Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Cell Metab ; 36(8): 1764-1778.e9, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38889724

RESUMEN

Deficiency of the epigenome modulator histone deacetylase 3 (HDAC3) in brown adipose tissue (BAT) impairs the ability of mice to survive in near-freezing temperatures. Here, we report that short-term exposure to mild cold temperature (STEMCT: 15°C for 24 h) averted lethal hypothermia of mice lacking HDAC3 in BAT (HDAC3 BAT KO) exposed to 4°C. STEMCT restored the induction of the thermogenic coactivator PGC-1α along with UCP1 at 22°C, which is greatly impaired in HDAC3-deficient BAT, and deletion of either UCP1 or PGC-1α prevented the protective effect of STEMCT. Remarkably, this protection lasted for up to 7 days. Transcriptional activator C/EBPß was induced by short-term cold exposure in mouse and human BAT and, uniquely, remained high for 7 days following STEMCT. Adeno-associated virus-mediated knockdown of BAT C/EBPß in HDAC3 BAT KO mice erased the persistent memory of STEMCT, revealing the existence of a C/EBPß-dependent and HDAC3-independent cold-adaptive epigenomic memory.


Asunto(s)
Tejido Adiposo Pardo , Frío , Histona Desacetilasas , Ratones Noqueados , Animales , Tejido Adiposo Pardo/metabolismo , Histona Desacetilasas/metabolismo , Ratones , Humanos , Termogénesis/genética , Ratones Endogámicos C57BL , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Masculino , Epigenómica , Epigénesis Genética
2.
J Genet Genomics ; 49(11): 991-1001, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870761

RESUMEN

The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of 'remembering of prolonged cold in winter' or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.


Asunto(s)
Epigénesis Genética , Plantas , Temperatura , Epigénesis Genética/genética , Plantas/genética , Flores/genética , Frío , Regulación de la Expresión Génica de las Plantas/genética
3.
J Exp Bot ; 70(18): 4595-4604, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31087096

RESUMEN

Temperate and boreal plants show natural low temperature acclimation during autumn. This cold acclimation process results in increased freezing tolerance. Global climate change is leading to increasing spring and autumn temperatures that can trigger deacclimation and loss of freezing tolerance, making plants susceptible to both late-autumn and late-spring freezing events. In particular, spring frosts can have devastating effects on whole ecosystems and can significantly reduce the yield of crop plants. Although the timing and speed of deacclimation are clearly of crucial importance for plant winter survival, the molecular basis of this process is still largely unknown. The regulation of deacclimation is, however, not only related to freezing tolerance, but also to the termination of dormancy, and the initiation of growth and development. In this paper, we provide an overview of what is known about deacclimation in both woody and herbaceous plants. We use publicly available transcriptome data to identify a core set of deacclimation-related genes in Arabidopsis thaliana that highlight physiological determinants of deacclimation, and suggest important directions for future research in this area.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Fenómenos Fisiológicos de las Plantas , Transcriptoma , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Longevidad , Estaciones del Año
4.
Plant Cell Environ ; 42(3): 854-873, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548618

RESUMEN

Alternating temperatures require fast and coordinated adaptation responses of plants. Cold acclimation has been extensively investigated and results in increased freezing tolerance in Arabidopsis thaliana. Here, we show that the two Arabidopsis accessions, Col-0 and N14, which differ in their freezing tolerance, showed memory of cold acclimation, that is, cold priming. Freezing tolerance was higher in plants exposed to cold priming at 4°C, a lag phase at 20°C, and a second triggering cold stress (4°C) than in plants that were only cold primed. To our knowledge, this is the first report on cold memory improving plant freezing tolerance. The triggering response was distinguishable from the priming response at the levels of gene expression (RNA-Seq), lipid (ultraperformance liquid chromatography-mass spectrometry), and metabolite composition (gas chromatography-mass spectrometry). Transcriptomic responses pointed to induced lipid, secondary metabolism, and stress in Col-0 and growth-related functions in N14. Specific accumulation of lipids included arabidopsides with possible functions as signalling molecules or precursors of jasmonic acid. Whereas cold-induced metabolites such as raffinose and its precursors were maintained in N14 during the lag phase, they were strongly accumulated in Col-0 after the cold trigger. This indicates genetic differences in the transcriptomic and metabolic patterns during cold memory.


Asunto(s)
Adaptación Fisiológica/fisiología , Arabidopsis/fisiología , Arabidopsis/metabolismo , Respuesta al Choque por Frío/fisiología , Congelación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Lípidos/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA