Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Huan Jing Ke Xue ; 44(10): 5842-5851, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827799

RESUMEN

Under the background of carbon peak and carbon neutrality, grassland carbon sinks are a key pathway to carbon neutrality. Based on the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate scenario data, the Daycent model was used to simulate the carbon budget of Gansu grasslands from 2015 to 2100, and the trend analysis was used to study the spatial and temporal changes in grassland carbon budget in the next 78 years. The results revealed that, under the future climate scenario of SSP245, the net ecosystem productivity (NEP) indicated a non-significant fluctuating downward trend with a rate of -0.20 g·(m2·a)-1(in C, the same below), and the grassland carbon sink was in a declining state. Under the future climate scenario of SSP585, the grassland NEP indicated a significant fluctuating increase trend with a growth rate of 1.36 g·(m2·a)-1, and the grassland carbon sink gradually increased under this scenario; the spatial distribution of grassland carbon budget increased from northwest to southeast. The increase in temperature and precipitation under the SSP585 climate scenario was higher than that under the SSP245 climate scenario, and the grassland carbon budget strongly correlated positively with precipitation. However, a negative correlation was observed between grassland carbon budget and temperature. We identified the carbon sink intensity in Gansu grasslands under different climate conditions, which provides a reference for and contribution to effective carbon sequestration.

2.
J Hazard Mater ; 460: 132497, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37688870

RESUMEN

Micropollutants in water environments have attracted widespread attention, but how human and natural stressors influence the risks of micropollutants has not been comprehensively revealed. A megacity-scale study of the ecological risks of micropollutants in the surface water of Beijing, China is presented to illustrate the magnitudes of the influences of multiple anthropogenic and natural stressors. A total of 133 micropollutants representing typical land use patterns in Beijing, were quantified with the mean concentration range of ND (not detected) to 272 ng·L-1. The micropollutant concentrations in the south were obviously higher than those detected in the northern areas, and neonicotinoid pesticides showed the highest mean concentration of 311 ng·L-1. The chronic and acute risks of micropollutants to algae, invertebrates, and fishes were determined, and herbicides, organophosphorus esters, and insecticides account for the primary risks to algae, invertebrates, and fishes, respectively. The cropland and impervious cover cause the differences in the pollution and risks of micropollutants. The land use in riparian zones greater than 2 km shows a great influence on the chronic chemical risks (CCRs) for the three groups of species, indicating that too local scale does not explain the local pollution status. Climate conditions and human land use are important drivers explaining the CCRs to which various trophic levels of species are exposed. Results demonstrate that multiple categories of micropollutants pose adverse risks to freshwater in the megacity of Beijing, while climate conditions, pollution discharge, and human land use induce the chemical risk of micropollutants to aquatic organisms, and the land use in different riparian zones show different effects on the risks.


Asunto(s)
Líquidos Corporales , Ecosistema , Humanos , Agua Dulce , Agua , Beijing
3.
Heliyon ; 9(7): e17750, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539268

RESUMEN

The objective of this study was to investigate the impact of the geographic and climatic conditions on laterites properties and on geopolymerization based-laterite. Four different laterite deposits in the four geographical zones of Cameroon were studied. This included the center, north, south and west corners of Cameroon, having chemical composition of SiO2 + Al2O3 + Fe2O3 = 88.94, 87.6, 89.13 and 78.97%, respectively. The center and south laterites from the black forest, with high pluviometry and relative humidity, show significant amounts of Fe2O3. While the west laterite from grass field - mountainous areas and the north-laterite from plain arid and semi-arid climate still show lower iron concentrations. The IR absorption bands of the different laterites appear between 1007 and 1047 cm-1; characteristic bands of aluminosilicate. The BET (Brunauer-Emmett-Teller) Specific surface area values are comprised in the range of [21.9, 24.1 m2/g] for non-calcined laterite and between [45.6 and 123.5 m2/g] for laterites calcined at 550 °C and 575 °C. The main particle size values are 5.71, 6.37, 7.43 and 8.45 µm for center-laterite, west-laterite, north laterite and south-laterite, respectively. Although, they differ in the degree of laterization, all the laterites present almost total conversion to geopolymers, due to the presence of amorphous kaolinite and reactive goethite. However, the iron content has significant impact on the globular microstructure. The particle size of laterites, their high values of BET surface area and their significant reactivity make them promising substitutes to metakaolin and other supplementary cementitious materials.

4.
Sci Total Environ ; 903: 166116, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586533

RESUMEN

Landfills have played a significant role in the recovery of white storks (Ciconia ciconia) populations across various European countries. While there is ample information about the populational-level effects, there is a lack of knowledge regarding the individual effects of using this food resource for feeding nestlings. This study aims to assess the nutritional status and oxidative stress balance of nestlings with varying degrees of exposure to landfill-provided food This study aims to assess the nutritional status and oxidative stress balance of nestlings with different use of landfill-provided food. Nestlings fed with food foraged by breeding pairs from landfills exhibited better nutritional status compared to individuals located farther from landfills. This can be attributed to a higher ingestion rate, resulting in increased plasmatic values of cholesterol, triglycerides, and HDL in plasma. However, the oxidative stress balance varied across different years, with individuals raised in 2014 showing higher values of Vitamin E and lower values of LDH compared to those raised in 2013. Furthermore, the impact of landfills on certain oxidative stress parameters also depended on the year of study. In 2013, the Total Antioxidant Capacity (TAC) of plasma showed a positive correlation with the distance to landfills, while the concentration of Malondialdehyde (MDA), an indicator of lipid peroxidation, exhibited a negative correlation. These findings suggest that the use of landfills as a food resource has a consistently positive effect on the nutritional status of white stork nestling. However, the relationship with oxidative stress is highly dependent on the climatic conditions of each year, emphasizing the importance of considering these factors when evaluating the use of landfills as a food resource.

5.
Environ Sci Pollut Res Int ; 30(32): 79497-79511, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37289394

RESUMEN

The objective of this research is to explore the potential of financial inclusion and low-carbon architectural design strategies as solutions to improve the thermal comfort and energy efficiency of new buildings in different architectural climate conditions. The manufacture sector, which accounts for about 40% of all yearly greenhouse gas releases, has been stimulating with trying to reduce the amount of energy it consumes and the detrimental effects it has on the climate, in accordance with the standards outlined in the 2016 Paris Agreement. In this study, panel data analysis is used to examine the connection between green property financing and carbon dioxide emissions from the building sector in one hundred and five developed and developing countries. Although this analysis finds a negative correlation among the development of environmentally friendly real estate financing and firms' worldwide carbon dioxide emissions, it finds that this correlation is most robust in developing nations. A number of these countries are experiencing an unregulated and rapid population explosion, which has boosted their demand for oil, making this discovery essential for them. The difficulty in securing green funding during this crisis is slowing and even reversing gains made in past years, making it all the more important to keep this momentum going during the COVID-19 outbreak. It's critical to keep the momentum going by doing something.


Asunto(s)
COVID-19 , Gases de Efecto Invernadero , Humanos , Temperatura , Dióxido de Carbono/análisis , Clima , Desarrollo Económico
6.
Field Crops Res ; 296: 108907, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37193044

RESUMEN

Context: Photosynthetic stimulations have shown promising outcomes in improving crop photosynthesis, including soybean. However, it is still unclear to what extent these changes can impact photosynthetic assimilation and yield under long-term field climate conditions. Objective: In this paper, we present a systematic evaluation of the response of canopy photosynthesis and yield to two critical parameters in leaf photosynthesis: the maximum carboxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Vcmax) and the maximum electron transport of the ribulose-1,5-bisphosphate regeneration rate (Jmax). Methods: Using the field-scale crop model Soybean-BioCro and ten years of observed climate data in Urbana, Illinois, U.S., we conducted sensitivity experiments to estimate the changes in canopy photosynthesis, leaf area index, and biomass due to the changes in Vcmax and Jmax. Results: The results show that 1) Both the canopy photosynthetic assimilation (An) and pod biomass yields were more sensitive to the changes in Jmax, particularly at high atmospheric carbon-dioxide concentrations ([CO2]); 2) Higher [CO2] undermined the effectiveness of increasing the two parameters to improve An and yield; 3) Under the same [CO2], canopy light interception and canopy respiration were key factors that undermined improvements in An and yield; 4) A canopy with smaller leaf area index tended to have a higher yield improvement, and 5) Increases in assimilations and yields were highly dependent on growing-season climatic conditions. The solar radiation, temperature, and relative humidity were the main climate drivers that impacted the yield improvement, and they had opposite correlations with improved yield during the vegetative phase compared to the reproductive phase. Conclusions: In a world with elevated [CO2], genetic engineering crop photosynthesis should focus more on improving Jmax. Further, long-term climate conditions and seasonal variations must be considered to determine the improvements in soybean canopy photosynthesis and yield at the field scale. Implications: Quantifying the effectiveness of changing Vcmax and Jmax helps understand their individual and combined contributions to potential improvements in assimilation and yield. This work provides a framework for evaluating how altering the photosynthetic rate parameters impacts soybean yield and assimilation under different seasonal climate scenarios at the field scale.

7.
Food Chem ; 422: 136175, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116272

RESUMEN

Among olive oil nutritional benefits, it is worth mentioning its fatty acids composition with predominance of monounsaturated fatty acids (MUFAs). We have evaluated the influence of the cultivar and interannual factors on the fatty acids profile of virgin olive oil samples obtained from 45 and 71 cultivars along three and two consecutive crop seasons, respectively. The cultivars were classified in two groups according to the fatty acids composition: (1) high content in MUFAs and moderate content in saturated and polyunsaturated fatty acids (SFAs and PUFAs, respectively) and (2) moderate content in MUFAs and high content in SFAs/PUFAs. We also observed variations in the fatty acids content with the climate conditions, which can significantly alter the saturated and unsaturated profiles. Thus, a significant decrease in MUFAs and an increase in SFAs/PUFAs concentrations was found when the precipitation accumulated within the June-October period was reduced.


Asunto(s)
Ácidos Grasos Insaturados , Ácidos Grasos , Aceite de Oliva , Ácidos Grasos Monoinsaturados
8.
Heliyon ; 9(2): e13658, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36879756

RESUMEN

Uvaria chamae is a wild shrub species widely used as a source for traditional medicine, food and fuel in West Africa. The species is threatened by uncontrolled harvesting of its roots for pharmaceutical applications and by the extension of agricultural land. This study assessed the role of environmental variables for the current distribution and the potential impact of climate change on the future spatial distribution of U. chamae in Benin. We used data related to climate, soil, topography and land cover to model the distribution of the species. Occurrence data were combined with six least correlated bioclimatic variables derived from the WorldClim database, data on soil layers (texture and pH) and topography (slope) obtained from the FAO world database and land cover from the DIVA-GIS site. Random Forest (RF), Generalized Additive Models (GAM), Generalized Linear Models (GLM) and the Maximum Entropy (MaxEnt) algorithm were used to predict the current and future (2050-2070) distribution of the species. Two climate change scenarios (SSP245 and SSP585) were considered for the future predictions. The results showed that climate (i.e., water availability) and soil type are the key predictors of the distribution of the species. Based on future climate projections, RF, GLM and GAM models predict that the Guinean-Congolian and Sudano-Guinean zones of Benin will remain suitable for U. chamae, while it will decline in these zones according to the MaxEnt model. These results call for a timely management effort for the species in Benin through its introduction into agroforestry systems to ensure the continuity of its ecosystem services.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36767024

RESUMEN

Leishmaniosis (or leishmaniasis) is a neglected parasitosis most commonly transmitted by the sandfly bite. Changes in temperature, precipitation, and humidity can greatly affect the vectors and reservoir hosts. This study aimed to determine the association between temperature, air humidity, and weather conditions with the incidence of leishmaniasis in Montenegro during a seven-decade period (1945-2014) and to statistically compare and correlate the obtained data. In the studied period, there were 165 registered cases of leishmaniosis, 96.4%, in the coastal and central region of Montenegro, with an average incidence rate of 0.45/100.000. The visceral form of leishmaniosis predominated (99% of the cases), with only one case of cutaneous disease. Climate factors (average temperature, air humidity, and precipitation) had an impact on the occurrence of leishmaniosis in Montenegro. Air temperature elevated by 1 °C in all regions of Montenegro was significantly correlated with an increased incidence of leishmaniosis, by 0.150 (0.013 to 0.287; p < 0.05). In order to improve prevention and control of this disease, it is also necessary to investigate other factors with a possible impact on the number of cases of this neglected parasitosis.


Asunto(s)
Leishmaniasis , Humanos , Incidencia , Montenegro/epidemiología , Leishmaniasis/epidemiología , Clima , Europa (Continente)
10.
BMC Infect Dis ; 23(1): 114, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823521

RESUMEN

This study evaluated epidemic temporal aspects of Japanese encephalitis (JE) and investigated the weather threshold of JE response across eight climate subtypes between 2005 and 2019 in Gansu Province, China. Epidemiological data were collected from the China Information System for Disease Control and Prevention (CISDCP). Three epidemic temporal indices [frequency index (α), duration index (ß), and intensity index (γ)] were adopted for the comparison of epidemic features among different climate subtypes. In addition, the local indicators of spatial association (LISA) technique was used to detect the hot-spot areas. The category and regression tree (CART) model was used to detect the response threshold of weather variables in hot-spot areas across climate subtypes. Among eight climate subtypes in Gansu, in most hot-spot areas (i.e., high-high clusters), α, ß, and γ were detected in the climate subtypes of subtropical winter dry (Cwa), temperate oceanic continental (Cwb), and continental winter dry (Dwa and Dwb). According to the CART analysis, a minimum monthly temperature is required for Japanese encephalitis virus (JEV) transmission, with different threshold values among the climatic subtypes. In temperate climate zones (Cwa and Cwb), this threshold is 19 °C at a 1-month lag. It is lower in continental winter dry climate zones: 18 °C in Dwa (snow climate, dry winter, and hot summer) and 16 °C in Dwb (snow climate, dry winter, and warm summer). Additionally, some areas of the areas with temperate arid (BWk and BSk) had the first JE cases. Further studies to detect whether the climate change influence the JEV's distribution in Gansu Province are needed.


Asunto(s)
Dermatitis , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Humanos , Encefalitis Japonesa/epidemiología , Incidencia , Tiempo (Meteorología) , Estaciones del Año , China/epidemiología , Fiebre
11.
Environ Sci Pollut Res Int ; 30(14): 41209-41235, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36630036

RESUMEN

Precipitation (PP) prediction is an interesting topic in the meteorology or hydrology field since it is directly related to agriculture, the management of water resources in hydrologic basins, and water scarcity. Selecting the right model to predict precipitation has always been a challenge because it could help researchers to use the proper model for their purposes. Accordingly, the performance of five artificial models (feed-forward neural network, cascade forward neural network, Elman neural network, multi-layer perceptron neural network, and radial basis neural network) and three mathematical models (Poisson regression model (PRM), quadratic model, and multiple linear regression) were evaluated for their ability to predict the monthly precipitation in Mediterranean coastal cities located in Eastern part of Mediterranean Sea for the first time. Twenty-seven Mediterranean coastal cities are considered case studies. For this aim, scenario 1 and scenario 2 with various input variables are proposed. Scenario 1 is developed using the number of months (MN), maximum temperature (Tmax), minimum temperature (Tmin), downward radiation (DR), wind speed (WS), vapor pressure (VP), and actual evapotranspiration (AE). Scenario 2 is developed by adding geographical coordinates (latitude, longitude, and altitude) to the global meteorological data to see the impact of geographical coordinates on the accuracy of the prediction of monthly precipitation. This study utilized the monthly data, which were obtained from TerraClimate for the period from 2010 to 2021. Based on the performance indexes, the PRM model performed best for the prediction of monthly precipitation in all selected locations compared to other models. Moreover, the results indicate that scenario 2 ([Formula: see text]) has shown higher prediction accuracy compared to scenario 1 ([Formula: see text]). In conclusion, PRM with the combination of [[Formula: see text]] had RMSE value that was lower by 12% relative to PRM with the combination of [[Formula: see text]]. Consequently, the PRM model can be recommended for modeling the complexity of interactions for precipitation-climate conditions-geographical coordinates and predicting precipitation.


Asunto(s)
Monitoreo del Ambiente , Redes Neurales de la Computación , Monitoreo del Ambiente/métodos , Modelos Teóricos , Viento , Hidrología
12.
Trop Med Infect Dis ; 8(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36668972

RESUMEN

(1) Background: Few studies to date have assessed the influences induced by climate change on the spatial distribution and population abundance of Aedes albopictus using the latest climate scenarios. In this study, we updated the current distribution of Ae. albopictus mosquitoes and evaluated the changes in their distribution under future climate conditions, as well as the risk of dengue virus emergence in Romania. (2) Methods: Under the two scenarios: High scenario (HS) when no drastic measures to reduce the effects of global warming will be taken, or they are not effective and low scenario (LS) when very stringent greenhouse control measures will be implemented. (3) Results: The results estimate an increase in temperatures in Romania of up to 2.6 °C in HS and up to 0.4 °C in LS, with an increase in the period of virus replication within the vector from June to October in HS and from May to September in LS. Moreover, in 2022, Ae. albopictus was reported in a new county, where it was not identified at the last monitoring in 2020. (4) Conclusions: The rapid spread of this invasive species and the need to implement monitoring and control programs for the Aedes population in Romania are emphasized.

13.
Animal ; 16(9): 100620, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35994970

RESUMEN

Continuous accurate attainment of the body temperature of foals is important to detect early stages of severe heat stress or fever due to a systemic illness. Among a number of methods to measure body temperature, measuring rectal temperature with a digital thermometer is most frequently used due to being relatively fast and simple method. It is also comparatively accurate and correlates well with the core body temperature. However, this method requires restraining the foal for a few seconds to obtain the temperature, and it can be dangerous for the handling person. Percutaneous thermal sensing microchips (PTSMs) are a means of monitoring the body temperature of horses, which offers a non-invasive, hygienic, quick, and accurate way to measure body temperature and provide an identification number for each individual, once it is implanted. This study tested the hypothesis that PTSM has a strong relationship with a conventional body temperature measurement, i.e., measuring rectal temperature with a digital thermometer of foals during summer seasons. Thirty-two foals in three consecutive foaling seasons (2018, 2019, and 2020 season) were implanted a PTSM into the right pectoral muscle, the right splenius muscle, the right gluteal muscle, and the nuchal ligament as early as two weeks after birth. The four PTSM temperatures, rectal temperature, and climate conditions (air temperature, relative humidity, and wet-bulb globe temperature) were obtained simultaneously during the three summer seasons and paired for comparison analysis. Among the PTSM temperatures, the pectoral muscle had the highest correlation and the least differences with rectal temperature. Using PTSM was safe, easy, and reliable for attaining body temperature in foals.


Asunto(s)
Temperatura Corporal , Termómetros , Animales , Temperatura Corporal/fisiología , Fiebre/veterinaria , Caballos , Humanos , Estaciones del Año , Temperatura , Termómetros/veterinaria
14.
Sci Total Environ ; 838(Pt 1): 155945, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35569669

RESUMEN

This study aimed to evaluate whether the improvement in soil conditions induced by the vegetation spontaneously colonizing abandoned metal(loid) mine tailings from semiarid areas is consistent throughout seasons and to identify if the temporal variability of that conditions is of similar magnitude of that of the surrounding forests. Soil climatic (temperature and moisture), chemical (pH, electrical conductivity and water-soluble salts and metal(loid)s) and biological (water-soluble organic carbon and ammonium, microbial biomass carbon, dehydrogenase and ß-glucosidase activity, organic matter decomposition and feeding activity of soil dwelling organisms) parameters were seasonally evaluated for one year in bare soils and different vegetated patches within metalliferous mine tailings and surrounding forests in southeast Spain. The results indicated that the improvement in soil conditions (as shown by softening of climatic conditions and lower scores for salinity and water-soluble metals and higher for biological parameters) induced by vegetation colonization was consistent throughout seasons. This amelioration was more evident in the more complex vegetation patches (trees with herbs and shrubs under the canopy), compared to bare soils and simpler soil-plant systems (only trees), and closer to forest soils outside the tailings. Bare soils and, to a lesser extent, vegetation patches solely composed by trees, showed stronger seasonal variability in temperature, moisture content, salinity, and water-soluble metals. In contrast, changes in biological and biological-related parameters were more pronounced in the more complex vegetation patches within mine tailings and surrounding forests due to its greater biological activity. In summary, the results demonstrated that vegetation patches formed by spontaneous colonization act as microsites that modulate seasonal variability in soil conditions and stimulate biological activity. This suggests that tailings vegetation patches might have higher resilience against climate change effects than bare soils. Therefore, they should be preserved as valuable spots in the phytomanagement of metal(loid)s mine tailings from semiarid areas.


Asunto(s)
Contaminantes del Suelo , Suelo , Carbono , Metales/análisis , Estaciones del Año , Suelo/química , Contaminantes del Suelo/análisis , Árboles , Agua
15.
Front Microbiol ; 12: 726384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475867

RESUMEN

Argentina is the fifth world-wide wine producer, with an area of emerging importance in the Southwest of Buenos Aires Province, where climatic conditions are rather challenging. We studied the variations in soil and wine bacterial diversity through three consecutive vintages, and how climatic conditions affected said diversity. During the years of our study there were two harsh climatic events, a prolonged drought that extended over two vegetative periods, and an unseasonable spring frost in 2017. We found that the bacterial diversity reacted to these climatic events, given that there was a shift in the taxa exclusive to soil and wine, and shared by both, through time. Our results show a core of microorganisms in soil as well as in wine, belonging to different phyla that are conserved across the vintage years. A trend to an enrichment in Actinobacteria was detected in soil samples, whereas a high relative abundance of the Acetobacteraceae family and a scarcity of Lactic Acid Bacteria (LAB) were detected in the wine samples. We believe our results contribute to a better understanding of the impact of climatic conditions on the soil and wine microbiota, and can provide vintners with valuable knowledge for improving their wine production.

16.
Chemosphere ; 282: 131119, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34470164

RESUMEN

From a holistic perspective, this review is the first to comprehensively assess and characterise leachate quality from waste disposal facilities (WDFs), landfills and dumpsites, located in 61 countries worldwide. A continent wise grouping approach was adopted to identify the variability of leachate quality and polluting abilities in light of leachate pollution index (LPI). The literature data on leachate quality included 428 samples, with eighteen leachate parameters, classified under, organic, inorganic, and heavy metals. Statistically significant differences in LPI were found between different continents and WDFs demographic data, i.e., type, status, age, rainfall, etc. A negative correlation was found between pH and the majority of studied parameters, especially for heavy metals such as Pb, Zn, As, Hg, Cy, as the decrease in pH intensifies heavy metals' solubility. Based on the studied worldwide leachate data and WDFs age, an LPI rating was identified, where high, intermediate, and low contaminated leachate are typically classified with having an average of 26.5, 23.6 and 17.5, respectively. The provided database in this review could be of great importance in establishing a more comprehensive global databank by including other countries- and site-specific factors that are vital in enhancing the accuracy of LPI and formatting a more representative leachate diagnosis index.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
17.
Sustain Cities Soc ; 75: 103231, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34377630

RESUMEN

In this study, we develop a deep learning model to forecast the transmission rate of COVID-19 globally, via a proposed G parameter, as a function of fused data features which encompass selected climate conditions, socioeconomic and restrictive governmental factors. A 2-step optimization process is adopted for the model's data fusion component which systematically performs the following: (Step I) determining the optimal climate feature which can achieve good precision score (> 70%) when predicting the spatial classes distribution of the G parameter on a global scale consisting of 251 countries, followed by (Step II) fusing the optimal climate feature with 11 selected socioeconomic-governmental factors to further improve the model's predictive capability. By far, the obtained results from the model's testing step indicate that land surface temperature day (LSTD) has the strongest correlation with the global G parameter over time by achieving an average precision score of 72%. When coupled with relevant socioeconomic-governmental factors, the model's average precision score improves to 77%. At the local scale analysis for selected countries, our proposed model can provide insights into the relationship between the fused data features and the respective local G parameter by achieving an average accuracy score of 79%.

18.
Plant Dis ; 105(10): 2830-2835, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33881919

RESUMEN

In the main wheat production area of China (the Huang Huai Plain [HHP]), both Fusarium graminearum and Fusarium asiaticum, the causal agents of Fusarium head blight (FHB), are present. We investigated whether the relative prevalence of F. graminearum and F. asiaticum is related to cropping systems and/or climate factors. A total of 1,844 Fusarium isolates were obtained from 103 fields of two cropping systems: maize-wheat and rice-wheat rotations. To maximize the differences in climatic conditions, isolates were sampled from the north and south HHP regions. Based on the phylogenetic analysis of EF-1α and Tri101 sequences, 1,207 of the 1,844 isolates belonged to F. graminearum, and the remaining 637 isolates belonged to F. asiaticum. The former was predominant in the northern region: 1,022 of the 1,078 Fusarium isolates in the north were F. graminearum. The latter was predominant in the southern region: 581 of the 766 Fusarium isolates belonged to F. asiaticum. Using an analysis based on generalized linear modeling, the relative prevalence of the two species was associated more with climatic conditions than with the cropping system. F. graminearum was associated with drier conditions and cooler conditions during the winter but also with warmer conditions in the infection and grain-colonization period as well as with maize-wheat rotation. The opposite was true for F. asiaticum. Except for the 15-acetyldeoxynvalenol genotype, the trichothecene chemotype composition of F. asiaticum differed between the two cropping systems. The 3-acetyldeoxynivalenol genotype was more prevalent in the maize-wheat rotation, whereas the nivalenol genotype was more prevalent in the rice-wheat rotation. The results also suggested that environmental conditions in the overwintering period appeared to be more important than those in the infection, grain-colonization, and preanthesis sporulation periods in affecting the relative prevalence of F. graminearum and F. asiaticum. More research is needed to study the effect of overwintering conditions on subsequent epidemic in the following spring.


Asunto(s)
Agricultura/métodos , Clima , Fusarium , Enfermedades de las Plantas/microbiología , Triticum/microbiología , China , Fusarium/genética , Filogenia
19.
Environ Sci Pollut Res Int ; 28(3): 3644-3659, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32929670

RESUMEN

Drought is a major natural disaster that significantly impacts the susceptibility and flexibility of the ecosystem by changing vegetation phenology and productivity. This study aimed to investigate the impact of extreme climatic variation on vegetation phenology and productivity over the four sub-regions of China from 2000 to 2017. Daily rain gauge precipitation and air temperature datasets were used to estimate the trends, and to compute the standardized precipitation-evapotranspiration index (SPEI). Remote sensing-based Enhanced Vegetation Index (EVI) data from a moderate resolution imaging spectroradiometer (MODIS) was used to characterize vegetation phenology. The results revealed that (1) air temperature had significant increasing trends (P < 0.05) in all sub-regions. Precipitation showed a non-significant increasing trend in Northwest China (NWC) and insignificant decreasing trends in North China (NC), Qinghai Tibet area (QTA), and South China (SC). (2) Integrated enhanced vegetation index (iEVI) and SPEI variations depicted that 2011 and 2016 were the extremely driest and wettest years during 2000-2017. (3) Rapid changes were observed in the vegetation phenology and productivity between 2011 and 2016. In 2011, changes in the vegetation phenology with the length of the growing season (ΔLGS) = was - 14 ± 36 days. In 2016, the overall net effect changed at the onset and end of the growing season with ΔLGS of 34 ± 71 days. The change in iEVI per SPEI increased rapidly with a changing rate of 0.16 from arid (NWC, and QTA) to semi-arid (NWC, QTA and NC) and declined with a rate of - 0.04 from semi-humid (QTA, NC, and SC) to humid (SC) region. A higher association was observed between iEVI and SPEI as compared to iEVI and precipitation. Our finding exposed that north China is more sensitive to climatic variation.


Asunto(s)
Ecosistema , Tecnología de Sensores Remotos , China , Cambio Climático , Imágenes Satelitales , Estaciones del Año , Temperatura , Tibet
20.
Chemosphere ; 263: 127973, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32829224

RESUMEN

In recent months, the presence of an emerging disease of infectious etiology has paralyzed everyone, already being a public health problem due to its high rate of infection, a life-threatening disease. The WHO has named it COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV2). New studies provide information of the role of the environment in COVID-19 transmission process, mortality related to this infectious disease and the impact on human health. The following review aims to analyze information on the implications of COVID-19 infection on human health and the impact of its presence on the environment, from its transmission capacity and the role of air pollutants and climatological factors to reducing the air pollution during confinement. Likewise, it provides a vision of the impact on the environment and human health of exposure to disinfectants and the presence of COVID-19 in wastewater, among other actions.


Asunto(s)
COVID-19/epidemiología , Ambiente , Contaminación del Aire/análisis , COVID-19/transmisión , Humanos , Pandemias , Aguas Residuales/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...