Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.966
Filtrar
1.
J Comp Neurol ; 532(7): e25657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987912

RESUMEN

The tectofugal pathway is a highly conserved visual pathway in all amniotes. In birds and mammals, retinorecipient neurons located in the midbrain roof (optic tectum/superior colliculus) are the source of ascending projections to thalamic relays (nucleus rotundus/caudal pulvinar), which in turn project to specific pallial regions (visual dorsal ventricular ridge [vDVR]/temporal cortex) organized according to a columnar recurrent arrangement of interlaminar circuits. Whether or to which extent these striking hodological correspondences arise from comparable developmental processes is at present an open question, mainly due to the scarcity of data about the ontogeny of the avian tectofugal system. Most of the previous developmental studies of this system in birds have focused on the establishment of the retino-tecto-thalamic connectivity, overlooking the development of the thalamo-pallial-intrapallial circuit. In this work, we studied the latter in chicken embryos by means of immunohistochemical assays and precise ex vivo crystalline injections of biocytin and DiI. We found that the layered organization of the vDVR as well as the system of homotopic reciprocal connections between vDVR layers were present as early as E8. A highly organized thalamo-vDVR projection was also present at this stage. Our immunohistochemical assays suggest that both systems of projections emerge simultaneously even earlier. Combined with previous findings, these results reveal that, in striking contrast with mammals, the peripheral and central stages of the avian tectofugal pathway develop along different timelines, with a tecto-thalamo-intrapallial organization arising before and possibly independently of the retino-isthmo-tectal circuit.


Asunto(s)
Pollos , Colículos Superiores , Tálamo , Vías Visuales , Animales , Vías Visuales/crecimiento & desarrollo , Embrión de Pollo , Tálamo/crecimiento & desarrollo , Colículos Superiores/crecimiento & desarrollo
2.
Front Neurosci ; 18: 1427384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948926

RESUMEN

The nucleus tractus solitarii (NTS) plays a critical role in the homeostatic regulation of respiration, blood pressure, sodium consumption and metabolic processes. Despite their significance, the circuitry mechanisms facilitating these diverse physiological functions remain incompletely understood. In this study, we present a whole-brain mapping of both the afferent and efferent connections of Phox2b-expressing and GABAergic neurons within the NTS. Our findings reveal that these neuronal populations not only receive monosynaptic inputs primarily from the medulla oblongata, pons, midbrain, supra-midbrain and cortical areas, but also mutually project their axons to these same locales. Moreover, intense monosynaptic inputs are received from the central amygdala, the paraventricular nucleus of the hypothalamus, the parasubthalamic nucleus and the intermediate reticular nucleus, along with brainstem nuclei explicitly engaged in respiratory regulation. In contrast, both neuronal groups extensively innervate brainstem nuclei associated with respiratory functions, although their projections to regions above the midbrain are comparatively limited. These anatomical findings provide a foundational platform for delineating an anatomical framework essential for dissecting the specific functional mechanisms of these circuits.

3.
J Biol Phys ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958893

RESUMEN

External electric and mechanical stimuli can induce shape deformation in excitable media because of its intrinsic flexible property. When the signals propagation in the media is described by a neural network, creation of heterogeneity or defect is considered as the effect of shape deformation due to accumulation or release of energy in the media. In this paper, a temperature-light sensitive neuron model is developed from a nonlinear circuit composed of a phototube and a thermistor, and the physical energy is kept in capacitive and inductive terms. Furthermore, the Hamilton energy for this function neuron is obtained in theoretical way. A regular neural network is built on a square array by activating electric synapse between adjacent neurons, and a few of neurons in local area is excited by noisy disturbance, which induces local energy diversity, and continuous coupling enables energy propagation and diffusion. Initially, the Hamilton energy function for a temperature-light sensitive neuron can be obtained. Then, the finite neurons are applied noise to obtain energy diversity to explore the energy spread between neurons in the network. For keeping local energy balance, one intrinsic parameter is regulated adaptively until energy diversity in this local area is decreased greatly. Regular pattern formation indicates that local energy balance creates heterogeneity or defects and a few of neurons show continuous parameter shift for keeping energy balance in a local area, which supports gradient energy distribution for propagating waves in the network.

4.
Sci Rep ; 14(1): 15225, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956181

RESUMEN

We investigate a hybrid device allowing a photon-phonon coupling of a transmission line radiation (TLR) and a nanoeletromechanical system (NEMS), mediated by a superconducting qubit population imbalance. We demonstrate the derivation of an effective Hamiltonian for the strongly dispersive regime for this system. The qubit works as a quantum switch, allowing a conditioned transfer of excitations between the TLR and NEMS. We show that this regime allows the system to be employed for signal processing and force estimation. Additionally, we explore the ability of the quantum switch to generate non-classical states.

5.
Sci Rep ; 14(1): 15105, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956211

RESUMEN

To improve the efficacy of organic solar cells (OSCs), novel small acceptor molecules (CTD1-CTD7) were designed by modification at the terminal acceptors of reference compound CTR. The optoelectronic properties of the investigated compounds (CTD1-CTD7) were accomplished by employing density functional theory (DFT) in combination with time-dependent density functional theory (TD-DFT). The M06 functional along with a 6-311G(d,p) basis set was utilized for calculating various parameters such as: frontier molecular orbitals (FMO), absorption maxima (λmax), binding energy (Eb), transition density matrix (TDM), density of states (DOS), and open circuit voltage (Voc) of entitled chromophores. A red shift in the absorption spectra of all designed chromophores (CTD1-CTD7) was observed as compared to CTR, accompanied by low excitation energy. Particularly, CTD4 was characterized by the highest λmax value of 685.791 nm and the lowest transition energy value of 1.801 eV which might be ascribed to the robust electron-withdrawing end-capped acceptor group. The observed reduced binding energy (Eb) was linked to an elevated rate of exciton dissociation and substantial charge transfer from central core in HOMO towards terminal acceptors in LUMO. These results were further supported by the outcomes from TDM and DOS analyses. Among all entitled chromophores, CTD4 exhibited bathochromic shift (685.791 nm), minimum HOMO/LUMO band gap of 2.347 eV with greater CT. Thus, it can be concluded that by employing molecular engineering with efficient acceptor moieties, the efficiency of photovoltaic materials could be improved.

6.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000841

RESUMEN

As large-scale, high-proportion, and efficient distribution transformers surge into the grids, anti-short circuit capability testing of transformer windings in efficient distribution seems necessary and prominent. To deeply explore the influence of progressively short-circuit shock impulses on the core winding deformation of efficient power transformers, a finite element theoretical model was built by referring to a three-phase three-winding 3D wound core transformer with a model of S20-MRL-400/10-NX2. The distributions of internal equivalent force and total deformation of the 3D wound core transformer along different paths under progressively short-circuit shock impulses varying from 60% to 120% were investigated. Results show that the equivalent stress and total deformation change rate reach their maximum as the short-circuit current increases from 60% to 80%, and the maximum and average variation rate for the equivalent stress reach 177.75% and 177.43%, while the maximum and average variation rate for the total deformation corresponds to 178.30% and 177.45%, respectively. Meanwhile, the maximum equivalent stress and maximum total deformation reach 29.81 MPa and 38.70 µm, respectively, as the applied short-circuit current increased to 120%. In light of the above observations, the optimization and deployment of wireless sensor nodes was suggested. Therefore, a distributed monitoring system was developed for acquiring the vibration status of the windings in a 3D wound core transformer, which is a beneficial supplement to the traditional short-circuit reactance detection methods for an efficient grid access spot-check of distribution transformers.

7.
Cell Rep ; 43(7): 114513, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003736

RESUMEN

Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.

8.
Neural Netw ; 179: 106508, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39003982

RESUMEN

Quantum Architecture Search (QAS) has shown significant promise in designing quantum circuits for Variational Quantum Algorithms (VQAs). However, existing QAS algorithms primarily explore circuit architectures within a discrete space, which is inherently inefficient. In this paper, we propose a Gradient-based Optimization for Quantum Architecture Search (GQAS), which leverages a circuit encoder, decoder, and predictor. Initially, the encoder embeds circuit architectures into a continuous latent representation. Subsequently, a predictor utilizes this continuous latent representation as input and outputs an estimated performance for the given architecture. The latent representation is then optimized through gradient descent within the continuous latent space based on the predicted performance. The optimized latent representation is finally mapped back to a discrete architecture via the decoder. To enhance the quality of the latent representation, we pre-train the encoder on a substantial dataset of circuit architectures using Self-Supervised Learning (SSL). Our simulation results on the Variational Quantum Eigensolver (VQE) indicate that our method outperforms the current Differentiable Quantum Architecture Search (DQAS).

9.
Discov Nano ; 19(1): 111, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970699

RESUMEN

Experimental and simulation studies demonstrated that the initial voltage setting significantly influences the open-circuit voltage (VOC) in triboelectric nanogenerators (TENGs). Utilizing diode configurations, we consistently observed two distinct VOCs independent of the initial settings. A lower VOC corresponded to the surface voltage (VSurface), while a higher VOC was amplified by the product of the VSurface and the TENG's characteristic impedance ratio. Notably, a lower measurement system capacitance provided a more precise representation of the inherent characteristics of the TENG. Conversely, an increase in system impedance led to a convergence of the two VOCs and a reduction in their magnitudes relative to VSurface. These findings suggest that optimizing the initial/repeated charge balancing and minimizing capacitive loads are crucial for maximizing TENG output power in practical applications.

10.
Cell Syst ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971149

RESUMEN

Here, we present a method for expressing multiple open reading frames (ORFs) from single transcripts using the leaky scanning model of translation initiation. In this approach termed "stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes" (SEMPER), adjacent ORFs are translated from a single mRNA at tunable ratios determined by their order in the sequence and the strength of their translation initiation sites. We validate this approach by expressing up to three fluorescent proteins from one plasmid in two different cell lines. We then use it to encode a stoichiometrically tuned polycistronic construct encoding gas vesicle acoustic reporter genes that enables efficient formation of the multi-protein complex while minimizing cellular toxicity. We also demonstrate that SEMPER enables polycistronic expression of recombinant monoclonal antibodies from plasmid DNA and of two fluorescent proteins from single mRNAs made through in vitro transcription. Finally, we provide a probabilistic model to elucidate the mechanisms underlying SEMPER. A record of this paper's transparent peer review process is included in the supplemental information.

11.
Cell Rep ; 43(7): 114470, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38985682

RESUMEN

The importance of visual cues for navigation and goal-directed behavior is well established, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the medial entorhinal cortex (MEC), which receives direct projections from neocortical visual areas, including the retrosplenial cortex (RSC). Here, we perform high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assess the dynamics of sensory-evoked activity. We find that a large fraction of neurons exhibit robust responses to visual input. Visually responsive cells are located primarily in layer 3 of the dorsal MEC and can be separated into subgroups based on functional and molecular properties. Furthermore, optogenetic suppression of RSC afferents within the MEC strongly reduces visual responses. Overall, our results demonstrate that the MEC can encode simple visual cues in the environment that may contribute to neural representations of location necessary for accurate navigation.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38958143

RESUMEN

Great progress has been made in organic solar cells (OSCs) in recent years, especially after the report of the highly efficient small-molecule electron acceptor Y6. However, the relatively low open circuit voltage (VOC) and unbalanced charge mobilities remain two issues that need to be resolved for further improvement in the performance of OSCs. Herein, a wide-band-gap amorphous acceptor IO-4Cl, which possessed a shallower lowest unoccupied molecular orbital (LUMO) energy level than Y6, was introduced into the PM6:Y6 binary system to construct a ternary device. The mechanism study revealed that the introduced IO-4Cl was alloyed with Y6 to prevent the overaggregation of Y6 and offer dual channels for effective hole transportation, resulting in balanced hole and electron mobilities. Taking these advantages, an enhanced VOC of 0.894 V and an improved fill factor of 75.58% were achieved in the optimized PM6:Y6:IO-4Cl-based ternary device, yielding a promising power conversion efficiency (PCE) of 17.49%, which surpassed the 16.72% efficiency of the PM6:Y6 binary device. This work provides an alternative solution to balance the charge mobilities of PM6:Y6-based devices by incorporating an amorphous high-performance LUMO A-D-A small molecule as the third compound.

13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 402-408, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38953264

RESUMEN

There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.


Asunto(s)
Nivel de Alerta , Corteza Prefrontal , Área Tegmental Ventral , Corteza Prefrontal/fisiología , Área Tegmental Ventral/fisiología , Nivel de Alerta/fisiología , Humanos , Animales , Vías Nerviosas/fisiología
14.
Neural Netw ; 178: 106422, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38901095

RESUMEN

Locomotion and scratching are basic motor functions which are critically important for animal survival. Although the spinal circuits governing forward locomotion have been extensively investigated, the organization of spinal circuits and neural mechanisms regulating backward locomotion and scratching remain unclear. Here, we extend a model by Danner et al. to propose a spinal circuit model with asymmetrical cervical-lumbar layout to investigate these issues. In the model, the left-right alternation within the cervical and lumbar circuits is mediated by V 0D and V 0V commissural interneurons (CINs), respectively. With different control strategies, the model closely reproduces multiple experimental data of quadrupeds in different motor behaviors. Specifically, under the supraspinal drive, walk and trot are expressed in control condition, half-bound is expressed after deletion of V 0V CINs, and bound is expressed after deletion of V0 (V 0D and V 0V) CINs; in addition, unilateral hindlimb scratching occurs in control condition and synchronous bilateral hindlimb scratching appears after deletion of V 0V CINs. Under the combined drive of afferent feedback and perineal stimulation, different coordination patterns between hindlimbs during BBS (backward-biped-spinal) locomotion are generated. The results suggest that (1) the cervical and lumbar circuits in the spinal network are asymmetrically recruited during particular rhythmic limb movements. (2) Multiple motor behaviors share a single spinal network under the reconfiguration of the spinal network by supraspinal inputs or somatosensory feedback. Our model provides new insights into the organization of motor circuits and neural control of rhythmic limb movements.

15.
Neuron ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38901431

RESUMEN

The ventral tegmental area (VTA) is a critical node in circuits governing motivated behavior and is home to diverse populations of neurons that release dopamine, gamma-aminobutyric acid (GABA), glutamate, or combinations of these neurotransmitters. The VTA receives inputs from many brain regions, but a comprehensive understanding of input-specific activation of VTA neuronal subpopulations is lacking. To address this, we combined optogenetic stimulation of select VTA inputs with single-nucleus RNA sequencing (snRNA-seq) and highly multiplexed in situ hybridization to identify distinct neuronal clusters and characterize their spatial distribution and activation patterns. Quantification of immediate-early gene (IEG) expression revealed that different inputs activated select VTA subpopulations, which demonstrated cell-type-specific transcriptional programs. Within dopaminergic subpopulations, IEG induction levels correlated with differential expression of ion channel genes. This new transcriptomics-guided circuit analysis reveals the diversity of VTA activation driven by distinct inputs and provides a resource for future analysis of VTA cell types.

16.
ACS Synth Biol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875315

RESUMEN

Transcription factor (TF)-based biosensors are useful synthetic biology tools for applications in a variety of areas of biotechnology. A major challenge of biosensor circuits is the limited repertoire of identified and well-characterized TFs for applications of interest, in addition to the challenge of optimizing selected biosensors. In this work, we implement the IclR family repressor TF TtgV from Pseudomonas putida DOT-T1E as an indole-derivative biosensor in Escherichia coli. We optimize the genetic circuit utilizing different components, providing insights into biosensor design and expanding on previous studies investigating this TF. We discover novel physiologically relevant ligands of TtgV, such as skatole. The broad specificity of TtgV makes it a useful target for directed evolution and protein engineering toward desired specificity. TtgV, as an indole-derivative biosensor, is a promising genetic component for the detection of compounds with biological activities relevant to health and the gut microbiome.

17.
Immunity ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906145

RESUMEN

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

18.
Small ; : e2402896, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898745

RESUMEN

Developing high-performance and stable Sn-based perovskite solar cells (PSCs) is difficult due to the inherent tendency of Sn2+ oxidation and, the huge energy mismatch between perovskite and Phenyl-C61-butyric acid methyl ester (PCBM), a frequently employed electron transport layer (ETL). This study demonstrates that perovskite surface defects can be passivated and PCBM's electrical properties improved by doping n-type polymer N2200 into PCBM. The doping of PCBM with N2200 results in enhanced band alignment and improved electrical properties of PCBM. The presence of electron-donating atoms such as S, and O in N2200, effectively coordinates with free Sn2+ to prevent further oxidation. The doping of PCBM with N2200 offers a reduced conduction band offset (from 0.38 to 0.21 eV) at the interface between the ETL and perovskite. As a result, the N2200 doped PCBM-based PSCs show an enhanced open circuit voltage of 0.79 V with impressive power conversion efficiency (PCE) of 12.98% (certified PCE 11.95%). Significantly, the N2200 doped PCBM-based PSCs exhibited exceptional stability and retained above 90% of their initial PCE when subjected to continuous illumination at maximum power point tracking for 1000 h under one sun.

19.
Neurotoxicology ; 103: 162-174, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880197

RESUMEN

This study aimed to assess associations between prenatal and postnatal exposure to lead (Pb), mercury (Hg) and polychlorinated biphenyls (PCBs) and gray matter volume of key regions of the brain reward circuit, namely the caudate nucleus, putamen, nucleus accumbens (nAcc), the amygdala, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC). Structural magnetic resonance imaging (MRI) was conducted in 77 Inuit adolescents (mean age = 18.39) from Nunavik, Canada, who also completed the Brief Sensation Seeking Scale (BSSS-4) and Sensation Seeking - 2 (SS-2), two self-report questionnaires evaluating the tendency toward sensation seeking, which is a proxy of reward-related behaviors. Exposures to Pb, Hg and PCBs were measured in cord blood at birth, in blood samples at 11 years old and at time of testing (18 years old). Multivariate linear regressions were corrected for multiple comparisons and adjusted for potential confounders, such as participants' sociodemographic characteristics and nutrient fish intake. Results showed that higher cord blood Pb levels predicted smaller gray matter volume in the bilateral nAcc, caudate nucleus, amygdala and OFC as well as in left ACC. A moderating effect of sex was identified, indicating that the Pb-related reduction in volume in the nAcc and caudate nucleus was more pronounced in female. Higher blood Hg levels at age 11 predicted smaller right amygdala independently of sex. No significant associations were found between blood PCBs levels at all three times of exposure. This study provides scientific support for the detrimental effects of prenatal Pb and childhood Hg blood concentrations on gray matter volume in key reward-related brain structures.

20.
ACS Appl Mater Interfaces ; 16(24): 31428-31437, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38843444

RESUMEN

Exploring the structure-performance relationship of high-voltage organic solar cells (OSCs) is significant for pushing material design and promoting photovoltaic performance. Herein, we chose a D-π-A type polymer composed of 4,8-bis(thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene (BDT-T) and benzotriazole (BTA) units as the benchmark to investigate the effect of the fluorination number and position of the polymers on the device performance of the high-voltage OSCs, with a benzotriazole-based small molecule (BTA3) as the acceptor. F00, F20, and F40 are the polymers with progressively increasing F atoms on the D units, while F02, F22, and F42 are the polymers with further attachment of F atoms to the BTA units based on the above three polymers. Fluorination positively affects the molecular planarity, dipole moment, and molecular aggregations. Our results show that VOC increases with the number of fluorine atoms, and fluorination on the D units has a greater effect on VOC than on the A unit. F42 with six fluorine atom substitutions achieves the highest VOC (1.23 V). When four F atoms are located on the D units, the short-circuit current (JSC) and fill factor (FF) plummet, and before that, they remain almost constant. The drop in JSC and FF in F40- and F42-based devices may be attributed to inefficient charge transfer and severe charge recombination. The F22:BTA3 system achieves the highest power conversion efficiency of 9.5% with a VOC of 1.20 V due to the excellent balance between the photovoltaic parameters. Our study provides insights for the future application of fluorination strategies in molecular design for high-voltage organic photovoltaics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...