Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.593
Filtrar
1.
Int J Biol Macromol ; : 136338, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374719

RESUMEN

Wheat straw, as a non-wood fiber waste, is available worldwide and can be used in cellulosic matric production, promoting the application of sustainable materials. However, poor fiber properties and water drainage are the primary obstacles to its utilization. In this study, wheat straw pulp fibers were chemically crosslinked by citric acid (CA) in an environmentally friendly process. X-ray photoelectron spectroscopy and Fourier transform infrared spectra confirmed that the chemical treatment introduced carboxylic groups to cellulose fibers. Meanwhile, X-ray diffraction patterns showed that the crystallinity of cellulose was reduced. The average fiber length and water retention value of the pulp decreased with increasing CA dosage under the conditions of 3 mL/g CA4 (4 wt% CA), and the drainage performance of the cellulose pulp improved by 21 %. Also, the crosslinking of fibers contributed to the mechanical properties of the cellulosic matrix, increasing the dry and wet strength by 21 % and 282 %, respectively. These results demonstrated that citric acid could be a sustainable method for improving the properties of wheat straw fibers, thereby promoting its application in fabricating sustainable materials.

2.
Environ Pollut ; : 125061, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374758

RESUMEN

Green rust (GR), as a vital intermediate product during the formation of various iron oxides, exists with organic matters and metals contaminants in natural environments. Understanding the effects of these natural factors on the transformation process of GR into iron oxides and the environmental behaviors of heavy metals and organic matters during process are critical for environmental quality management, but the fundamental identification of the interaction mechanisms between them and GR is still challenging. In this study, the transformation mechanisms of Co-bearing green rust (GR-Co) synthesized by co-precipitation, and the redistribution behaviors of Co(II) in an environment containing oxalic acid (OA) and citric acid (CA) were clarified. The findings indicated that OA promoted the Fe(II) dissolution and the transformation of GR-Co to goethite, while CA decreased the Fe(II) dissolution and the proportion of non-extractable Co. Furthermore, in the presence of CA, the transformation products of GR-Co were ferrihydrite, magnetite, lepidocrocite and goethite instead of only lepidocrocite and goethite. Meanwhile, CA prohibited ferrihydrite from transforming into more highly crystalline iron minerals. The finding of this study improves the understanding of the interaction mechanisms between GR-Co and organic matter, and the environmental geochemical behaviors of Co and organic carbon during the transformation processes in nature.

3.
Microbiol Spectr ; : e0190624, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377610

RESUMEN

For over a century, the filamentous Ascomycete fungus Aspergillus niger has played a pivotal role in the industrial production of citric acid. A critical fermentation parameter that sustains high-yield citric acid accumulation is the suboptimal concentration of manganese(II) ions in the culture broth at the early stages of the process. However, the requirement for this deficiency has not been investigated on a functional genomics level. In this study, we compared the transcriptome of the citric acid hyper-producer A. niger NRRL2270 strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. Of the 11,846 genes in the genome, 963 genes (8.1% of the total) were identified as significantly differentially expressed under these conditions. Disproportionately high number of differentially regulated genes encode predicted extracellular and membrane proteins. The most abundant gene group that was upregulated in Mn2+ ion deficiency condition encodes enzymes acting on polysaccharides. In contrast, six clusters of genes encoding secondary metabolites showed downregulation under manganese deficiency. Mn2+ deficiency also triggers upregulation of the cexA gene, which encodes the citrate exporter. We provide functional evidence that the upregulation of cexA is caused by the intracellular accumulation of citrate or acetyl-CoA and is a major factor in triggering citrate overflow. IMPORTANCE: Citric acid is produced on industrial scale by batch fermentation of the filamentous fungus Aspergillus niger. High-yield citric acid production requires a low (<5 ppb) manganese(II) ion concentration in the culture broth. However, the requirement for this deficiency has not been investigated on a functional genomics level. Here, we compared the transcriptome of a citric acid hyper-producer A. niger strain grown under citric acid-producing conditions in 6-L scale bioreactors at Mn2+ ion-deficient (5 ppb) and Mn2+ ion-sufficient (100 ppb) conditions at three early time points of cultivation. We observed that Mn2+ deficiency triggers an upregulation of the citrate exporter gene cexA and provides functional evidence that this event is responsible for citrate overflow. In addition to the industrial relevance, this is the first study that examined the role of Mn2+ ion deficiency in a heterotrophic eukaryotic cell on a genome-wide scale.

4.
J Environ Manage ; 370: 122739, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368388

RESUMEN

INTRODUCTION: Microbial fuel cell (MFC) is a variant of the bio-electro-chemical system that uses microorganisms as biocatalysts to generate bioenergy by oxidizing organic matter. Due to its two-prong feature of simultaneously treating wastewater and generating electricity, it has drawn extensive interest by scientific communities around the world. However, the pollution purifying capacity and power production of MFC at the laboratory scale have tended to remain steady, and there have been no reports of a performance breakthrough. PROBLEM STATEMENT: This research was conducted to produce electricity and evaluate the efficiency of chemical oxygen demand (COD) removal from wastewater containing Citric Acid using a two-chamber microbial fuel cell without an intermediary. METHODOLOGY: In this research, citric acid factory wastewater was used as the substrate, graphite as the electrode, Nafion membrane for proton transfer from anode to cathode, and grape waste as a carbon source. These Experiments were performed at room temperature and neutral pH. Also, the effect of three independent variables mixed liquor suspended solid (MLSS), Carbon: Nitrogen: Phosphorus stoichiometric ratio (COD:TKN:P), and grape waste on electricity production and wastewater treatment was investigated. Then, the optimal values of each variable were determined under favorable conditions for electricity generation and COD reduction. RESULTS: The MFC was conducted at the optimal values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P 140:10:1, and the grape waste dose of 1.4 g/L. At these conditions, the obtained maximum power density and current density were 18228.10 mW/m2 and 244.44 mA/m2, respectively. The maximum COD removal was 72% achieved in the values of MLSS 1400 mg/L, the stoichiometric ratio of COD:TKN:P equal to 260:10:1, and 1.4 g/L of grape waste. The maximum open circuit voltage was also recorded as 678 mV, obtained at MLSS 3000 mg/L, the stoichiometric ratio of COD:TKN:P equal to 200:10:1, and for a grape waste dose of 2 g/L. CONCLUSION: The results of this research showed that the use of grape waste to supply glucose to microorganisms in the MFC system has a significant effect on increasing energy production and COD removal, and it is recommended to conduct additional research in the future to improve the efficiency. However, scalability and practical application potential of these integrated technologies are the challenges towards their real-world applications in small scale trials.

5.
Food Chem ; 463(Pt 4): 141477, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39357312

RESUMEN

The highly efficient red-emissive carbon dots (R-CDs) were synthesized from citric acid, polyethyleneimine, and benzil via a facile solvothermal process. The R-CDs displayed maximum fluorescence properties at excitation and emission wavelengths of 550 and 631 nm, respectively, which fall within the red wavelength range. Moreover, the R-CDs exhibited a high fluorescence quantum yield of 11.3 %, and this fluorescence was effectively quenched by Sunset Yellow (SY). Consequently, a novel fluorescent probe was developed for SY detection. This probe exhibited a linear range of 0.085-11.31 µg/mL and limit of detection of 0.026 µg/mL. The R-CDs were validated for SY quantification in various food samples, including carbonate beverages, powdered beverage, cider vinegar, fruit flavored drinks, chocolate, and hard candy samples, achieving recovery rates of 91.2-122 % and a relative standard deviation of 1.0-3.5 %. The synthesized R-CDs therefore show promise for application as a probe for the detection of SY in foods.

6.
Food Chem X ; 24: 101790, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39296481

RESUMEN

Plums (Prunus salicina and Prunus domestica) are prevalent in southwestern China, and have attracted interest owing to their delectable taste and exceptional nutritional properties. Therefore, this study aimed to investigate the nutritional and flavor properties of plum to improve its nutritional utilization. Specifically, we determined the soluble sugars, organic acids, and phenolic components in 86 accessions using high-performance liquid chromatography. Notably, glucose, fructose, malic, and quinic acids were the predominant sweetness and acidity in plums, with sucrose contributing more to the sweetness of the flesh than the peel. Moreover, The peel contains 5.5 fold more phenolics than flesh, epicatechin, gallic acid, and proanthocyanidins C1 and B2 were the primary sources of astringency. Correlation and principal component analyses showed eight core factors for plum flavor rating, and a specific rating criterion was established. Conclusively, these findings provide information on the integrated flavor evaluation criteria and for enhancing optimal breeding of plums.

7.
Heliyon ; 10(16): e36309, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253192

RESUMEN

Contamination of agricultural soils with heavy metals (HMs) poses a significant environmental threat, especially because industrial discharges often irrigate agricultural lands. A prominent source of HM(s) pollution occurs from tannery effluents containing high concentrations of chromium (Cr) in both Cr3+ and Cr6+ forms along with other toxic materials. Cr is known for its carcinogenic and mutagenic properties in biological systems. Microbe-assisted phytoremediation has emerged as a promising and environmentally friendly approach for detoxifying Cr-contaminated environments. This study aimed to evaluate the performance of citric acid (CA) and a Cr-reducing bacterial strain (Staphylococcus aureus) on the phytoextraction potential of Lemna minor within a Constructed Wetland System treated with tannery wastewater. Various combinations of tannery wastewater (0, 50, and 100 %), CA (0, 5 and 10 mM), and microbial inoculants were applied to the test plants. The mitigative effects of Staphylococcus aureus strain K1 were examined in combination with different concentrations of CA (0, 5, 10 mM). Data on growth and yield attributes highlighted the beneficial effects of bacterial inoculation and CA in ameliorating Cr toxicity in L. minor, as evidenced by increased foliar chlorophyll and carotenoid contents, enhanced antioxidant enzyme activities (SOD, POD, APX, CAT), and improved nutrient uptake. Specifically, CA application resulted in an enhancement of Cr ranging from 12% to 15% and 23%-31% in concentration, and 134%-141% and 322%-337% in Cr accumulation, respectively. When combined with the S. aureus inoculation treatment, CA application (5 and 10 mM) further increased the concentration and accumulation of Cr in L. minor. The enhancement in Cr ranged from 12% to 23% and 27%-41% in concentration, 68%-75%, and 179%-185% in accumulation, respectively. These results demonstrated that L. minor is an effective choice for environmentally friendly Cr remediation due to its continued ability to grow in polluted wastewater. This study suggested that microbial-assisted phytoextraction combined with chelating agents such as CA could be a practical and effective approach for remediating tannery effluents.

8.
Food Chem X ; 24: 101800, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39310887

RESUMEN

Potatoes are an important food crop worldwide and are rich in essential nutrients. However, cooking can reduce their nutritional value and alter their texture. This study aimed to investigate the impact of pretreating potato slices with lemon juice. The slices were immersed in 5% lemon juice solution for 3 h, rinsed with distilled water for another 3 h, then cooked at 100°C for 20 min. Findings revealed that lemon juice pretreatment (LJP) notably improved the texture, mouthfeel, and overall acceptability of the cooked potato slices of different sizes (CPS-Ds). Additionally, LJP significantly increased vitamin C and total phenolic contents, slightly decreased pH levels, and preserved the desired color of CPS-Ds. Consumer sensory evaluations also indicated a positive response to LJP samples, suggesting its potential application in the food industry. The study confirmed that LJP is an effective, sustainable, consumer-friendly, and cost-efficient technique for improving the quality of cooked potato slices.

9.
ChemSusChem ; : e202401582, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39307920

RESUMEN

NiFe-layered double hydroxides (NiFe-LDH) are a type of catalyst known for their exceptional catalytic performance during the oxygen evolution reaction (OER). In this study, citric acid was incorporated into the synthesis process of NiFe-LDH, resulting in the NiFe-LDH-CA catalyst with superior OER performance. The catalytic efficacy is evaluated using linear sweep voltammetry (LSV), which demonstrates a significant reduction in the OER overpotential from 320 mV to 240 mV at a current density of 100 mA cm-2. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectrum (XAS) indicate that the distribution of nickel valence states showed no significant difference between two samples, yet the NiFe-LDH-CA has a significantly higher proportion of Fe3+ ions in its iron content. In-situ Raman spectroscopes reveal that Fe3+ broadens the redox potential of nickel and Pourbaix diagrams indicate that higher Fe3+ levels could facilitate the interaction with oxygen active sites. Based on the analysis of test data, we propose a hypothesis that the high proportion of Fe3+ in catalysts may accelerate the oxygen evolution process by modulating the redox potential of nickel and engaging with reactive oxygen species. This provides valuable insights into how to improve the reaction rate of nickel-based catalysts.

10.
GMS Hyg Infect Control ; 19: Doc37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224499

RESUMEN

Introduction: The aim of the study was to investigate whether the virucidal effectiveness of chlorine dioxid against adenovirus and murine norovirus can be improved by combining it with carboxylic acids and surfactants. Method: The virucidal efficacy against polio-, adeno- and murine norovirus has been tested in presence of interfering substances in the quantitative suspension test according to EN 14476, the carrier test without mechanical action according to EN 16777, and in the four-field test according to EN 16615.Three chlorine-dioxide-based surface disinfectants were tested: a two-component cleaning disinfectant concentrate for large surfaces, a ready-to-use (RTU) foam, and an RTU gel. Results: Cleaning and disinfecting preparations based on chlorine dioxide, applied at various concentrations, in combination with acetic acid or citric acid and surfactants, are virucidally active against polio-, adeno-, and norovirus after an exposure time of 5 minutes in presence of interfering substances.

11.
Cell Physiol Biochem ; 58(4): 445-457, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39230349

RESUMEN

BACKGROUND/AIMS: Lemons (Citrus limon ) contain various nutrients and are among the most popular citrus fruit. Besides their antioxidant, anticancer, antibacterial, and anti-inflammatory properties, clinical studies have indicated their anti-allergic properties. METHODS: Using the differential-interference contrast (DIC) microscopy, we examined the effects of lemon juice and peel constituents, such as citric acid, ascorbic acid, hesperetin and eriodictyol, on the degranulation from rat peritoneal mast cells. Using fluorescence imaging with a water-soluble dye, Lucifer Yellow, we also examined their effects on the deformation of the plasma membrane. RESULTS: Lemon juice dose-dependently decreased the number of degranulated mast cells. At concentrations equal to or higher than 0.25 mM, citric acid, hesperetin, and eriodictyol significantly reduced the number of degranulating mast cells in a dose-dependent manner, while ascorbic acid required much higher doses to exert significant effects. At 1 mM, citric acid, hesperetin, and eriodictyol almost completely inhibited exocytosis and washed out the Lucifer Yellow trapped on the mast cell surface, while ascorbic acid did not. CONCLUSION: This study provides in vitro evidence for the first time that lemon constituents, such as citric acid, hesperetin, and eriodictyol, potently exert mast cell-stabilizing properties. These properties are attributable to their inhibitory effects on plasma membrane deformation in degranulating mast cells.


Asunto(s)
Ácido Ascórbico , Citrus , Flavanonas , Hesperidina , Mastocitos , Animales , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Citrus/química , Ratas , Ácido Ascórbico/farmacología , Masculino , Hesperidina/farmacología , Hesperidina/química , Flavanonas/farmacología , Flavanonas/química , Ácido Cítrico/farmacología , Ácido Cítrico/química , Degranulación de la Célula/efectos de los fármacos , Jugos de Frutas y Vegetales/análisis , Peritoneo/citología , Ratas Sprague-Dawley , Exocitosis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Frutas/química , Isoquinolinas
12.
Food Sci Biotechnol ; 33(14): 3347-3356, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39328227

RESUMEN

This research verified the in vitro digestive properties of potato starch modified with citric acid (CA), malic acid (MA), and tartaric acid (TA), and evaluated its prebiotic potential. The resistant starch (RS) content in CA- or MA-modified starch was greater than that in native starch. Furthermore, after cooking, all modified starches exhibited an increase in RS content by 2.3 to 3.3 times compared to native starch, which has a 29.81% RS content, demonstrating high thermal stability. Probiotic bacteria demonstrated increased viability, raiging form 6.38-6.85 log CFU/mL, when cultured with modified starch, in contrast to 4.48 log CFU/mL with glucose. During animal testing, modified starches consistently improved gastrointestinal transit, fecal moisture, and lipid levels. Notably, CA-, MA- or TA-modified starches promoted beneficial bacteria growth by providing short-chain fatty acids, with CA-modified starch proving to be the most potent.

13.
ACS Appl Bio Mater ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300902

RESUMEN

Biological scaffolds are plagued by poor biomechanical properties and untimely degradation. These limitations have yet to be addressed without compromising their biocompatibility. It is desirable to avoid inflammation and have degradation with concomitant host collagen deposition or even site-appropriate in situ regeneration for the successful outcome of an implanted biological scaffold. This work aims to achieve this by utilizing a biocompatible method to modify acellular scaffolds by impregnating alkaline-catalyzed citric acid (CA) cross-linking between the extracellular matrix proteins and silk fibroin (SF)/SF-gelatin (SFG) blends. Combinatorial detergent decellularization was employed to prepare a decellularized porcine liver scaffold (DPL). After proving the decellularization efficiency, the scaffold underwent modification by vacuum impregnation with CA containing SF (SF100DPL) and SFG blends (SFG5050DPL and SFG3070DPL) following pre-cross-linking, drying, and post-cross-linking. The subsequent strength augmentation was demonstrated by significant improvement in tensile strength from 2.4 ± 0.4 MPa (DPL) to, 3.8 ± 0.7 MPa (SF100DPL), 3.4 ± 0.7 MPa (SFG5050DPL), and 3.5 ± 0.2 MPa (SFG3070DPL); Young's modulus from 8.7 ± 1.8 MPa (DPL) to 20 ± 1.9 MPa (SF100DPL), 13.3 ± 2.6 MPa (SFG5050DPL), and 16 ± 1.2 MPa (SFG3070DPL); and suture retention strength from 0.9 ± 0.08 MPa (DPL) to 2.3 ± 0.2 MPa (SF100DPL), 2.8 ± 1.2 MPa (SFG5050DPL), and 2.6 ± 0.9 MPa (SFG3070DPL). The degradation resistance of the modified scaffolds was also markedly improved. Being cytocompatible, its ability to incite tolerable inflammatory and immune responses was confirmed by rat subcutaneous implantation for 14, 30, and 90 days, in terms of inflammatory cell infiltration, neoangiogenesis, and in vitro cytokine release to assess B-cell and T-cell activation. Such ECM composite scaffolds with appropriate strength and biocompatibility offer great promise in soft tissue repair applications such as skin grafting.

14.
Viruses ; 16(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39339927

RESUMEN

The recent incursion of highly pathogenic influenza viruses into dairy cattle opens new insights for influenza virus ecology and its interspecies transmission and may have a significant impact on public health and agriculture. The aim of this study was to determine the stability of a bovine highly pathogenic avian influenza H5N1 virus isolate in the milk byproduct lactose and to evaluate two inactivation methods using industrial procedures. The bovine isolate of the highly pathogenic avian influenza H5N1 virus was stable for 14 days in a concentrated lactose solution under refrigerated conditions. Heat or citric acid treatments successfully inactivated the virus in lactose. This study highlights the persistence of HPAIV in lactose and its efficient inactivation under industrial standards.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Lactosa , Leche , Inactivación de Virus , Lactosa/farmacología , Animales , Bovinos , Leche/virología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Calor , Ácido Cítrico/farmacología
15.
Environ Res ; 263(Pt 1): 120045, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313169

RESUMEN

Citric acid esters (CAEs), as one class of important alternative plasticizers, have been proven to be ubiquitous in the environments, leading to an increasing concern regarding their potential health risk to humans. However, information regarding the biomarkers for human CAE biomonitoring is currently unknown. In the present study, we investigated the metabolism characteristics of CAEs by use of in vitro rat liver microsomes (RLMs) and in vivo mice. We observed that CAEs would undergo a rapid metabolism in both in vitro and in vivo conditions, implying that parent CAEs could be not suitable for biomonitoring of human CAE exposure. By use of high-resolution Orbitrap mass spectrometry (MS), ten molecules were tentatively identified as CAE potential metabolites on the basis of their MS and MS/MS characteristics, and CAEs could be metabolized via multiple pathways, i.e. hydrolyzation, hydroxylation, O-dealkylation. Further MS screening in human serum samples demonstrated that most of parent CAEs were not detectable, whereas numerous CAE metabolites were detected in the same batch of analyzed samples. Especially, one of metabolites of tributyl citrate (named with TBC-M1), exhibited a high detection frequency of 73.3%. By use of TBC-M1 as the biomarker of human CAE exposure, alteration of lipid metabolism was further examined in human serum. Interestingly, we observed statistically significant correlations between TBC-M1 levels and population characteristics (i.e., age, BMI, and drinking). Beyond that, we also observed statistically significant correlation between levels of TBC-M1 and lipid molecules (phosphatidylinositol (18:0/20:4) and sphingomyelin (d34:1)). Collectively, this study underscored the property of rapid metabolism of CAEs in exposed organism, and proposed a potential biomarker that could be greatly helpful for further investigating the human CAE exposure and understanding their potential health risks.

16.
ACS Appl Mater Interfaces ; 16(34): 45422-45432, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39102678

RESUMEN

Implantable polymeric biodegradable devices, such as biodegradable vascular scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe a new radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2) consisting of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and molybdenum disulfide (MoS2) nanosheets. The composite was used as an ink with microcontinuous liquid interface production (µCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, with X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in phosphate-buffered saline solution, suggesting the potential for producing radiopaque, fully bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, such as vascular scaffolds, that require noninvasive X-ray-based monitoring techniques for implantation and evaluation. This innovative biomaterial composite system holds significant promise for the development of biocompatible, fluoroscopically visible medical implants, potentially enhancing patient outcomes and reducing medical complications.


Asunto(s)
Citratos , Disulfuros , Procedimientos Endovasculares , Molibdeno , Nanoestructuras , Andamios del Tejido , Molibdeno/química , Molibdeno/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Impresión Tridimensional , Citratos/química , Nanoestructuras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Polímeros/química
17.
Toxics ; 12(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39195665

RESUMEN

Electrokinetic remediation (EKR) has shown great potential for the remediation of in situ contaminated soils. For heavy metal-contaminated soft clay with high moisture content and low permeability, an electrokinetic remediation method with electrolytes placed above the ground surface is used to avoid issues such as electrolyte leakage and secondary contamination that may arise from directly injecting electrolytes into the soil. In this context, using this novel experimental device, a set of citric acid (CA)-enhanced EKR tests were conducted to investigate the optimal design parameters for Cu- and Zn-contaminated soft clay. The average removal rates of heavy metals Cu and Zn in these tests were in the range of 27.9-85.5% and 63.9-83.5%, respectively. The results indicate that the Zn removal was efficient. This was determined by the migration intensity of the electro-osmotic flow, particularly the volume reduction of the anolyte. The main factors affecting the Cu removal efficiency in sequence were the effective electric potential of the contaminated soft clay and the electrolyte concentration. Designing experimental parameters based on these parameters will help remove Cu and Zn. Moreover, the shear strength of the contaminated soil was improved; however, the degree of improvement was limited. Low-concentration CA can effectively control the contact resistance between the anode and soil, the contact resistance between the cathode and soil, and the soil resistance by increasing the amount of electrolyte and the contact area between the electrolyte and soil.

18.
Int Immunopharmacol ; 140: 112828, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39094359

RESUMEN

Changes in isocitrate dehydrogenases (IDH) lead to the production of the cancer-causing metabolite 2-hydroxyglutarate, making them a cause of cancer. However, the specific role of IDH in the progression of colon cancer is still not well understood. Our current study provides evidence that IDH2 is significantly increased in colorectal cancer (CRC) cells and actively promotes cell growth in vitro and the development of tumors in vivo. Inhibiting the activity of IDH2, either through genetic silencing or pharmacological inhibition, results in a significant increase in α-ketoglutarate (α-KG), indicating a decrease in the reductive citric acid cycle. The excessive accumulation of α-KG caused by the inactivation of IDH2 obstructs the generation of ATP in mitochondria and promotes the downregulation of HIF-1A, eventually inhibiting glycolysis. This dual metabolic impact results in a reduction in ATP levels and the suppression of tumor growth. Our study reveals a metabolic trait of colorectal cancer cells, which involves the active utilization of glutamine through reductive citric acid cycle metabolism. The data suggests that IDH2 plays a crucial role in this metabolic process and has the potential to be a valuable target for the advancement of treatments for colorectal cancer.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Isocitrato Deshidrogenasa , Transducción de Señal , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Línea Celular Tumoral , Ratones , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ácidos Cetoglutáricos/metabolismo , Ciclo del Ácido Cítrico , Glucólisis , Ratones Desnudos , Progresión de la Enfermedad , Adenosina Trifosfato/metabolismo , Proliferación Celular , Reprogramación Celular , Mitocondrias/metabolismo , Neoplasias Intestinales/patología , Neoplasias Intestinales/metabolismo , Reprogramación Metabólica
19.
Waste Manag ; 189: 23-33, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39146601

RESUMEN

The management and sustainable recycling of spent lithium-ion batteries (LIBs) holds critical importance from both economic and environmental standpoints. H2O2 and ascorbic acid are widely used inorganic and organic reductants in the hydrometallurgical process for battery recycling. In this study, citric acid, as a reductant, was found to have superior metal leaching efficiencies under microwave-assisted leaching than H2O2 and ascorbic acid. The enhanced performance was attributed not only to the inherent reducing property of citric acid but also to the chelation of citric acid with Cu and Fe, resulting in the formation of reductive radicals under microwave. The effect of acid type, H2SO4 concentration, citric acid concentration, solid-liquid (S/L) ratio, reaction time, and temperature were investigated. 99.5 % of Li, 99.7 % of Mn, 99.5 % of Co, and 99.3 % of Ni were leached from spent lithium nickel manganese cobalt oxides (NCM) battery black mass using 0.2 mol/L H2SO4 and 0.05 mol/L citric acid at 120 °C for 20 min with a fixed S/L ratio of 10 g/L in the microwave-assisted leaching process. Leaching kinetic results were best fitted with the Avrami model, suggesting that the microwave-assisted leaching process was controlled by diffusion. The leaching activation energies of Li, Mn, Co, and Ni were 30.11 kJ/mol, 27.48 kJ/mol, 21.32 kJ/mol, and 33.29 kJ/mol, respectively, providing additional evidence that supports the proposed diffusion-controlled microwave-assisted leaching mechanism. This method provided a green and efficient solution for spent LIBs recycling.


Asunto(s)
Ácido Cítrico , Suministros de Energía Eléctrica , Litio , Microondas , Reciclaje , Reciclaje/métodos , Litio/química , Ácido Cítrico/química , Peróxido de Hidrógeno/química , Cobalto/química , Residuos Electrónicos , Óxidos/química , Ácidos Sulfúricos/química
20.
Int J Biol Macromol ; 277(Pt 3): 134401, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097049

RESUMEN

An imbalance between energy intake and energy expenditure predisposes obesity and its related metabolic diseases. Soluble dietary fiber has been shown to improve metabolic homeostasis mainly via microbiota reshaping. However, the application and metabolic effects of insoluble fiber are less understood. Herein, we employed nanotechnology to design citric acid-crosslinked carboxymethyl cellulose nanofibers (CL-CNF) with a robust capacity of expansion upon swelling. Supplementation with CL-CNF reduced food intake and delayed digestion rate in mice by occupying stomach. Besides, CL-CNF treatment mitigated diet-induced obesity and insulin resistance in mice with enhanced energy expenditure, as well as ameliorated inflammation in adipose tissue, intestine and liver and reduced hepatic steatosis, without any discernible signs of toxicity. Additionally, CL-CNF supplementation resulted in enrichment of probiotics such as Bifidobacterium and decreased in the relative abundances of deleterious microbiota expressing bile salt hydrolase, which led to increased levels of conjugated bile acids and inhibited intestinal FXR signaling to stimulate the release of GLP-1. Taken together, our findings demonstrate that CL-CNF administration protects mice from diet-induced obesity and metabolic dysfunction by reducing food intake, enhancing energy expenditure and remodeling gut microbiota, making it a potential therapeutic strategy against metabolic diseases.


Asunto(s)
Metabolismo Energético , Microbioma Gastrointestinal , Nanofibras , Obesidad , Animales , Nanofibras/química , Obesidad/metabolismo , Obesidad/prevención & control , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Celulosa/farmacología , Celulosa/química , Masculino , Resistencia a la Insulina , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Solubilidad , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/farmacología , Fibras de la Dieta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA