Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 5: 77, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197885

RESUMEN

Autosomal Dominant Polycistic kidney Disease (ADPKD) is a renal channelopathy due to loss-of-function mutations in the PKD1 or PKD2 genes, encoding polycystin-1 (PC1) or polycystin-2 (PC2), respectively. PC1 is a large protein found predominantly on the plasma membrane where interacts with different proteins, including PC2. PC2 is a smaller integral membrane protein also expressed in intracellular organelles, acting as a non-selective cation channel permeable to calcium. Both PC1 and PC2 are also localized to the primary cilium of renal epithelial cells serving as mechanosensor that controls calcium influx through the plasma membrane and regulates intracellular calcium release from the endoplasmic reticulum. The mechanisms by which PC1/2 dysfunction leads to ADPKD needs still to be clarified. We have recently reported that selective Calcium-Sensing Receptor (CaSR) activation in human conditionally immortalized Proximal Tubular Epithelial cells deficient for PC1 (ciPTEC-PC1KD), deriving from urine sediments reduces intracellular cAMP and mTOR activity, and increases intracellular calcium reversing the principal ADPKD dysregulations. Reduced cellular free calcium found in ADPKD can, on the other hand, affect mitochondrial function and ATP production and, interestingly, a relationship between mitochondria and renal polycystic diseases have been suggested. By using ciPTEC-PC1KD as experimental tool modeling of ADPKD, we show here that, compared with wild type cells, ciPTEC-PC1KD have significantly lower mitochondrial calcium levels associated with a severe deficit in mitochondrial ATP production, secondary to a multilevel impairment of oxidative phosphorylation. Notably, selective CaSR activation with the calcimimetic NPS-R568 increases mitochondrial calcium content close to the levels found in resting wild type cells, and fully recovers the cell energy deficit associated to the PC1 channel disruption. Treatment of ciPTEC-PC1KD with 2-APB, an IP3R inhibitor, prevented the rescue of bioenergetics deficit induced by CaSR activation supporting a critical role of IP3Rs in driving ER-to-mitochondria Ca2+ shuttle. Together these data indicate that, besides reversing the principal dysregulations considered the most proximal events in ADPKD pathogenesis, selective CaSR activation in PKD1 deficient cells restores altered mitochondrial function that, in ADPKD, is known to facilitate cyst formation. These findings identify CaSR as a potential therapeutic target.

2.
Arch Toxicol ; 92(10): 3175-3190, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30155723

RESUMEN

Drug-induced nephrotoxicity is a major concern in the clinic and hampers the use of available treatments as well as the development of innovative medicines. It is typically discovered late during drug development, which reflects a lack of in vitro nephrotoxicity assays available that can be employed readily in early drug discovery, to identify and hence steer away from the risk. Here, we report the development of a high content screening assay in ciPTEC-OAT1, a proximal tubular cell line that expresses several relevant renal transporters, using five fluorescent dyes to quantify cell health parameters. We used a validation set of 62 drugs, tested across a relevant concentration range compared to their exposure in humans, to develop a model that integrates multi-parametric data and drug exposure information, which identified most proximal tubular toxic drugs tested (sensitivity 75%) without any false positives (specificity 100%). Due to the relatively high throughput (straight-forward assay protocol, 96-well format, cost-effective) the assay is compatible with the needs in the early drug discovery setting to enable identification, quantification and subsequent mitigation of the risk for nephrotoxicity.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Riñón/efectos de los fármacos , Pruebas de Toxicidad/métodos , Línea Celular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Colorantes Fluorescentes , Humanos , Enfermedades Renales/inducido químicamente , Túbulos Renales/citología , Modelos Teóricos , Proteína 1 de Transporte de Anión Orgánico/genética , Reproducibilidad de los Resultados
3.
J Tissue Eng Regen Med ; 12(7): 1670-1678, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29764003

RESUMEN

The accumulation of protein-bound toxins in dialyzed patients is strongly associated with their high morbidity and mortality. The bioartificial kidney device (BAK), containing proximal tubule epithelial cells (PTECs) seeded on functionalized synthetic hollow fibre membranes, may be a powerful solution for the active removal of those metabolites. In an earlier study, we developed an upscaled BAK containing conditionally immortalized human PTEC with functional organic cationic transporter 2. Here, we first extended this development to a BAK device having cells with the organic anionic transporter 1, capable of removing anionic uraemic wastes. We confirmed the quality of the conditionally immortalized human PTEC monolayer by confocal microscopy and paracellular inulin-fluorescein isothiocyanate leakage, as well as by the active transport of anionic toxin, indoxyl sulphate. Furthermore, we assessed the immune safety of our system by measuring the production of relevant cytokines by the cells after lipopolysaccharide stimulation. Upon lipopolysaccharide treatment, we observed a polarized secretion of proinflammatory cytokines by the cells: 10-fold higher in the extraluminal space, corresponding to the urine compartment, as compared with the intraluminal space, corresponding to the blood compartment. To the best of our knowledge, our work is the first to show this favourable cell polarization in a BAK upscaled device.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Túbulos Renales Proximales/metabolismo , Lipopolisacáridos/farmacología , Transportador 2 de Cátion Orgánico/metabolismo , Línea Celular Transformada , Humanos , Túbulos Renales Proximales/citología
4.
Biomed Chromatogr ; 32(8): e4238, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29517154

RESUMEN

Nephropathic cystinosis is characterized by abnormal intralysosomal accumulation of cystine throughout the body, causing irreversible damage to various organs, particularly the kidneys. Cysteamine, the currently available treatment, can reduce lysosomal cystine and postpone disease progression. However, cysteamine poses serious side effects and does not address all of the symptoms of cystinosis. To screen for new treatment options, a rapid and reliable high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to quantify cystine in conditionally immortalized human proximal tubular epithelial cells (ciPTEC). The ciPTEC were treated with N-ethylmaleimide, lysed and deproteinized with 15% (w/v) sulfosalicylic acid. Subsequently, cystine was measured using deuterium-labeled cystine-D4, as the internal standard. The assay developed demonstrated linearity to at least 20 µmol/L with a good precision. Accuracies were between 97.3 and 102.9% for both cell extracts and whole cell samples. Cystine was sufficiently stable under all relevant analytical conditions. The assay was successfully applied to determine cystine levels in both healthy and cystinotic ciPTEC. Control cells showed clearly distinguishable cystine levels compared with cystinotic cells treated with or without cysteamine. The method developed provides a fast and reliable quantification of cystine, and is applicable to screen for potential drugs that could reverse cystinotic symptoms in human kidney cells.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cistina/análisis , Túbulos Renales Proximales/química , Túbulos Renales Proximales/citología , Espectrometría de Masas en Tándem/métodos , Línea Celular , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
5.
Toxicol In Vitro ; 32: 138-45, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708294

RESUMEN

Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay.


Asunto(s)
Glicósidos Cardíacos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Bioensayo , Transporte Biológico , Línea Celular , Perros , Humanos , Células de Riñón Canino Madin Darby
6.
Exp Cell Res ; 319(19): 3000-9, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23906925

RESUMEN

The hallmark of fibrosis is an accumulation of fibrillar collagens, especially of collagen type I. There is considerable debate whether in vivo type II epithelial-to-mesenchymal transition (EMT) is involved in organ fibrosis. Lineage tracing experiments by various groups show opposing data concerning the relative contribution of epithelial cells to the pool of myofibroblasts. We hypothesized that EMT-derived cells might directly contribute to collagen deposition. To study this, EMT was induced in human epithelial lung and renal cell lines in vitro by means of TGF-ß1 stimulation, and we compared the collagen type I (COL1A1) expression levels of transdifferentiated cells with that of myofibroblasts obtained by TGF-ß1 stimulation of human dermal and lung fibroblasts. COL1A1 expression levels of transdifferentiated epithelial cells appeared to be at least one to two orders of magnitude lower than that of myofibroblasts. This was confirmed at immunohistochemical level: in contrast to myofibroblasts, collagen type I deposition by EMT-derived cells was not or hardly detectable. We postulate that, even when type II EMT occurs in vivo, the direct contribution of EMT-derived cells to collagen accumulation is rather limited.


Asunto(s)
Colágeno Tipo I/metabolismo , Células Epiteliales/citología , Transición Epitelial-Mesenquimal/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Colágeno Tipo I/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Fibroblastos/citología , Fibrosis/metabolismo , Humanos , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA