Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Toxicol Appl Pharmacol ; 489: 117018, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945373

RESUMEN

Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2-related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.


Asunto(s)
Neoplasias Asociadas a Colitis , Sulfato de Dextran , Dimetilfumarato , Macrófagos , Estrés Oxidativo , Animales , Dimetilfumarato/farmacología , Estrés Oxidativo/efectos de los fármacos , Masculino , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/prevención & control , Sulfato de Dextran/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Focos de Criptas Aberrantes/patología , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/toxicidad
2.
FASEB J ; 38(13): e23777, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934445

RESUMEN

The incidence of inflammatory bowel disease (IBD) has increased over the last 20 years. A variety of causes, both physiological and environmental, contribute to the initiation and progression of IBD, making disease management challenging. Current treatment options target various aspects of the immune response to dampen intestinal inflammation; however, their effectiveness at retaining remission, their side effects, and loss of response from patients over time warrant further investigation. Finding a common thread within the multitude causes of IBD is critical in developing robust treatment options. Sphingolipids are evolutionary conserved bioactive lipids universally generated in all cell types. This diverse lipid family is involved in a variety of fundamental, yet sometimes opposing, processes such as proliferation and apoptosis. Implicated as regulators in intestinal diseases, sphingolipids are a potential cornerstone in understanding IBD. Herein we will describe the role of host- and microbial-derived sphingolipids as they relate to the many factors of intestinal health and IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Esfingolípidos , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Esfingolípidos/metabolismo , Animales
3.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G123-G139, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771154

RESUMEN

Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.


Asunto(s)
Interleucina-22 , Interleucinas , Mucosa Intestinal , Interleucinas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Animales , Proliferación Celular , Transducción de Señal , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Ratones , Regulación hacia Arriba , Proteínas Proto-Oncogénicas c-akt/metabolismo , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/genética , Antígenos de Neoplasias
4.
Discov Med ; 36(183): 778-787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665026

RESUMEN

BACKGROUND: Tropomyosin 2 (TPM2) has been linked to the advancement of various tumor types, exhibiting distinct impacts on tumor progression. In our investigation, the primary objective was to identify the potential involvement of TPM2 in the development of colitis-associated cancer (CAC) using a mice model. METHODS: This study used lentiviral vector complex for TPM2 knockdown (sh-TPM2) and the corresponding negative control lentiviral vector complex (sh-NC) for genetic interference in mice. CAC was induced in mice using azoxymethane (AOM) and dextran sulfate sodium salt (DSS). This study included 6 groups of mice models: Control, Control+sh-NC, Control+sh-TPM2, CAC, CAC+sh-NC, and CAC+sh-TPM2. Subsequently, colon tissues were collected and assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for TPM2 mRNA levels and flow cytometry for infiltrating immune cells. Tumor number, size, and weight within colon tissues from CAC mice were measured and recorded. The hematoxylin-eosin staining was used for observing tissue pathology changes. The intestinal epithelial cells (IECs) were isolated and analyzed for cell proliferation. This analysis included examining the levels of 5-bromo-2-deoxyuridine (BrdU) and Ki-67 using immunohistochemistry. Additionally, the mRNA levels of proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by qRT-PCR. This study also investigated the activation of the c-Jun N-terminal kinase (JNK) pathway using western blot analysis. Immunogenicity analyses were conducted using immunohistochemistry for F4/80 and flow cytometry. RESULTS: In 8-week-old mice, AOM injections and three cycles of DSS treatment induced TPM2 upregulation in tumor tissues compared to normal tissues (p < 0.05). Fluorescence-activated cell sorting (FACS)-isolated lamina CAC adenomas revealed macrophages and dendritic cells as primary TPM2 contributors (p < 0.001). Lentiviral TPM2 gene knockdown significantly reduced tumor numbers and sizes in CAC mice (p < 0.01, and p < 0.001), without invasive cancer cells. TPM2 suppression resulted in decreased IEC proliferation (p < 0.001) and reduced PCNA and Ki-67 expression (p < 0.05). Western blot analysis indicated reduced JNK pathway activation in TPM2-knockdown CAC mice (p < 0.05, p < 0.001). TPM2 knockdown decreased tumor-associated macrophage infiltration (p < 0.01) and increased CD3+ and CD8+ T cells (p < 0.01, and p < 0.001), with increased levels of regulator of inflammatory cytokines (CD44+, CD107a+) (p < 0.01, and p < 0.001), decreased levels of PD-1+ and anti-inflammatory factor (IL10+) (p < 0.01, and p < 0.001). CONCLUSIONS: Our results demonstrated that TPM2 knockdown suppressed the proliferation of CAC IECs, enhanced immune suppression on CAC IECs, and inhibited the JNK signaling pathway within the framework of CAC. These findings suggest TPM2 can serve as a potential therapeutic target for CAC treatment.


Asunto(s)
Proliferación Celular , Neoplasias Asociadas a Colitis , Sistema de Señalización de MAP Quinasas , Tropomiosina , Animales , Humanos , Masculino , Ratones , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/patología , Colitis/complicaciones , Colitis/inmunología , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Asociadas a Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/inmunología , Ratones Endogámicos C57BL , Tropomiosina/metabolismo , Tropomiosina/inmunología , Tropomiosina/genética
5.
Pflugers Arch ; 476(4): 611-622, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514581

RESUMEN

Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Protones , Estudio de Asociación del Genoma Completo , Receptores Acoplados a Proteínas G , Concentración de Iones de Hidrógeno , Fibrosis
6.
Front Immunol ; 15: 1295863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500875

RESUMEN

Colorectal cancer (CRC) is a complex and heterogeneous disease characterized by dysregulated interactions between tumor cells and the immune system. The tumor microenvironment plays a pivotal role in cancer initiation as well as progression, with myeloid immune cells such as dendritic cell and macrophage subsets playing diverse roles in cancer immunity. On one hand, they exert anti-tumor effects, but they can also contribute to tumor growth. The AOM/DSS colitis-associated cancer mouse model has emerged as a valuable tool to investigate inflammation-driven CRC. To understand the role of different leukocyte populations in tumor development, the preparation of single cell suspensions from tumors has become standard procedure for many types of cancer in recent years. However, in the case of AOM/DSS-induced colorectal tumors, this is still challenging and rarely described. For one, to be able to properly distinguish tumor-associated immune cells, separate processing of cancerous and surrounding colon tissue is essential. In addition, cell yield, due to the low tumor mass, viability, as well as preservation of cell surface epitopes are important for successful flow cytometric profiling of tumor-infiltrating leukocytes. Here we present a fast, simple, and economical step-by-step protocol for isolating colorectal tumor-associated leukocytes from AOM/DSS-treated mice. Furthermore, we demonstrate the feasibility of this protocol for high-dimensional flow cytometric identification of the different tumor-infiltrating leukocyte populations, with a specific focus on myeloid cell subsets.


Asunto(s)
Neoplasias Colorrectales , Animales , Ratones , Azoximetano/efectos adversos , Modelos Animales de Enfermedad , Citometría de Flujo , Leucocitos/metabolismo , Microambiente Tumoral
7.
Front Endocrinol (Lausanne) ; 15: 1348216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516408

RESUMEN

The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.


Asunto(s)
Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Humanos , Reparación del ADN , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Inflamación/complicaciones , Daño del ADN , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
8.
Mol Ther ; 32(4): 890-909, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38369751

RESUMEN

Long-term use of conventional drugs to treat inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC) has an adverse impact on the human immune system and easily leads to drug resistance, highlighting the urgent need to develop novel biotherapeutic tools with improved activity and limited side effects. Numerous products derived from plant sources have been shown to exert antibacterial, anti-inflammatory and antioxidative stress effects. Plant-derived vesicle-like nanoparticles (PDVLNs) are natural nanocarriers containing lipids, protein, DNA and microRNA (miRNA) with the ability to enter mammalian cells and regulate cellular activity. PDVLNs have significant potential in immunomodulation of macrophages, along with regulation of intestinal microorganisms and friendly antioxidant activity, as well as overcoming drug resistance. PDVLNs have utility as effective drug carriers and potential modification, with improved drug stability. Since immune function, intestinal microorganisms, and antioxidative stress are commonly targeted key phenomena in the treatment of IBD and CAC, PDVLNs offer a novel therapeutic tool. This review provides a summary of the latest advances in research on the sources and extraction methods, applications and mechanisms in IBD and CAC therapy, overcoming drug resistance, safety, stability, and clinical application of PDVLNs. Furthermore, the challenges and prospects of PDVLN-based treatment of IBD and CAC are systematically discussed.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Enfermedades Inflamatorias del Intestino , Nanopartículas , Animales , Humanos , Neoplasias Asociadas a Colitis/complicaciones , Neoplasias Asociadas a Colitis/tratamiento farmacológico , Neoplasias Asociadas a Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/etiología , Antiinflamatorios/farmacología , Macrófagos/metabolismo , Colitis/etiología , Colitis/complicaciones , Mamíferos
9.
Cancers (Basel) ; 16(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398179

RESUMEN

Inflammatory bowel disease (IBD), characterized by chronic inflammation in the intestinal tract, increases the risk for the development of colorectal cancer (CRC). Sphingolipids, which have been implicated in IBD and CRC, are a class of bioactive lipids that regulate cell signaling, differentiation, apoptosis, inflammation, and survival. The balance between ceramide (Cer), the central sphingolipid involved in apoptosis and differentiation, and sphingosine-1-phosphate (S1P), a potent signaling molecule involved in proliferation and inflammation, is vital for the maintenance of normal cellular function. Altered sphingolipid metabolism has been implicated in IBD and CRC, with many studies highlighting the importance of S1P in inflammatory signaling and pro-survival pathways. A myriad of sphingolipid analogues, inhibitors, and modulators have been developed to target the sphingolipid metabolic pathway. In this review, the efficacy and therapeutic potential for modulation of sphingolipid metabolism in IBD and CRC will be discussed.

10.
Int J Biol Macromol ; 262(Pt 2): 130056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365160

RESUMEN

It has been claimed that Dendrobium officinale polysaccharides (PSs) can degrade into oligosaccharide and then transform into short-chain fatty acids in the intestine after oral administration, and play an anti-colitis-associated cancer (CAC) effect by inhibiting intestinal inflammation. However, the material basis and core chemical structure underlying the anti-colon cancer properties of PSs have not yet been elucidated. In this study, PSs were degraded into enzymatic oligosaccharides (OSs) using ß-mannanase. The results of in vivo experiments revealed that PSs and OSs administered by gastric lavage had similar antitumor effects in CAC mice. OS-1 (Oligosaccharide compounds 1) and OS-2 (Oligosaccharide compounds 2) were further purified and characterized from OSs, and it was found that OS-1, OS-2, OSs, and PSs had similar and consistent anti-inflammatory activities in vitro. Chemical structure comparison and evaluation revealed that the chemical structure of ß-D-Manp-(1 â†’ 4)-ß-D-Glcp corresponding to OS-1 was the least common PS structure with anti-colitic activity. Therefore, our findings suggest that OSs are the material basis for PSs to exert anti-CAC activity and that the chemical structure of ß-D-Manp-(1 â†’ 4)-ß-D-Glcp corresponding to OS-1 is the core chemical structure of PSs against CAC.


Asunto(s)
Neoplasias Asociadas a Colitis , Dendrobium , Ratones , Animales , Dendrobium/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Oligosacáridos/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
11.
J Gastroenterol Hepatol ; 39(5): 893-901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38273469

RESUMEN

BACKGROUND AND AIM: Colitis-associated intestinal cancer (CAC) can develop in patients with inflammatory bowel disease; however, the malignant grade of CAC may differ from that of sporadic colorectal cancer (CRC). Therefore, we compared histological findings distinct from cancer stage between CAC and sporadic CRC to evaluate the features of CAC. METHODS: We reviewed the clinical and histological data collected from a nationwide database in Japan between 1983 and 2020. Patient characteristics were compared to distinguish ulcerative colitis (UC), Crohn's disease (CD), and sporadic CRC. Comparisons were performed by using all collected data and propensity score-matched data. RESULTS: A total of 1077 patients with UC-CAC, 297 with CD-CAC, and 136 927 with sporadic CRC were included. Although the prevalence of well or moderately differentiated adenocarcinoma (Tub1 and Tub2) decreased according to tumor progression for all diseases (P < 0.01), the prevalence of other histological findings, including signet ring cell carcinoma, mucinous carcinoma, poorly differentiated adenocarcinoma, or squamous cell carcinoma, was significantly higher in CAC than in sporadic CRC. Based on propensity score-matched data for 982 patients with UC and 268 with CD, the prevalence of histological findings other than Tub1 and Tub2 was also significantly higher in those with CAC. At pT4, mucinous carcinoma occurred at a significantly higher rate in patients with CD (45/86 [52.3%]) than in those with sporadic CRC (13/88 [14.8%]) (P < 0.01). CONCLUSION: CAC, including early-stage CAC, has a higher malignant grade than sporadic CRC, and this difference increases in significance with tumor progression.


Asunto(s)
Colitis Ulcerosa , Puntaje de Propensión , Humanos , Masculino , Femenino , Persona de Mediana Edad , Colitis Ulcerosa/patología , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/epidemiología , Anciano , Japón/epidemiología , Enfermedad de Crohn/patología , Enfermedad de Crohn/epidemiología , Enfermedad de Crohn/complicaciones , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/etiología , Neoplasias Asociadas a Colitis/epidemiología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Adulto , Adenocarcinoma/patología , Adenocarcinoma/epidemiología , Adenocarcinoma/etiología , Estadificación de Neoplasias , Clasificación del Tumor , Adenocarcinoma Mucinoso/patología , Adenocarcinoma Mucinoso/epidemiología , Adenocarcinoma Mucinoso/etiología , Carcinoma de Células en Anillo de Sello/patología , Carcinoma de Células en Anillo de Sello/epidemiología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/epidemiología , Carcinoma de Células Escamosas/etiología , Diagnóstico Diferencial , Prevalencia
12.
J Nutr Biochem ; 125: 109494, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37866426

RESUMEN

Colorectal cancer (CRC) is currently the third leading cancer and commonly develops from chronic intestinal inflammation. A strong association was found between gut microbiota and intestinal inflammation and carcinogenic risk. Flavonoids, which are abundant in vegetables and fruits, can inhibit inflammation, regulate gut microbiota, protect gut barrier integrity, and modulate immune cell function, thereby attenuating colitis and preventing carcinogenesis. Upon digestion, about 90% of flavonoids are transported to the colon without being absorbed in the small intestine. This phenomenon increases the abundance of beneficial bacteria and enhances the production of short-chain fatty acids. The gut microbe further metabolizes these flavonoids. Interestingly, some metabolites of flavonoids play crucial roles in anti-inflammation and anti-tumor effects. This review summarizes the modulatory effect of flavonoids on gut microbiota and their metabolism by intestinal microbe under disease conditions, including inflammatory bowel disease, colitis-associated cancer (CAC), and CRC. We focus on dietary flavonoids and microbial interactions in intestinal mucosal barriers as well as intestinal immune cells. Results provide novel insights to better understand the crosstalk between dietary flavonoids and gut microbiota and support the standpoint that dietary flavonoids prevent intestinal inflammation and carcinogenesis.


Asunto(s)
Colitis , Microbiota , Humanos , Inflamación , Polifenoles , Flavonoides/farmacología , Carcinogénesis
13.
Nutrients ; 15(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004214

RESUMEN

Okra flowers are a good source of polysaccharides and flavonoids, with biological activities of anti-inflammatory action and modulation of the gut microbiota. Previously, we reported that flavonoid-rich extracts from okra flowers (AFE) presented effective anti-colorectal cancer (CRC) activity in CRC cells as well as xenograft models, but their role in colitis-associated cancer (CAC) is unidentified. In this study, we aimed to evaluate the effects of AFE and APE (polysaccharides extracted from okra flowers) on the CAC symptoms of azoxymethane (AOM)/dextran sodium sulfate (DSS)-intervened mice. The results showed that APE and AFE exert potent efficacy in inhibiting colitis and colorectal tumorigenesis stimulated by AOM/DSS, characterized by decreased colonic shortening, DAI score, and tumor numbers. Compared with the control group, APE/AFE alleviated the microbiota dysbiosis driven by AOM/DSS. In addition, AFE elicited its anticancer activity through regulation of NFκB/IL-6/Stat3, JAK2/Stat3, MAPKs, PI3K/AKT, and Wnt/ß-catenin signal transductions in AOM/DSS mice, which was consistent with a vitro model of CT26 cells, while APE treatment exhibited anticancer activity through regulation of Nrf2/IL-6, MAPKs, PI3K/AKT, and Wnt/ß-catenin signal transductions in the AOM/DSS mouse model. Collectively, our studies revealed, for the first time, that flavonoids and polysaccharides from okra flowers possess the ability to attenuate colitis and colorectal tumorigenesis, with them having great potential to become promising candidates against CRC.


Asunto(s)
Abelmoschus , Anticarcinógenos , Neoplasias Asociadas a Colitis , Colitis , Neoplasias Colorrectales , Hominidae , Humanos , Ratones , Animales , Flavonoides/efectos adversos , Sulfato de Dextran/efectos adversos , Interleucina-6 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , beta Catenina , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Azoximetano , Carcinogénesis , Transformación Celular Neoplásica , Anticarcinógenos/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neoplasias Colorrectales/patología
14.
World J Gastroenterol ; 29(40): 5543-5556, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37970476

RESUMEN

BACKGROUND: Phosphatidylinositol-3-kinases (PI3K) is a well-known route in inflammation-related cancer. Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis (UC) and colorectal cancer (CRC) with colitis-associated cancer (CAC). PI3K/AKT pathway has been recommended as a potential additional therapeutic option for CRC due to its substantial role in modifying cellular processes. Buparlisib is a pan-class I PI3K inhibitor previously shown to reduce tumor growth. AIM: To investigate the regulation of rs10889677 and the role of buparlisib in the PI3K signaling pathway in CAC pathogenesis. METHODS: Genomic DNA from 32 colonic samples, including CAC (n = 7), UC (n = 10) and CRC (n = 15), was sequenced for the rs10889677 mutation. The mutant and wildtype fragments were amplified and cloned in the pmirGLO vector. The luciferase activity of cloned vectors was assessed after transfection into the HT29 cell line. CAC mice were induced by a mixture of a single azoxymethane injection and three cycles of dextran sulphate sodium, then buparlisib was administered after 14 d. The excised colon was subjected to immunohistochemistry for Ki67 and Cleaved-caspase-3 markers and quantitative real-time polymerase chain reaction analysis for Pdk1 and Sgk2. RESULTS: Luciferase activity decreased by 2.07-fold in the rs10889677 mutant, confirming the hypothesis that the variant disrupted miRNA binding sites, which led to an increase in IL23R expression and the activation of the PI3K signaling pathway. Furthermore, CAC-induced mice had a significantly higher disease activity index (P < 0.05). Buparlisib treatment significantly decreased mean weight loss in CAC-induced mice (P < 0.05), reduced the percentage of proliferating cells by 5%, and increased the number of apoptotic cells. The treatment also caused a downward trend of Pdk1 expression and significantly decreased Sgk2 expression. CONCLUSION: Our findings suggested that the rs10889677 variant as a critical initiator of the PI3K signaling pathway, and buparlisib had the ability to prevent PI3K-non-AKT activation in the pathophysiology of CAC.


Asunto(s)
Aminopiridinas , Colitis Ulcerosa , Neoplasias Asociadas a Colitis , Colitis , Neoplasias del Colon , Morfolinas , Ratones , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Asociadas a Colitis/complicaciones , Transducción de Señal/genética , Inflamación/complicaciones , Colitis Ulcerosa/complicaciones , Neoplasias del Colon/patología , Fosfatidilinositoles/efectos adversos , Luciferasas , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico
15.
Heliyon ; 9(9): e19815, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810110

RESUMEN

Chronic inflammation-induced oxidative stress is an important driving force for developing colitis-associated cancer (CAC). 4-hydroxynonenal (4-HNE) is a highly reactive aldehyde derived from lipid peroxidation of ω-6 polyunsaturated fatty acids that contributes to colorectal carcinogenesis. Glutathione S-transferase alpha 4 (Gsta4) specifically conjugates glutathione to 4-HNE and thereby detoxifies 4-HNE. The correlation of these oxidative biomarkers with the pathological changes in CAC is, however, unclear. In this study, we investigated the expression of Gsta4 and 4-HNE adducts in azoxymethane/dextran sulfate sodium (AOM/DSS)-induced murine CAC, and analyzed the correlations of 4-HNE and Gsta4 with inflammatory cytokines and the pathological scores in the colon biopsies. Real-time quantitative PCR showed that expression of IL6, TNFα, and Gsta4 sequentially increased in colon tissues for mice treated with DSS for 1, 2, and 3 cycles, respectively. Moreover, immunohistochemical staining showed remarkably increased expression of 4-HNE adducts, Gsta4, TNFα, and IL6 in the colon biopsies after 3 cycles of DSS treatment. Correlation analysis demonstrated that 4-HNE adducts in the colon biopsies were positively correlated with Gsta4 expression. Additionally, the expression of Gsta4 and 4-HNE adducts were strongly correlated with the pathological changes of colon, as well as the expression of TNFα and IL6 in colon tissues. These results provide evidence for the association of oxidative biomarkers Gsta4 and 4-HNE with the pathological changes of CAC and may help developing novel histopathological biomarkers and prevention targets for CAC.

16.
Int J Biol Sci ; 19(15): 5004-5019, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781523

RESUMEN

Background: Dietary fat intake is associated with an increased risk of colitis associated cancer (CAC). A high-fat diet (HFD) leads to systemic low-grade inflammation. The colon is believed to be the first organ suffering from inflammation caused by the infiltration of pro-inflammatory macrophages, and promotes CAC progression. We explored the role of HFD in driving CAC by altering gut microbial butyrate metabolism. Methods: Changes in the gut microbiota caused by HFD were investigated via HFD treatment or fecal microbiota transplantation (FMT). The underlying mechanisms were further explored by analyzing the role of gut microbiota, microbial butyrate metabolism, and NLRP3 inflammasome in colon tissues in a CAC mouse model. Results: HFD accelerated CAC progression in mice, and it could be reversed by broad-spectrum antibiotics (ABX). 16S-rRNA sequencing revealed that HFD inhibited the abundance of butyrate-producing bacteria in the gut. The level of short-chain fatty acids (SCFAs), especially butyrate, in the gut of mice treated with HFD was significantly reduced. In addition, treatment with exogenous butyrate reversed the M1 polarization of proinflammatory macrophages, aggravation of intestinal inflammation, and accelerated tumor growth induced by HFD; the NLRP3/Caspase-1 pathway activated by HFD in the colon was also significantly inhibited. In vitro, macrophages were treated with lipopolysaccharide combined with butyrate to detect the M1 polarization level and NLRP3/Caspase-1 pathway expression, and the results were consistent with those of the in vivo experiments. Conclusion: HFD drives colitis-associated tumorigenesis by inducing gut microbial dysbiosis and inhibiting butyrate metabolism to skew macrophage polarization. Exogenous butyrate is a feasible new treatment strategy for CAC, and has good prospect for clinical application.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Ratones , Animales , Butiratos/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamación , Transformación Celular Neoplásica , Carcinogénesis , Caspasas
17.
Int Immunopharmacol ; 124(Pt A): 110838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37633235

RESUMEN

Colorectal cancer (CRC) is a growing concern due to its high morbidity and mortality, and the search for effective and less toxic active substances against inflammatory bowel diseases has been a hot topic in the research and development of drugs against CRC. It is reported that monotropein isolated from the roots of Morinda officinalis, can improve Dextran Sodium Sulfate (DSS)-induced ulcerative colitis in mice, but its therapeutic effects and mechanisms for CRC treatment are still to be investigated. In the present study, we first used molecular docking, BLI, CESTA, and DARTS methods to detest whether monotropein targets VDR proteins. In addition, we used tumor cell conditioned co-culture and four models of macrophage polarisation to investigate the regulation of four macrophage polarisations by monotropein using RT-PCR, IF and western blot. Furthermore, we further validated the target of action of monotropein for the treatment of Azoxymethane (AOM)/DSS induced colitis associated cancer (CAC) using knockout animals. Meanwhile, we further explored the mechanism of action of monotropein in regulating polarisation by detecting JAK/STAT1-related genes and proteins. Molecular docking and biofilm interference techniques showed that monotropein bound to the VDR, and additional results from CESTA and DARTS suggested that VDR proteins are targets of monotropein. Furthermore, in tumor cell conditioned co-cultures or LPS + IFN-γ induced RAW264.7 cells, VDR translocation to the nucleus was reduced, JAK1/STAT1 signaling pathway proteins were up-regulated, and macrophages were polarised towards the M1-type after monotropein intervention. Animal models in which normal VDR or myeloid VDR was knocked out confirmed that JAK1 levels in intestinal tissues were increased after monotropein intervention, macrophages were polarised towards the M1 type, and CAC paracarcinomas were ameliorated. Taken together, the present study concluded that monotropein inhibited colitis-associated cancers through macrophage polarisation regulated by VDR/JAK1/STAT1.

18.
J Biophotonics ; 16(12): e202300193, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37556310

RESUMEN

Colorectal cancer is a prevalent malignancy globally, often linked to chronic colitis. Terahertz technology, with its noninvasive and fingerprint spectroscopic properties, holds promise in disease diagnosis. This study aimed to explore terahertz technology's application in colitis-associated cancer using a mouse model. Mouse colorectal tissues were transformed into paraffin-embedded blocks for histopathological analysis using HE staining. Terahertz transmission spectroscopy was performed on the tissue blocks. By comparing terahertz absorption differences, specific frequency bands were identified as optimal for distinguishing cancerous and normal tissues. The study revealed that terahertz spectroscopy effectively differentiates colitis-related cancers from normal tissues. Remarkably, 1.8 THz emerged as a potential optimal frequency for diagnosing colorectal cancer in mice. This suggests the potential for rapid histopathological diagnosis of colorectal cancer using terahertz technology.


Asunto(s)
Neoplasias Colorrectales , Espectroscopía de Terahertz , Humanos , Espectroscopía de Terahertz/métodos , Neoplasias Colorrectales/diagnóstico
20.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2325-2333, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282861

RESUMEN

The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and ß-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Neoplasias del Colon , Ratones , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , PPAR alfa/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Colon , Azoximetano , ARN Mensajero , Sulfato de Dextran , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA