Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 467: 133715, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38359763

RESUMEN

Paraquat (PQ) is a widely used and harmful herbicide that must be detected in the environment. This study reports a novel composite (CoS2-GCN) prepared by assembling cobalt disulfide (CoS2) derived from metal-organic frameworks (MOFs) on graphitic carbon nitride (GCN). An electrochemical sensor (CoS2-GCN/ glassy carbon electrode (GCE)) was successfully prepared by modifying CoS2-GCN onto a GCE to sensitively detect PQ. Different concentrations of PQ were detected using square-wave voltammetry, and the CoS2-GCN/GCE electrochemical sensor showed remarkable response signals for PQ in the range of 20 - 1000 nM and 1 - 13 µM, with a detection limit of 4.13 nM (S/N = 3). The CoS2-GCN/GCE electrochemical sensor exhibited high stability, reproducibility, and immunity to interference, which were attributed to the synergistic effects of CoS2 and GCN. In addition, the CoS2-GCN/GCE electrochemical sensor showed high applicability for the analysis of fruit samples. Therefore, the proposed sensor has potential applications in PQ detection.


Asunto(s)
Frutas , Grafito , Compuestos de Nitrógeno , Paraquat , Paraquat/análisis , Reproducibilidad de los Resultados , Frutas/química , Límite de Detección
2.
Small ; 19(27): e2300602, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010024

RESUMEN

Introducing heteroatom into catalyst lattice to modulate its intrinsic electronic structure is an efficient strategy to improve the electrocatalytic performance in Li-O2 batteries. Herein, Cu-doped CoS2 (Cu-CoS2 ) nanoparticles are fabricated by a solvothermal method and evaluated as promising cathode catalysts for Li-O2 batteries. Based on physicochemical analysis as well as density functional theory calculations, it is revealed that doping Cu heteroatom in CoS2 lattice can increase the covalency of the CoS bond with more electron transfer from Co 3d to S 3p orbitals, thereby resulting in less electron transfer from Co 3d to O 2p orbitals of Li-O species, which can weaken the adsorption strength toward Li-O intermediates, decrease the reaction barrier, and thus improve the catalytic performance in Li-O2 batteries. As a result, the battery using Cu-CoS2 nanoparticles in the cathode exhibits superior kinetics, reversibility, capacity, and cycling performance, as compared to the battery based on CoS2 catalyst. This work provides an atomic-level insight into the rational design of transition-metal dichalcogenide catalysts via regulating the electronic structure for high-performance Li-O2 batteries.

3.
Molecules ; 27(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889397

RESUMEN

Carbamazepine (CBZ), as a typical pharmaceutical and personal care product (PPCP), cannot be efficiently removed by the conventional drinking water and wastewater treatment process. In this work, the CoS2/Fe2+/PMS process was applied for efficient elimination of CBZ. The CBZ removal efficiency of CoS2/Fe2+/PMS was 2.5 times and 23 times higher than that of CoS2/PMS and Fe2+/PMS, respectively. The intensity of DMPO-HO• and DMPO-SO4•− followed the order of Fe2+/PMS < CoS2/PMS < CoS2/Fe2+/PMS, also suggesting the CoS2/Fe2+/PMS process has the highest oxidation activity. The effects of reaction conditions (e.g., CoS2 dosage, Fe2+ concentration, PMS concentration, initial CBZ concentration, pH, temperature) and water quality parameters (e.g., SO42−, NO3−, H2PO4−, Cl−, NH4+, humic acid) on the degradation of CBZ were also studied. Response surface methodology analysis was carried out to obtain the best conditions for the removal of CBZ, which are: Fe2+ = 70 µmol/L, PMS = 240 µmol/L, CoS2 = 0.59 g/L. The sustainability test demonstrated that the repeated use of CoS2 for 8 successive cycles resulted in little function decrease (<10%). These findings suggest that CoS2/Fe2+/PMS may be a promising method for advanced treatment of tailwater from sewage treatment plant.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Carbamazepina/análisis , Sustancias Húmicas/análisis , Oxidación-Reducción , Peróxidos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
4.
ACS Appl Mater Interfaces ; 14(17): 19324-19331, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468289

RESUMEN

Transition metal chalcogenides such as CoS2 have been reported as competitive catalysts for oxygen evolution reaction. It has been well confirmed that surface modification is inevitable in such a process, with the formation of different re-constructed oxide layers. However, which oxide species should be responsible for the optimized catalytic efficiencies and the detailed interface structure between the modified layer and precatalyst remain controversial. Here, a topological CoS2 single crystal with a well-defined exposed surface is used as a model catalyst, which makes the direct investigation of the interface structure possible. Cross-sectional transmission electron microscopy of the sample reveals the formation of a 2 nm thickness Co3O4 layer that grows epitaxially on the CoS2 surface. Thick CoO pieces are also observed and are loosely attached to the bulk crystal. The compact Co3O4 interface structure can result in the fast electron transfer from adsorbed O species to the bulk crystal compared with CoO pieces as evidenced by the electrochemical impedance measurements. This leads to the competitive apparent and intrinsic reactivity of the crystal despite the low surface geometric area. These findings are helpful for the understanding of catalytic origins of transition metal chalcogenides and the designing of high-performance catalysts with interface-phase engineering.

5.
ChemSusChem ; 15(8): e202200330, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35212173

RESUMEN

Polymeric carbon nitride (PCN) has attracted intensive interest as sustainable, metal-free semiconductor for photoelectrochemical (PEC) water splitting. Charge transfer along the films acts as the main concern to restrict the performance due to the amorphous nature of polymer. Herein, gradient concentration of cobalt disulfide (CoS2 ) merged in PCN films was realized as CSCN photoanode by a one-pot synthesis. Owing to the unique properties of CoS2 , namely high conductivity, the charge transfer of the CSCN photoanode was promoted, and thus the performance for PEC water oxidation was improved. The optimal photoanode exhibited a photoanodic current of 200 µA cm-2 at 1.23 V versus reversible hydrogen electrode under air mass 1.5 global (AM 1.5G) illumination, which was approximately 4 times that of the pristine PCN photoanode. This work provides a new design of metal-free photoanodes to improve the performance of water splitting.

6.
Chemosphere ; 288(Pt 3): 132646, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34699885

RESUMEN

Peroxymonosulfate (PMS) activation methods have attractive advantages in advanced oxidation process (AOPs) due to their powerful ability of directly or indirectly generating various reactive oxygen species (ROS). Herein, trace amount of Fe(III) ions were added into the commercial-CoS2/PMS system to improve the CoS2/PMS decomposition for organics removal. The organics removal efficiency could reach >90% towards methylene blue (MB), diclofenac sodium (DCF), sulfamethoxazole (SMX) and bisphenol A (BPA) in the CoS2/Fe(III)/PMS system, with the kinetic apparent rate constant kobs of 0.141, 0.206, 0.247 and 0.091 min-1, respectively. The synergistic effect between Fe(III) ions and sulfur-vacancies on CoS2 for PMS degradation were revealed for the first time in cobalt sulfides/PMS system. Quenching experiments and ESR analysis proved that 1O2 was the major ROS and was produced mainly by the hydrolysis of SO5•-. Besides, the high degradation efficiency was obtained by the contribution of SO4•- and •OH. Electron spin-resonance spectroscopy (ESR), cyclic voltammetry (CV) and Raman spectrum data revealed that the addition of Fe(III) ions could optimize the intensity of sulfur vacancies on the CoS2 surface, which hindered the PMS reduction ability of Co(II), but accelerated the PMS oxidation to form 1O2. The degradation path of MB was analyzed by liquid chromatograph-mass spectrometer (LC-MS). The mechanism studies speculated that the sulfur vacancies of CoS2 provided the binding sites for Fe(III) ions with Co(II), which facilitated the PMS activation by Co(III).


Asunto(s)
Compuestos Férricos , Peróxidos , Catálisis , Azufre
7.
Bioresour Technol ; 347: 126436, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34848331

RESUMEN

The conversion of cellulose to platform chemicals has attracted much attention because of its renewability. This work proposed an earth-abundant cobalt disulfide as a heterogeneous catalyst for methyl levulinate production from cellulose. The highest yield of methyl levulinate reached 61 mol% under the tested conditions of 200 °C, 2 MPa initial pressure, 0.45 catalyst/cellulose mass ratio, and 3 h reaction time. The XRD and TEM analyses demonstrated the crystal facet (111) of cobalt disulfide as a robust active site, which was in good agreement with the highest acidity of the crystal facet (111) calculated by the work functions. The XPS characterization showed that the main chemical valence of cobalt disulfide responsible for the methyl levulinate production was the surface Co2+ species. This study is valuable for the development of a recoverable catalyst for the cellulose to methyl levulinate process.


Asunto(s)
Celulosa , Ácidos Levulínicos , Catálisis , Cobalto , Disulfuros
8.
J Colloid Interface Sci ; 609: 815-824, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34839922

RESUMEN

Electrochemical nitrogen reduction reaction (NRR) has been identified as a prospective alternative for sustainable ammonia production. Developing cost-effective and highly efficient electrocatalysts is critical for NRR under ambient conditions. Herein, the hierarchical cobalt-molybdenum bimetallic sulfide (CoS2/MoS2) flower-like heterostructure assembled from well-aligned nanosheets has been easily fabricated through a one-step strategy. The efficient synergy between different components and the formation of heterostructure in CoS2/MoS2 nanosheets with abundant active sites makes the non-noble metal catalyst CoS2/MoS2 highly effective in NRR, with a high NH3 yield rate (38.61 µg h-1 mgcat.-1), Faradaic efficiency (34.66%), high selectivity (no formation of hydrazine) and excellent long-term stability in 1.0 mol L-1 K2SO4 electrolyte (pH = 3.5) at -0.25 V versus the reversible hydrogen electrode (vs. RHE) under ambient conditions, exceeding much recently reported cobalt- and molybdenum-based materials, even catch up with some noble-metal-based catalyst. Density functional theory (DFT) calculation indicates that the formation of N2H* species on CoS2(200)/MoS2(002) is the rate-determining step via both the alternating and distal pathways with the maximum ΔG values (1.35 eV). These results open up opportunities for the development of efficient non-precious bimetal-based catalysts for NRR.

9.
ChemSusChem ; 15(1): e202101991, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34664405

RESUMEN

The chemisorption and catalysis of lithium polysulfides (LiPSs) are effective strategies to suppress the shuttle effect in lithium-sulfur (Li-S) batteries. Herein, multisize CoS2 particles intercalated/coated-montmorillonite (MMT) as an efficient sulfur host is synthesized. As expected, the obtained S/CoS2 @MMT cathode achieves an absorption-catalysis synergistic effect through the polar MMT aluminosilicate sheets and the well-dispersed nano-micron CoS2 particles. Furthermore, efficient interlamellar ion pathways and interconnected conductive network are constructed within the composite host due to the intercalation/coating of CoS2 in/on MMT. Therefore, the S/CoS2 @MMT cathode achieves an outstanding rate performance up to 5C (∼548 mAh g-1 ) and a high cycling stability with low capacity decay of 0.063 and 0.067 % per cycle for 500 cycles at 1C and 2C, respectively. With a higher sulfur loading of 4.0 mg cm-2 , the cathode still delivers satisfactory rate and cycling performance. It shows that the CoS2 @MMT host has great application prospects in Li-S batteries.

10.
Chemistry ; 27(38): 9820-9829, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33886138

RESUMEN

In this work, we first synthesized polyacrylic acid (PAA) spheres and then used PAA as a template to load Co(OH)2 particles onto its surface. The product of CoS2 nanoparticles dispersed in N-doped hollow spheres (N-HCS) was prepared through sulfurization treatment (CoS2 /S@N-HCS). During the sulfuration process, sulfur penetrates into the PAA, embedding into the graphite layer along with the carbonization process. It was found that during the charging and discharging process, the sulfur in the carbon layer will gradually dissolve out, thereby forming new ion diffusion channels in the carbon spheres and exposing more CoS2 active sites. The CoS2 /S@N-HCS composite exhibits a specific capacity of 729.6 mAh g-1 after 500 cycles at a current density of 1 A g-1 . The sodium-storage mechanism and reaction kinetics of the materials were further measured by in-situ electrochemical impedance spectroscopy, ex-situ X-ray diffraction, capacitance performance evaluation, and galvanostatic intermittent titration technique. The excellent cycling performance and rate capability demonstrated that the CoS2 /S@N-HCS is a potential and prospective anode material for sodium-ion batteries.

11.
ACS Appl Mater Interfaces ; 13(15): 18010-18020, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33822575

RESUMEN

Dissolution of intermediate sodium polysulfides (Na2Sx; 4≤x≤8) is a crucial obstacle for the development of room-temperature sodium-sulfur (Na-S) batteries. One promising strategy to avoid this issue is to load short-chain sulfur (S2-4), which could prohibit the generation of soluble polysulfides during the sodiation process. Herein, unlike in the previous reported cases where short-chain sulfur was stored by confinement within a small-pore-size (≤0.5 nm) carbon host, we report a new strategy to generate short-chain sulfur in larger pores (>0.5 nm) by the synergistic catalytic effect of CoS2 and appropriate pore size. Based on density functional theory calculations, we predict that CoS2 can serve as a catalyst to weaken the S-S bond in the S8 ring structure, facilitating the formation of short-chain sulfur molecules. By experimentally tuning the pore size of the CoS2-based hosts and comparing their performances as cathodes in Na-S and Li-S batteries, we conclude that such a catalytic effect depends on the proximity of sulfur to CoS2. This avoids the generation of soluble polysulfides and results in superior electrochemical properties of the composite materials introduced here for Na-S batteries. As a result, the optimized CoS2/N-doped carbon/S electrode showed excellent electrochemical performance with high reversible specific capacities of 488 mA h g-1 (962 mA h g(s)-1) after 100 cycles (0.1 A g-1) and 403 mA h g-1 after 1000 cycles (1 A g-1) with a superior rate performance (262 mA h g-1 at 5.0 A g-1).

12.
ChemSusChem ; 14(5): 1388-1395, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33404193

RESUMEN

Identifying high-performance non-precious metal-based catalysts at the cathode is a major challenge for future practical applications. Herein, a soft-template route through a self-assembly arrangement of sulfur sources was successfully developed, facilitating the anion exchange. In addition, compared with pristine cobalt disulfide synthesized without templates, the cobalt disulfide prepared using the new method presented a lattice shrinking phenomenon due to the hindrance of cobalt hydroxide crystal cell. Based on X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculation, increased occupancy of eg orbitals was verified for the cobalt disulfide after shrinkage, which was the main factor for enhancing the intrinsic activity of the catalyst. Besides the microscopic morphologic structure, elementary composition, and the valence state of the elements, the possible growth process of the cobalt disulfide was also discussed in detail. As catalyst for the oxygen reduction reaction, CoS2 showed a similar half-wave potential (0.81 vs. 0.84 V for Pt/C) and higher diffusion-limiting current density (reaching 5.33 vs. 5.19 mA cm-2 for Pt/C) than a commercial Pt/C catalyst. Hence, our results provide a rational design direction for this type of catalysts.

13.
Front Chem ; 9: 830485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35223779

RESUMEN

Lithium sulfur (Li-S) battery has exhibited great application potential in next-generation high-density secondary battery systems due to their excellent energy density and high specific capacity. However, the practical industrialization of Li-S battery is still affected by the low conductivity of sulfur and its discharge product (Li2S2/Li2S), the shuttle effect of lithium polysulfide (Li2Sn, 4 ≤ n ≤ 8) during charging/discharging process and so on. Here, cobalt disulfide/reduced graphene oxide (CoS2/rGO) composites were easily and efficiently prepared through an energy-saving microwave-assisted hydrothermal method and employed as functional interlayer on commercial polypropylene separator to enhance the electrochemical performance of Li-S battery. As a physical barrier and second current collector, the porous conductive rGO can relieve the shuttle effect of polysulfides and ensure fast electron/ion transfer. Polar CoS2 nanoparticles uniformly distributed on rGO provide strong chemical adsorption to capture polysulfides. Benefitting from the synergy of physical and chemical constraints on polysulfides, the Li-S battery with CoS2/rGO functional separator exhibits enhanced conversion kinetics and excellent electrochemical performance with a high cycling initial capacity of 1,122.3 mAh g-1 at 0.2 C, good rate capabilities with 583.9 mAh g-1 at 2 C, and long-term cycle stability (decay rate of 0.08% per cycle at 0.5 C). This work provides an efficient and energy/time-saving microwave hydrothermal method for the synthesis of functional materials in stable Li-S battery.

14.
J Colloid Interface Sci ; 584: 204-215, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069019

RESUMEN

This work demonstrates a high-performance hybrid asymmetric supercapacitor (HASC) workable in very high current density of 30 A g-1 with in-situ pyrolytic processed sulfur-doped graphitic carbon nitride/cobalt disulfide (S-gC3N4/CoS2) materials and bio-derived carbon configuration and achievement of high electrochemical stability of 89% over 100,000 cycles with the coulombic efficiency of 99.6%. In the electrochemical studies, the S-gC3N4/CoS2-II electrode showed a high specific capacity of 180 C g-1 at 1 A g-1 current density in the half-cell configuration. The HASC cell was fabricated using S-gC3N4/CoS2-II material and orange peel derived activated carbon as a positive and negative electrode with a maximum operating cell potential of 1.6 V, respectively. The fabricated HASC delivered a high energy density of 26.7 Wh kg-1 and power density of 19.8 kW kg-1 in aqueous electrolyte. The prominent properties in specific capacity and cycling stability could be attributed to the CoS2 nanoparticles engulfed into the S-gC3N4 framework which provides short transport distance of the ions, strong interfacial interaction, and improving structural stability of the S-gC3N4/CoS2-II materials.

15.
R Soc Open Sci ; 7(7): 191653, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32874599

RESUMEN

Density functional theory was employed to investigate the (111), (200), (210), (211) and (220) surfaces of CoS2. The surface energies were calculated with a sulfur environment using first-principle-based thermodynamics. It is founded that surfaces with metal atoms at their outermost layer have higher energy. The stoichiometric (220) surface terminated by two layer of sulfur atoms is most stable under the sulfur-rich condition, while the non-stoichiometric (211) surface terminated by a layer of Co atoms has the lower energy under the sulfur-poor environment. The electric structure results show that the front valence electrons of (200) surface are active, indicating that there may be some active sites on this face. There is an energy gap between the stoichiometric (220) and (211), which has low Fermi energy, indicating that their electronic structures are dynamically stable. Spin-polarized bands are calculated on the stoichiometric surfaces, and these two (200) and (210) surfaces are predicted to be noticeably spin-polarized. The Bravais-Friedel-Donnay-Harker (BFDH) method is adopted to predict crystal growth habit. The results show that the most important crystal planes for the CoS2 crystal growth are (111) and (200) planes, and the macroscopic morphology of CoS2 crystal may be spherical, cubic, octahedral, prismatic or plate-shaped, which have been verified by experiments.

16.
Small ; 16(34): e2002046, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32697433

RESUMEN

Main obstacles from the shuttle effect and slow conversion rate of soluble polysulfide compromise the sulfur utilization and cycling life for lithium sulfur (Li-S) batteries. In pursuit of a practically viable high performance Li-S battery, a separator configuration (CoS2 /HPGC/interlayer) as efficient polysulfide trapping barrier is reported. This configuration endows great advantages, particularly enhanced conductivity, promoted polysulfide trapping capability, accelerated sulfur electrochemistry, when using the functional interlayer for Li-S cells. Attributed to the above merits, such cell shows excellent cyclability, with a capacity of 846 mAh g-1 after 250 cycles corresponding to a high capacity retention of 80.2% at 0.2 C, and 519 mAh g-1 after 500 cycles at 1C (1C = 1675 mA g-1 ). In addition, the optimized separator exhibits a high initial areal capacity of 4.293 mAh cm-2 at 0.1C. Moreover, with CoS2 /HPGC/interlayer, the sulfur cell enables a low self-discharge rate with a very high capacity retention of 97.1%. This work presents a structural engineering of the separator toward suppressing the dissolution of soluble Li2 Sn moieties and simultaneously promoting the sulfur conversion kinetics, thus achieving durable and high capacity Li-S batteries.

17.
ChemSusChem ; 13(18): 5112-5118, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32672900

RESUMEN

Water electrolysis is an advanced and sustainable energy conversion technology used to generate H2 . However, the low efficiency of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hampers the overall water-splitting catalytic performance. Here, a hybrid catalyst was constructed from N-doped CoS2 nanoparticles on N,S-co-doped graphene nanosheets (N-CoS2 /G) using a facile method, and the catalyst exhibited excellent bifunctional activity. Introduction of N atoms not only promoted the adsorption of reaction intermediates, but also bridged the CoS2 nanoparticles and graphene to improve electron transfer. Moreover, using thiourea as both N- and S-source ensured synthesis of much smaller-sized nanoparticles with more surface active sites. Surprisingly, the N-CoS2 /G exhibited superior catalytic activity with a low overpotential of 260 mV for the OER and 109 mV for the HER at a current density of 10 mA cm-2 . The assembled N-CoS2 /G : N-CoS2 /G electrolyzer substantially expedited overall water splitting with a voltage requirement of 1.58 V to reach 10 mA cm-2 , which is superior to most reported Co-based bifunctional catalysts and other non-precious-metal catalysts. This work provides a new strategy towards advanced bifunctional catalysts for water electrolysis.

18.
ACS Appl Mater Interfaces ; 12(11): 12809-12820, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32134619

RESUMEN

Transition metal sulfides are attractive electrode materials for both lithium-ion (LIBs) and sodium-ion batteries (SIBs). Starting from micron-sized Co(IPC)·H2O (IPC: 4-(imidazole-1-yl) phthalic acid) and polydopamine as the metal-organic framework (MOF) precursor and carbon source, respectively, we produced a CoS2/C/C composite constituting CoS2 nanoparticles decorated with N-doped carbon layers and subjected to sulfurization. N-doped carbon layers provided a robust network for the CoS2 nanoparticles, enhancing the structural integrity and electronic conductivity of the resulting CoS2/C/C composite, which exhibited electrochemical performance superior to most existing CoS2 composites, and was one of the best among all MOF derived CoS2 anodes for LIBs and SIBs. The use of nanosized CoS2 particles reduced the diffusion length for the transfer of Li+/Na+ ions, resulting in a high specific capacity at a higher current rate. N-doped carbon layers derived from the MOF precursor and polydopamine provided an electrically conductive network between the CoS2 nanoparticles, thus preventing their aggregation and inhibiting adverse side reactions between the electrolyte and the surface of the electrode, and the high pseudocapacitive contribution resulted in the enhanced rate performance of the CoS2/C/C electrodes.

19.
J Colloid Interface Sci ; 551: 219-226, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078977

RESUMEN

Improving the insulating nature of sulfur and retaining the soluble polysulfides in sulfur cathodes are crucial for realizing the practical application of lithium-sulfur batteries (LSBs). Biomass-based carbon is becoming increasingly popular for fabricating economical and efficient cathodes for LSBs owing to its unique structure. Herein, we report a facile strategy to transform bovine bone with an organic-inorganic structure into cellular hierarchical porous carbon via carbonization and KOH activation, followed by CoS2 modification through hydrothermal treatment. The synthesized composite can load abundant sulfur and produce a dual effect of "physical confinement and chemical entrapment" on polysulfides. The conductive carbon frame with the developed porous structure provides adequate space to accommodate sulfur and physically suppress the shuttle effect of polysulfides. The embedded half-metallic CoS2 sites can chemically anchor the polysulfides and enhance the electrochemical reaction activity as well. Owing to the multifunctional structure and dual restraint effect, the designed electrode exhibits enhanced electrochemical properties including high initial capacity (1230.9 mAh g-1 at 0.2 C), improved cycling stability and enhanced rate capability.


Asunto(s)
Huesos/química , Carbono/química , Cobalto/química , Suministros de Energía Eléctrica , Litio , Animales , Productos Biológicos/química , Bovinos , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Electrodos , Litio/química , Minerales/química , Estructura Molecular , Porosidad , Sulfuros/química
20.
ACS Appl Mater Interfaces ; 10(37): 31441-31451, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30153409

RESUMEN

Na-ion batteries (NIBs) have attracted increasing attention given the fact that sodium is relatively more plentiful and affordable than lithium for sustainable and large-scale energy storage systems. However, the shortage of electrode materials with outstanding comprehensive properties has limited the practical implementations of NIBs. Among all the discovered anode materials, transition-metal sulfide has been proven as one of the most competitive and promising ones due to its excellent redox reversibility and relatively high theoretical capacity. In this study, double-morphology N-doped CoS2/multichannel carbon nanofibers composites (CoS2/MCNFs) are precisely designed, which overcome common issues such as the poor cycling life and inferior rate performance of CoS2 electrodes. The conductive 3D interconnected multichannel nanostructure of CoS2/MCNFs provides efficient buffer zones for the release of mechanical stresses from Na+ ions intercalation/deintercalation. The synergy of the diverse structural features enables a robust frame and a rapid electrochemical reaction in CoS2/MCNFs anode, resulting in an impressive long-term cycling life of 900 cycles with a capacity of 620 mAh g-1 at 1 A g-1 (86.4% theoretical capacity) and a surprisingly high-power output. The proposed design in this study provides a rational and novel thought for fabricating electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA