated from two personal care products) in Danube river water and a synthetic matrix. The maximum adsorbed amounts of the compounds investigated on PEs ranged from 227 µg/g for 1,2,3-TeCB to 333 µg/g for TFL. Equilibrium data was analysed using five isotherm models, with the best fit being described by the Langmuir model and the Dubinin-Radushkevich model indicating chemisorption as the likely sorption mechanism. In general, the Langmuir model showed that the investigated compounds will be better adsorbed on PEs in real river water, with the exception of 1,3,5-TeCB on all studied PEs, where the model predicts better sorption in the synthetic matrix. Compound characteristics and the polymer properties were the most important factors affecting the sorption process, while a significant matrix effect was also observed on PE behaviour. The fact that polyethylene particles derived from personal care products showed greater adsorption capacities than virgin PE demonstrates the necessity of investigating real-world PE samples when assessing the potential impact of MPs in the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Clorobencenos , Plásticos , Polietileno , Trifluralina , Contaminantes Químicos del Agua/análisis
17.
J Chromatogr A ; 1636: 461756, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33333374

RESUMEN

A miscible-immiscible deep eutectic solvent (DES) containing monoethanolamine/4-methoxyphenol was used as an extraction solvent in a homogeneous liquid-liquid microextraction (HLLME). The method was used to preconcentrate chlorobenzenes in water samples followed by separating and analyzing them by gas chromatography-mass spectroscopy (GC-MS). A special feature of the new extraction method is that a green miscible solvent was used as an extractant in the HLLME method. The developed extraction technique provided enrichment factors in the range of 13.1-42.1 for extraction from only 1.0 mL of the aqueous sample solution. The effects of various experimental parameters were investigated and optimized. The optimal conditions were as follows: vortex time: 30.0 s, bubbling CO2 gas: 1.0 min, salt concentration: 5.0% w/v, rate and time of centrifuge: 4000.0 rpm and 3.0 min, respectively, and DES volume: 30.0 µL. The limit of detections and the limit of quantifications for the four targeted analytes varied from 0.01-0.15 and 0.025-0.5 µg L-1, respectively. The precision and long-term precision tests for the developed method were found to be less than 11.0%. Two real samples, including toilet air freshener and car perfume, were analyzed. The applied DES in the HLLME method provides a fast means of sample preparation for environmental aqueous sample solutions.


Asunto(s)
Dióxido de Carbono/química , Clorobencenos/química , Microextracción en Fase Líquida/métodos , Solventes/química , Clorobencenos/análisis , Clorobencenos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Perfumes/química
18.
J Hazard Mater ; 400: 123321, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947718

RESUMEN

Solid waste incineration is a major emission source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The injection of N- and S-containing compounds is an effective way to suppress the formation of PCDD/Fs, but this approach is still shortcoming because additional pollutants such as NH3 and SOx are emitted. To avoid the secondary pollutions, a de novo synthesis inhibition mechanism in the presence of CaO was postulated to transform CuCl2 to CuO and deplete Cl2 and HCl. Chlorobenzenes (CBzs), which are indicators and precursors of PCDD/Fs, were adopted to prove the inhibitory effect of CaO at 400 °C, using both simulated synthetic ash and extracted air pollution control residues. As the molar ratio of CaO to CuCl2 exceeded 3, the residual carbon increased, and the inhibition efficiency of CBzs exceeded 93 %. This performance is superior to the corresponding performance of NH4H2PO4, which has been proved to be a potential inhibitor. Furthermore, with CaO, chlorides remained in the solid phase and had inactive catalytic performance; and they were the major products rather than HCl, Cl2 and Cu2OCl2. The addition of CaO during waste incineration therefore can facilitate the abatement of PCDD/Fs contamination and reduce the emissions of acid gas simultaneously.

19.
J Environ Manage ; 261: 110240, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148309

RESUMEN

Chlorinated pesticides were extensively produced in the XX century, generating high amounts of toxic wastes often dumped in the surroundings of the production sites, resulting in hot points of soil and groundwater pollution worldwide. This is the case of Bailín landfill, located in Sabiñánigo (Spain), where groundwater is highly polluted with chlorobenzenes (mono, di, tri and tetra) and hexachlorocyclohexanes. This study addresses the abatement of chlorinated organic compounds (COCs) present in the groundwater coming from the Bailín landfill by thermally activated persulfate, PS (TAP). The influence of temperature (30-50 °C) and oxidant concentration (2-40 g L-1) on the efficiency of COCs (initial concentration of COCs = 57.53 mg L-1, determined by the solubility of the pollutants in water) degradation has been investigated. Raising the reaction temperature and PS concentration the degradation of COCs significantly accelerates, as a result of higher production of sulfate radicals. The thermal activation of PS implies side reactions, involving the unproductive decomposition of this oxidant. The activation energy calculated for this reaction (128.48 kJ mol-1) reveals that is slightly more favored by temperature than the oxidation of COCs by sulfate radicals (102.4-115.72 kJ mol-1). At the selected operating conditions (PS = 10 g L-1, 40 °C), the almost complete conversion of COCs and a dechlorination and mineralization degree above 80% were obtained at 168 h reaction time. A kinetic model, able to adequately predict the experimental concentration of COCs when operating at different temperatures and initial concentration of PS has been proposed.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Compuestos Orgánicos , Oxidación-Reducción , Sulfatos , Instalaciones de Eliminación de Residuos
20.
Regul Toxicol Pharmacol ; 113: 104617, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32087351

RESUMEN

Read-across based on only structural similarity is considered to have a risk of error in chemical risk assessment. Under these circumstances, considering biological similarity based on adverse outcome pathways using in vitro omics technologies is expected to enhance the accuracy and robustness of conclusions in read-across. However, due to a lack of practical case studies, key considerations and use of these technologies for data gap filling are not well discussed. Here we extracted and compared the potential mechanisms for hepatotoxicity for structural analogs of p-dialkoxy chlorobenzenes including 1,4-dichloro-2,5-dimethoxybenzene (DDMB), 2,5-dichloro-1,4-diethoxybenzene (DDEB), 2-chloro-1,4-dimethoxybenzene (CDMB), and 1-chloro-2,5-diethoxybenzene (CDEB) using in vitro omics technologies for read-across. To reveal the potential mechanisms for hepatotoxicity, we conducted microarray analysis with rat primary hepatocytes. The results showed that three (DDMB, DDEB, CDEB) of the four chemicals affected similar biological pathways such as peroxisome proliferation, oxidative stress, and mitochondrial dysfunction. Furthermore, these biological pathways are consistent with in vivo hepatotoxicity in the source chemical, DDMB. In contrast, CDMB did not affect a specific toxicological pathway. Taken together, these data show the potential mechanisms for hepatotoxicity for three chemicals (DDMB, DDEB, CDEB) and provide novel insights into grouping chemicals using in vitro toxicogenomics for read-across.


Asunto(s)
Clorobencenos/toxicidad , Sustancias Peligrosas/toxicidad , Hepatocitos/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Clorobencenos/química , Sustancias Peligrosas/química , Hepatocitos/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Toxicogenética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA