Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.917
Filtrar
1.
Front Hum Neurosci ; 18: 1390714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086374

RESUMEN

Error-related potentials (ErrPs) are brain signals known to be generated as a reaction to erroneous events. Several works have shown that not only self-made errors but also mistakes generated by external agents can elicit such event-related potentials. The possibility of reliably measuring ErrPs through non-invasive techniques has increased the interest in the brain-computer interface (BCI) community in using such signals to improve performance, for example, by performing error correction. Extensive calibration sessions are typically necessary to gather sufficient trials for training subject-specific ErrP classifiers. This procedure is not only time-consuming but also boresome for participants. In this paper, we explore the effectiveness of ErrPs in closed-loop systems, emphasizing their dependency on precise single-trial classification. To guarantee the presence of an ErrPs signal in the data we employ and to ensure that the parameters defining ErrPs are systematically varied, we utilize the open-source toolbox SEREEGA for data simulation. We generated training instances and evaluated the performance of the generic classifier on both simulated and real-world datasets, proposing a promising alternative to conventional calibration techniques. Results show that a generic support vector machine classifier reaches balanced accuracies of 72.9%, 62.7%, 71.0%, and 70.8% on each validation dataset. While performing similarly to a leave-one-subject-out approach for error class detection, the proposed classifier shows promising generalization across different datasets and subjects without further adaptation. Moreover, by utilizing SEREEGA, we can systematically adjust parameters to accommodate the variability in the ErrP, facilitating the systematic validation of closed-loop setups. Furthermore, our objective is to develop a universal ErrP classifier that captures the signal's variability, enabling it to determine the presence or absence of an ErrP in real EEG data.

2.
Med Image Anal ; 97: 103281, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39106764

RESUMEN

Imbalanced classification is a common and difficult task in many medical image analysis applications. However, most existing approaches focus on balancing feature distribution and classifier weights between classes, while ignoring the inner-class heterogeneity and the individuality of each sample. In this paper, we proposed a sample-specific fine-grained prototype learning (SFPL) method to learn the fine-grained representation of the majority class and learn a cosine classifier specifically for each sample such that the classification model is highly tuned to the individual's characteristic. SFPL first builds multiple prototypes to represent the majority class, and then updates the prototypes through a mixture weighting strategy. Moreover, we proposed a uniform loss based on set representations to make the fine-grained prototypes distribute uniformly. To establish associations between fine-grained prototypes and cosine classifier, we propose a selective attention aggregation module to select the effective fine-grained prototypes for final classification. Extensive experiments on three different tasks demonstrate that SFPL outperforms the state-of-the-art (SOTA) methods. Importantly, as the imbalance ratio increases from 10 to 100, the improvement of SFPL over SOTA methods increases from 2.2% to 2.4%; as the training data decreases from 800 to 100, the improvement of SFPL over SOTA methods increases from 2.2% to 3.8%.

3.
J Neurooncol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102117

RESUMEN

BACKGROUND: Liquid biopsy represents a major development in cancer research, with significant translational potential. Similarly, it is increasingly recognized that multi-omic molecular approaches are a powerful avenue through which to understand complex and heterogeneous disease biology. We hypothesize that merging these two promising frontiers of cancer research will improve the discriminatory capacity of current models and allow for improved clinical utility. METHODS: We have compiled a cohort of patients with glioblastoma, brain metastasis, and primary central nervous system lymphoma. Cell-free methylated DNA immunoprecipitation (cfMeDIP) and shotgun proteomic profiling was obtained from the cerebrospinal fluid (CSF) of each patient and used to build tumour-specific classifiers. RESULTS: We show that the DNA methylation and protein profiles of cerebrospinal fluid can be integrated to fully discriminate lymphoma from its diagnostic counterparts with perfect AUC of 1 (95% confidence interval 1-1) and 100% specificity, significantly outperforming single-platform classifiers. CONCLUSIONS: We present the most specific and accurate CNS lymphoma classifier to date and demonstrates the synergistic capability of multi-platform liquid biopsies. This has far-reaching translational utility for patients with newly diagnosed intra-axial brain tumours.

4.
Comput Biol Med ; 180: 108970, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096606

RESUMEN

Huntington's disease (HD) is a complex neurodegenerative disorder with considerable heterogeneity in clinical manifestations. While CAG repeat length is a known predictor of disease severity, this heterogeneity suggests the involvement of additional genetic and environmental factors. Previously we revealed that HD primary fibroblasts exhibit unique features, including distinct nuclear morphology and perturbed actin cap, resembling characteristics seen in Hutchinson-Gilford Progeria Syndrome (HGPS). This study establishes a link between actin cap deficiency and cell motility in HD, which correlates with the HD patient disease severity. Here, we examined single-cell motility imaging features in HD primary fibroblasts to explore in depth the relationship between cell migration patterns and their respective HD patients' clinical severity status (premanifest, mild and severe). The single-cell analysis revealed a decline in overall cell motility in correlation with HD severity, being most prominent in severe HD subgroup and HGPS. Moreover, we identified seven distinct spatial clusters of cell migration in all groups, which their proportion varies within each group becoming a significant HD severity classifier between HD subgroups. Next, we investigated the relationship between Lamin B1 expression, serving as nuclear envelope morphology marker, and cell motility finding that changes in Lamin B1 levels are associated with specific motility patterns within HD subgroups. Based on these data we present an accurate machine learning classifier offering comprehensive exploration of cellular migration patterns and disease severity markers for future accurate drug evaluation opening new opportunities for personalized treatment approaches in this challenging disorder.

5.
Digit Health ; 10: 20552076241272697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130518

RESUMEN

Objective: Urinary tract infection is one of the most prevalent bacterial infectious diseases in outpatient treatment, and 50-80% of women experience it more than once, with a recurrence rate of 40-50% within a year; consequently, preventing re-hospitalization of patients is critical. However, in the field of urology, no research on the analysis of the re-hospitalization status for urinary tract infections using machine learning algorithms has been reported to date. Therefore, this study uses various machine learning algorithms to analyze the clinical and nonclinical factors related to patients who were re-hospitalized within 30 days of urinary tract infection. Methods: Data were collected from 497 patients re-hospitalized for urinary tract infections within 30 days and 496 patients who did not require re-hospitalization. The re-hospitalization factors were analyzed using four machine learning algorithms: gradient boosting classifier, random forest, naive Bayes, and logistic regression. Results: The best-performing gradient boosting classifier identified respiratory rate, days of hospitalization, albumin, diastolic blood pressure, blood urea nitrogen, body mass index, systolic blood pressure, body temperature, total bilirubin, and pulse as the top-10 factors that affect re-hospitalization because of urinary tract infections. The 993 patients whose data were collected were divided into risk groups based on these factors, and the re-hospitalization rate, days of hospitalization, and medical expenses were observed to decrease from the high- to low-risk group. Conclusions: This study showed new possibilities in analyzing the status of urinary tract infection-related re-hospitalization using machine learning. Identifying factors affecting re-hospitalization and incorporating preventable and reinforcement-based treatment programs can aid in reducing the re-hospitalization rate and average number of days of hospitalization, thereby reducing medical expenses.

6.
Sci Rep ; 14(1): 18726, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134567

RESUMEN

This paper presents an analysis of trunk movement in women with postnatal low back pain using machine learning techniques. The study aims to identify the most important features related to low back pain and to develop accurate models for predicting low back pain. Machine learning approaches showed promise for analyzing biomechanical factors related to postnatal low back pain (LBP). This study applied regression and classification algorithms to the trunk movement proposed dataset from 100 postpartum women, 50 with LBP and 50 without. The Optimized optuna Regressor achieved the best regression performance with a mean squared error (MSE) of 0.000273, mean absolute error (MAE) of 0.0039, and R2 score of 0.9968. In classification, the Basic CNN and Random Forest Classifier both attained near-perfect accuracy of 1.0, the area under the receiver operating characteristic curve (AUC) of 1.0, precision of 1.0, recall of 1.0, and F1-score of 1.0, outperforming other models. Key predictive features included pain (correlation of -0.732 with flexion range of motion), range of motion measures (flexion and extension correlation of 0.662), and average movements (correlation of 0.957 with flexion). Feature selection consistently identified pain, flexion, extension, lateral flexion, and average movement as influential across methods. While limited to this initial dataset and constrained by generalizability, machine learning offered quantitative insight. Models accurately regressed (MSE < 0.01, R2 > 0.95) and classified (accuracy > 0.94) trunk biomechanics distinguishing LBP. Incorporating additional demographic, clinical, and patient-reported factors may enhance individualized risk prediction and treatment personalization. This preliminary application of advanced analytics supported machine learning's potential utility for both LBP risk determination and outcome improvement. This study provides valuable insights into the use of machine learning techniques for analyzing trunk movement in women with postnatal low back pain and can potentially inform the development of more effective treatments.Trial registration: The trial was designed as an observational and cross-section study. The study was approved by the Ethical Committee in Deraya University, Faculty of Pharmacy, (No: 10/2023). According to the ethical standards of the Declaration of Helsinki. This study complies with the principles of human research. Each patient signed a written consent form after being given a thorough description of the trial. The study was conducted at the outpatient clinic from February 2023 till June 30, 2023.


Asunto(s)
Dolor de la Región Lumbar , Aprendizaje Automático , Movimiento , Torso , Humanos , Dolor de la Región Lumbar/fisiopatología , Dolor de la Región Lumbar/diagnóstico , Femenino , Adulto , Torso/fisiopatología , Movimiento/fisiología , Periodo Posparto/fisiología , Rango del Movimiento Articular/fisiología , Fenómenos Biomecánicos , Algoritmos , Curva ROC
7.
J Appl Stat ; 51(10): 1976-2006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071252

RESUMEN

The problems of point estimation and classification under the assumption that the training data follow a Lindley distribution are considered. Bayes estimators are derived for the parameter of the Lindley distribution applying the Markov chain Monte Carlo (MCMC), and Tierney and Kadane's [Tierney and Kadane, Accurate approximations for posterior moments and marginal densities, J. Amer. Statist. Assoc. 81 (1986), pp. 82-86] methods. In the sequel, we prove that the Bayes estimators using Tierney and Kadane's approximation and Lindley's approximation both converge to the maximum likelihood estimator (MLE), as n → ∞ , where n is the sample size. The performances of all the proposed estimators are compared with some of the existing ones using bias and mean squared error (MSE), numerically. It has been noticed from our simulation study that the proposed estimators perform better than some of the existing ones. Applying these estimators, we construct several plug-in type classification rules and a rule that uses the likelihood accordance function. The performances of each of the rules are numerically evaluated using the expected probability of misclassification (EPM). Two real-life examples related to COVID-19 disease are considered for illustrative purposes.

8.
Mycoses ; 67(8): e13777, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39075742

RESUMEN

BACKGROUND: Malassezia yeasts are almost universally present on human skin worldwide. While they can cause diseases such as pityriasis versicolor, their implication in skin homeostasis and pathophysiology of other dermatoses is still unclear. Their analysis using native microscopy of skin tape strips is operator dependent and requires skill, training and significant amounts of hands-on time. OBJECTIVES AND METHODS: To standardise and improve the speed and quality of diagnosis of Malassezia in skin tape strip samples, we sought to create an artificial intelligence-based algorithm for this image classification task. Three algorithms, each using different internal architectures, were trained and validated on a manually annotated dataset of 1113 images from 22 samples. RESULTS: The Vision Transformer-based algorithm performed the best with a validation accuracy of 94%, sensitivity of 94.0% and specificity of 93.5%. Visualisations providing insight into the reasoning of the algorithm were presented and discussed. CONCLUSION: Our image classifier achieved very good performance in the diagnosis of the presence of Malassezia yeasts in tape strip samples of human skin and can therefore improve the speed and quality of, and access to this diagnostic test. By expanding data sources and explainability, the algorithm could also provide teaching points for more novice operators in future.


Asunto(s)
Algoritmos , Inteligencia Artificial , Dermatomicosis , Malassezia , Piel , Malassezia/aislamiento & purificación , Malassezia/clasificación , Malassezia/genética , Humanos , Piel/microbiología , Dermatomicosis/diagnóstico , Dermatomicosis/microbiología , Sensibilidad y Especificidad , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos
9.
Gynecol Oncol Rep ; 54: 101442, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39040939

RESUMEN

Carcinosarcomas are high-grade endometrial cancers which enclose mesenchymal and epithelial differentiated components. The vast majority of these cancers belong to the p53 abnormal molecular subgroup and usually come with an unfavorable prognosis. POLE mutant carcinosarcomas are a rarity and only make up about 5% of this histologic subtype. Recent literature even suggests that this number is still an overestimation and the result of misclassification of undifferentiated or dedifferentiated endometrial cancers. Here we present a case of a 56-years old patient diagnosed with carcinosarcoma of the uterus. Hysterectomy, bilateral salpingo-oophorectomy with pelvic lymph node staging was performed and complete molecular workup of the tumor revealed an abnormal p53 expression as well as a pathologic POLE mutation. NGS was performed separately on the epithelial and mesenchymal component of this high-grade cancer and both components shared two identical POLE mutations, a known pathologic mutation, and a variant of unknown significance (VUS). This finding hints to a clonal origin of both histologic components of this tumor and supports conversion theory as mechanism of carcinosarcoma emergence. The cancer was correctly staged as FIGO 2023 Stage IAmPOLEmut and according to ESGO-ESTRO-ESP guidelines adjuvant chemotherapy no longer considered and our patient entered follow-up after a detailed discussion.

10.
Neurooncol Adv ; 6(1): vdae082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006162

RESUMEN

Background: Infrared (IR) spectroscopy allows intraoperative, optical brain tumor diagnosis. Here, we explored it as a translational technology for the identification of aggressive meningioma types according to both, the WHO CNS grading system and the methylation classes (MC). Methods: Frozen sections of 47 meningioma were examined by IR spectroscopic imaging and different classification approaches were compared to discern samples according to WHO grade or MC. Results: IR spectroscopic differences were more pronounced between WHO grade 2 and 3 than between MC intermediate and MC malignant, although similar spectral ranges were affected. Aggressive types of meningioma exhibited reduced bands of carbohydrates (at 1024 cm-1) and nucleic acids (at 1080 cm-1), along with increased bands of phospholipids (at 1240 and 1450 cm-1). While linear discriminant analysis was able to discern spectra of WHO grade 2 and 3 meningiomas (AUC 0.89), it failed for MC (AUC 0.66). However, neural network classifiers were effective for classification according to both WHO grade (AUC 0.91) and MC (AUC 0.83), resulting in the correct classification of 20/23 meningiomas of the test set. Conclusions: IR spectroscopy proved capable of extracting information about the malignancy of meningiomas, not only according to the WHO grade, but also for a diagnostic system based on molecular tumor characteristics. In future clinical use, physicians could assess the goodness of the classification by considering classification probabilities and cross-measurement validation. This might enhance the overall accuracy and clinical utility, reinforcing the potential of IR spectroscopy in advancing precision medicine for meningioma characterization.

11.
Bioeng Transl Med ; 9(4): e10643, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036093

RESUMEN

Red blood cells (RBCs) become sickle-shaped and stiff under hypoxia as a consequence of hemoglobin (Hb) polymerization in sickle cell anemia. Distinguishing between sickle cell disease and trait is crucial during the diagnosis of sickle cell disease. While genetic analysis or high-performance liquid chromatography (HPLC) can accurately differentiate between these two genotypes, these tests are unsuitable for field use. Here, we report a novel microscopy-based diagnostic test called ShapeDx™ to distinguish between disease and trait blood in less than 1 h. This is achieved by mixing an unknown blood sample with low and high concentrations of a chemical oxygen scavenger and thereby subjecting the blood to slow and fast hypoxia, respectively. The different rates of Hb polymerization resulting from slow and fast hypoxia lead to two distinct RBC shape distributions in the same blood sample, which allows us to identify it as healthy, trait, or disease. The controlled hypoxic environment necessary for differential Hb polymerization is generated using an imaging microchamber, which also reduces the sickling time of trait blood from several hours to just 30 min. In a single-blinded proof-of-concept study conducted on a small cohort of clinical samples, the results of the ShapeDx™ test were 100% concordant with HPLC results. Additionally, our field studies have demonstrated that ShapeDx™ is the first reported microscopy test capable of distinguishing between sickle cell disease and trait samples in resource-limited settings with the same accuracy as a gold standard test.

12.
Spine Deform ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039392

RESUMEN

PURPOSE: The purpose of this study is to develop and apply an algorithm that automatically classifies spine radiographs of pediatric scoliosis patients. METHODS: Anterior-posterior (AP) and lateral spine radiographs were extracted from the institutional picture archive for patients with scoliosis. Overall, there were 7777 AP images and 5621 lateral images. Radiographs were manually classified into ten categories: two preoperative and three postoperative categories each for AP and lateral images. The images were split into training, validation, and testing sets (70:15:15 proportional split). A deep learning classifier using the EfficientNet B6 architecture was trained on the spine training set. Hyperparameters and model architecture were tuned against the performance of the models in the validation set. RESULTS: The trained classifiers had an overall accuracy on the test set of 1.00 on 1166 AP images and 1.00 on 843 lateral images. Precision ranged from 0.98 to 1.00 in the AP images, and from 0.91 to 1.00 on the lateral images. Lower performance was observed on classes with fewer than 100 images in the dataset. Final performance metrics were calculated on the assigned test set, including accuracy, precision, recall, and F1 score (the harmonic mean of precision and recall). CONCLUSIONS: A deep learning convolutional neural network classifier was trained to a high degree of accuracy to distinguish between 10 categories pre- and postoperative spine radiographs of patients with scoliosis. Observed performance was higher in more prevalent categories. These models represent an important step in developing an automatic system for data ingestion into large, labeled imaging registries.

13.
BMC Med Imaging ; 24(1): 177, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030508

RESUMEN

BACKGROUND: Cancer pathology shows disease development and associated molecular features. It provides extensive phenotypic information that is cancer-predictive and has potential implications for planning treatment. Based on the exceptional performance of computational approaches in the field of digital pathogenic, the use of rich phenotypic information in digital pathology images has enabled us to identify low-level gliomas (LGG) from high-grade gliomas (HGG). Because the differences between the textures are so slight, utilizing just one feature or a small number of features produces poor categorization results. METHODS: In this work, multiple feature extraction methods that can extract distinct features from the texture of histopathology image data are used to compare the classification outcomes. The successful feature extraction algorithms GLCM, LBP, multi-LBGLCM, GLRLM, color moment features, and RSHD have been chosen in this paper. LBP and GLCM algorithms are combined to create LBGLCM. The LBGLCM feature extraction approach is extended in this study to multiple scales using an image pyramid, which is defined by sampling the image both in space and scale. The preprocessing stage is first used to enhance the contrast of the images and remove noise and illumination effects. The feature extraction stage is then carried out to extract several important features (texture and color) from histopathology images. Third, the feature fusion and reduction step is put into practice to decrease the number of features that are processed, reducing the computation time of the suggested system. The classification stage is created at the end to categorize various brain cancer grades. We performed our analysis on the 821 whole-slide pathology images from glioma patients in the Cancer Genome Atlas (TCGA) dataset. Two types of brain cancer are included in the dataset: GBM and LGG (grades II and III). 506 GBM images and 315 LGG images are included in our analysis, guaranteeing representation of various tumor grades and histopathological features. RESULTS: The fusion of textural and color characteristics was validated in the glioma patients using the 10-fold cross-validation technique with an accuracy equals to 95.8%, sensitivity equals to 96.4%, DSC equals to 96.7%, and specificity equals to 97.1%. The combination of the color and texture characteristics produced significantly better accuracy, which supported their synergistic significance in the predictive model. The result indicates that the textural characteristics can be an objective, accurate, and comprehensive glioma prediction when paired with conventional imagery. CONCLUSION: The results outperform current approaches for identifying LGG from HGG and provide competitive performance in classifying four categories of glioma in the literature. The proposed model can help stratify patients in clinical studies, choose patients for targeted therapy, and customize specific treatment schedules.


Asunto(s)
Algoritmos , Neoplasias Encefálicas , Color , Glioma , Clasificación del Tumor , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/clasificación , Glioma/diagnóstico por imagen , Glioma/patología , Glioma/clasificación , Diagnóstico por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
14.
Elife ; 132024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045856

RESUMEN

Abnormal activity in the cerebellar nuclei can be used to predict motor symptoms and induce them experimentally, pointing to potential therapeutic strategies.


Asunto(s)
Núcleos Cerebelosos , Animales , Humanos , Núcleos Cerebelosos/fisiología , Núcleos Cerebelosos/fisiopatología , Trastornos Motores/fisiopatología , Neuronas/fisiología
15.
J Biomed Inform ; 157: 104701, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047932

RESUMEN

OBJECTIVE: In the application of machine learning to the prediction of hypertension, many factors have seriously affected the classification accuracy and generalization performance. We propose a pulse wave classification model based on multi-feature fusion for accuracy prediction of hypertension. METHODS AND MATERIALS: We propose an ensemble under-sampling model with dynamic weights to decrease the influence of class imbalance on classification, further to automatically classify of hypertension on inquiry diagnosis. We also build a deep learning model based on hybrid attention mechanism, which transforms pulse waves to feature maps for extraction of in-depth features, so as to automatically classify hypertension on pulse diagnosis. We build the multi-feature fusion model based on dynamic Dempster/Shafer (DS) theory combining inquiry diagnosis and pulse diagnosis to enhance fault tolerance of prediction for multiple classifiers. In addition, this study calculates feature importance ranking of scale features on inquiry diagnosis and temporal and frequency-domain features on pulse diagnosis. RESULTS: The accuracy, sensitivity, specificity, F1-score and G-mean after 5-fold cross-validation were 94.08%, 93.43%, 96.86%, 93.45% and 95.12%, respectively, based on the hypertensive samples of 409 cases from Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine and Hospital of Integrated Traditional Chinese and Western Medicine. We find the key factors influencing hypertensive classification accuracy, so as to assist in the prevention and clinical diagnosis of hypertension. CONCLUSION: Compared with the state-of-the-art models, the multi-feature fusion model effectively utilizes the patients' correlated multimodal features, and has higher classification accuracy and generalization performance.

16.
Technol Health Care ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39058467

RESUMEN

BACKGROUND: Early pregnancy thyroid function assessment in mothers is covered. The benefits of using load-specific reference ranges are well-established. OBJECTIVE: We pondered whether the categorization of maternal thyroid function would change if multiple blood samples obtained early in pregnancy were used. Even though binary classification is a common goal of current disease diagnosis techniques, the data sets are small, and the outcomes are not validated. Most current approaches concentrate on model optimization, focusing less on feature engineering. METHODS: The suggested method can predict increased protein binding, non-thyroid syndrome (NTIS) (simultaneous non-thyroid disease), autoimmune thyroiditis (compensated hypothyroidism), and Hashimoto's thyroiditis (primary hypothyroidism). In this paper, we develop an automatic thyroid nodule classification system using a multi-scale vision transformer and image enhancement. Graph equalization is the chosen technique for image enhancement, and in our experiments, we used neural networks with four-layer network nodes. This work presents an enhanced linguistic coverage neuro-fuzzy classifier with chosen features for thyroid disease feature selection diagnosis. The training procedure is optimized, and a multi-scale vision transformer network is employed. Each hop connection in Dense Net now has trainable weight parameters, altering the architecture. Images of thyroid nodules from 508 patients make up the data set for this article. Sets of 80% training and 20% validation and 70% training and 30% validation are created from the data. Simultaneously, we take into account how the number of training iterations, network structure, activation function of network nodes, and other factors affect the classification outcomes. RESULTS: According to the experimental results, the best number of training iterations is 500, the logistic function is the best activation function, and the ideal network structure is 2500-40-2-1. CONCLUSION: K-fold validation and performance comparison with previous research validate the suggested methodology's enhanced effectiveness.

17.
Sci Rep ; 14(1): 17446, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075138

RESUMEN

Although auditory stimuli benefit patients with disorders of consciousness (DOC), the optimal stimulus remains unclear. We explored the most effective electroencephalography (EEG)-tracking method for eliciting brain responses to auditory stimuli and assessed its potential as a neural marker to improve DOC diagnosis. We collected 58 EEG recordings from patients with DOC to evaluate the classification model's performance and optimal auditory stimulus. Using non-linear dynamic analysis (approximate entropy [ApEn]), we assessed EEG responses to various auditory stimuli (resting state, preferred music, subject's own name [SON], and familiar music) in 40 patients. The diagnostic performance of the optimal stimulus-induced EEG classification for vegetative state (VS)/unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) was compared with the Coma Recovery Scale-Revision in 18 patients using the machine learning cascade forward backpropagation neural network model. Regardless of patient status, preferred music significantly activated the cerebral cortex. Patients in MCS showed increased activity in the prefrontal pole and central, occipital, and temporal cortices, whereas those in VS/UWS showed activity in the prefrontal and anterior temporal lobes. Patients in VS/UWS exhibited the lowest preferred music-induced ApEn differences in the central, middle, and posterior temporal lobes compared with those in MCS. The resting state ApEn value of the prefrontal pole (0.77) distinguished VS/UWS from MCS with 61.11% accuracy. The cascade forward backpropagation neural network tested for ApEn values in the resting state and preferred music-induced ApEn differences achieved an average of 83.33% accuracy in distinguishing VS/UWS from MCS (based on K-fold cross-validation). EEG non-linear analysis quantifies cortical responses in patients with DOC, with preferred music inducing more intense EEG responses than SON and familiar music. Machine learning algorithms combined with auditory stimuli showed strong potential for improving DOC diagnosis. Future studies should explore the optimal multimodal sensory stimuli tailored for individual patients.Trial registration: The study is registered in the Chinese Registry of Clinical Trials (Approval no: KYLL-2023-414, Registration code: ChiCTR2300079310).


Asunto(s)
Estimulación Acústica , Trastornos de la Conciencia , Electroencefalografía , Humanos , Electroencefalografía/métodos , Masculino , Femenino , Estimulación Acústica/métodos , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/fisiopatología , Persona de Mediana Edad , Adulto , Anciano , Dinámicas no Lineales , Encéfalo/fisiopatología , Estado Vegetativo Persistente/fisiopatología , Estado Vegetativo Persistente/diagnóstico , Aprendizaje Automático , Adulto Joven , Estado de Conciencia/fisiología
18.
J Environ Manage ; 366: 121786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991338

RESUMEN

Conservationists spend considerable resources to create and enhance wildlife habitat. Monitoring how species respond to these efforts helps managers allocate limited resources. However, monitoring efforts often encounter logistical challenges that are exacerbated as geographic extent increases. We used autonomous recording units (ARUs) and automated acoustic classification to mitigate the challenges of assessing Eastern Whip-poor-will (Antrostomus vociferus) response to forest management across the eastern USA. We deployed 1263 ARUs in forests with varying degrees of management intensity. Recordings were processed using an automated classifier and the resulting detection data were used to assess occupancy. Whip-poor-wills were detected at 401 survey locations. Across our study region, whip-poor-will occupancy decreased with latitude and elevation. At the landscape scale, occupancy decreased with the amount of impervious cover, increased with herbaceous cover and oak and evergreen forests, and exhibited a quadratic relationship with the amount of shrub-scrub cover. At the site-level, occupancy was negatively associated with basal area and brambles (Rubus spp.) and exhibited a quadratic relationship with woody stem density. Implementation of practices that create and sustain a mosaic of forest age classes and a diverse range of canopy closure within oak (Quercus spp.) dominated landscapes will have the highest probability of hosting whip-poor-wills. The use of ARUs and a machine learning classifier helped overcome challenges associated with monitoring a nocturnal species with a short survey window across a large spatial extent. Future monitoring efforts that combine ARU-based protocols and mappable fine-resolution structural vegetation data would likely further advance our understanding of whip-poor-will response to forest management.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Bosques , Animales , Conservación de los Recursos Naturales/métodos
19.
Talanta ; 278: 126526, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996564

RESUMEN

Understanding charge transport in metal ion-mediated glutathione-stabilized gold nanoclusters (GSH-Au NCs) has proved difficult due to the presence of various competitive mechanisms, such as electron transfer (ET) and aggregation induction effect (AIE). In this paper, we present a dual-channel fluorescence (FL) and second-order Rayleigh scattering (SRS) sensing method for high-throughput classification of metal ions, relying on the competition between ET and AIE using GSH-Au NCs. The SRS signals show significant enhancement when Pb2+, Ag+, Al3+, Cu2+, Fe3+, and Hg2+ are present, as a result of the aggregation of GSH-Au NCs. Notably, the fluorescence signal exhibits the opposite trend. The FL intensities of GSH-Au NCs are enhanced by Pb2+, Ag+, and Al3+ through the AIE mechanism, while they are quenched by Cu2+, Fe3+, and Hg2+, which is dominated by the ET mechanism. By employing principal component analysis and hierarchical cluster analysis, these signals are transformed into unique fingerprints and Euclidean distances, respectively, enabling successful distinction of six metal ions and their mixtures with a low detection limit of 30 nM. This new strategy has successfully addressed interference from impurities in the testing of real water samples, demonstrating its strong ability to detect multiple metal ions. Impressively, we have achieved molecular cryptosteganography, which involves encoding, storing, and concealing information by transforming the selective response of GSH-Au NCs to binary strings. This research is anticipated to advance utilization of nanomaterials in logic sensing and information safety, bridging the gap between molecular sensors and information systems.

20.
Technol Health Care ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39031413

RESUMEN

BACKGROUND: Autism Spectrum Disorder (ASD) is a condition with social interaction, communication, and behavioral difficulties. Diagnostic methods mostly rely on subjective evaluations and can lack objectivity. In this research Machine learning (ML) and deep learning (DL) techniques are used to enhance ASD classification. OBJECTIVE: This study focuses on improving ASD and TD classification accuracy with a minimal number of EEG channels. ML and DL models are used with EEG data, including Mu Rhythm from the Sensory Motor Cortex (SMC) for classification. METHODS: Non-linear features in time and frequency domains are extracted and ML models are applied for classification. The EEG 1D data is transformed into images using Independent Component Analysis-Second Order Blind Identification (ICA-SOBI), Spectrogram, and Continuous Wavelet Transform (CWT). RESULTS: Stacking Classifier employed with non-linear features yields precision, recall, F1-score, and accuracy rates of 78%, 79%, 78%, and 78% respectively. Including entropy and fuzzy entropy features further improves accuracy to 81.4%. In addition, DL models, employing SOBI, CWT, and spectrogram plots, achieve precision, recall, F1-score, and accuracy of 75%, 75%, 74%, and 75% respectively. The hybrid model, which combined deep learning features from spectrogram and CWT with machine learning, exhibits prominent improvement, attained precision, recall, F1-score, and accuracy of 94%, 94%, 94%, and 94% respectively. Incorporating entropy and fuzzy entropy features further improved the accuracy to 96.9%. CONCLUSIONS: This study underscores the potential of ML and DL techniques in improving the classification of ASD and TD individuals, particularly when utilizing a minimal set of EEG channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA