Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
1.
Neuroradiology ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967815

RESUMEN

PURPOSE: To assess image quality and diagnostic confidence of 3D T1-weighted spoiled gradient echo (SPGR) MRI using artificial intelligence (AI) reconstruction. MATERIALS AND METHODS: This prospective, IRB-approved study enrolled 50 pediatric patients (mean age = 11.8 ± 3.1 years) undergoing clinical brain MRI. In addition to standard of care (SOC) compressed SENSE (CS = 2.5), 3D T1-weighted SPGR images were obtained with higher CS acceleration factors (5 and 8) to evaluate the ability of AI reconstruction to improve image quality and reduce scan time. Images were reviewed independently on dedicated research PACS workstations by two neuroradiologists. Quantitative analysis of signal intensities to calculate apparent grey and white matter signal to noise (aSNR) and grey-white matter apparent contrast to noise ratios (aCNR) was performed. RESULTS: AI improved overall image quality compared to standard CS reconstruction in 35% (35/100) of evaluations in CS = 2.5 (average scan time = 221 ± 6.9 s), 100% (46/46) of CS = 5 (average scan time = 113.3 ± 4.6 s) and 94% (47/50) of CS = 8 (average scan time = 74.1 ± 0.01 s). Quantitative analysis revealed significantly higher grey matter aSNR, white matter aSNR and grey-white matter aCNR with AI reconstruction compared to standard reconstruction for CS 5 and 8 (all p-values < 0.001), however not for CS 2.5. CONCLUSIONS: AI reconstruction improved overall image quality and gray-white matter qualitative and quantitative aSNR and aCNR in highly accelerated (CS = 5 and 8) 3D T1W SPGR images in the majority of pediatric patients.

2.
Magn Reson Med ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044635

RESUMEN

PURPOSE: To develop a deep learning-based approach to reduce the scan time of multipool CEST MRI for Parkinson's disease (PD) while maintaining sufficient prediction accuracy. METHOD: A deep learning approach based on a modified one-dimensional U-Net, termed Z-spectral compressed sensing (CS), was proposed to recover dense Z-spectra from sparse ones. The neural network was trained using simulated Z-spectra generated by the Bloch equation with various parameter settings. Its feasibility and effectiveness were validated through numerical simulations and in vivo rat brain experiments, compared with commonly used linear, pchip, and Lorentzian interpolation methods. The proposed method was applied to detect metabolism-related changes in the 6-hydroxydopamine PD model with multipool CEST MRI, including APT, CEST@2 ppm, nuclear Overhauser enhancement, direct saturation, and magnetization transfer, and the prediction performance was evaluated by area under the curve. RESULTS: The numerical simulations and in vivo rat-brain experiments demonstrated that the proposed method could yield superior fidelity in retrieving dense Z-spectra compared with existing methods. Significant differences were observed in APT, CEST@2 ppm, nuclear Overhauser enhancement, and direct saturation between the striatum regions of wild-type and PD models, whereas magnetization transfer exhibited no significant difference. Receiver operating characteristic analysis demonstrated that multipool CEST achieved better predictive performance compared with individual pools. Combined with Z-spectral CS, the scan time of multipool CEST MRI can be reduced to 33% without distinctly compromising prediction accuracy. CONCLUSION: The integration of Z-spectral CS with multipool CEST MRI can enhance the prediction accuracy of PD and maintain the scan time within a reasonable range.

3.
Magn Reson Med Sci ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39034144

RESUMEN

PURPOSE: To investigate the visibility of the lenticulostriate arteries (LSAs) in time-of-flight (TOF)-MR angiography (MRA) using compressed sensing (CS)-based deep learning (DL) image reconstruction by comparing its image quality with that obtained by the conventional CS algorithm. METHODS: Five healthy volunteers were included. High-resolution TOF-MRA images with the reduction (R)-factor of 1 were acquired as full-sampling data. Images with R-factors of 2, 4, and 6 were then reconstructed using CS-DL and conventional CS (the combination of CS and sensitivity conceding; CS-SENSE) reconstruction, respectively. In the quantitative assessment, the number of visible LSAs (identified by two radiologists), length of each depicted LSA (evaluated by one radiological technologist), and normalized mean squared error (NMSE) value were assessed. In the qualitative assessment, the overall image quality and the visibility of the peripheral LSA were visually evaluated by two radiologists. RESULTS: In the quantitative assessment of the DL-CS images, the number of visible LSAs was significantly higher than those obtained with CS-SENSE in the R-factors of 4 and 6 (Reader 1) and in the R-factor of 6 (Reader 2). The length of the depicted LSAs in the DL-CS images was significantly longer in the R-factor 6 compared to the CS-SENSE result. The NMSE value in CS-DL was significantly lower than in CS-SENSE for R-factors of 4 and 6. In the qualitative assessment of DL-CS images, the overall image quality was significantly higher than that obtained with CS-SENSE in the R-factors 4 and 6 (Reader 1) and in the R-factor 4 (Reader 2). The visibility of the peripheral LSA was significantly higher than that shown by CS-SENSE in all R-factors (Reader 1) and in the R-factors 2 and 4 (Reader 2). CONCLUSION: CS-DL reconstruction demonstrated preserved image quality for the depiction of LSAs compared to the conventional CS-SENSE when the R-factor is elevated.

4.
Magn Reson Med ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953429

RESUMEN

PURPOSE: To assess the potential for accelerating continuous-wave (CW) T1ρ dispersion measurement with compressed sensing approach via studying the effect that the data reduction has on the ability to detect differences between intact and degenerated articular cartilage with different spin-lock amplitudes and to assess quantitative bias due to acceleration. METHODS: Osteochondral plugs (n = 27, 4 mm diameter) from femur (n = 14) and tibia (n = 13) regions from human cadaver knee joints were obtained from commercial biobank (Science Care, USA) under Ethical permission 134/2015. MRI of specimens was performed at 9.4T with magnetization prepared radial balanced SSFP (bSSFP) readout sequence, and the CWT1ρ relaxation time maps were computed from the measured data. The relaxation time maps were evaluated in the cartilage zones for different acceleration factors. For reference, Osteoarthritis Research Society International (OARSI) grading and biomechanical measurements were performed and correlated with the MRI findings. RESULTS: Four-fold acceleration of CWT1ρ dispersion measurement by compressed sensing approach was feasible without meaningful loss in the sensitivity to osteoarthritic (OA) changes within the articular cartilage. Differences were significant between intact and OA groups in the superficial and transitional zones, and CWT1ρ correlated moderately with the reference measurements (0.3 < r < 0.7). CONCLUSION: CWT1ρ was able to differentiate between intact and OA cartilage even with four-fold acceleration. This indicates that acceleration of CWT1ρ dispersion measurement by compressed sensing approach is feasible with negligible loss in the sensitivity to osteoarthritic changes in articular cartilage.

5.
BMC Med Imaging ; 24(1): 148, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886638

RESUMEN

BACKGROUND: Preoperative discrimination between non-muscle-invasive bladder cancer (NMIBC) and the muscle invasive bladder cancer (MIBC) is a determinant of management. The purpose of this research is to employ radiomics to evaluate the diagnostic value in determining muscle invasiveness of compressed sensing (CS) accelerated 3D T2-weighted-SPACE sequence with high resolution and short acquisition time. METHODS: This prospective study involved 108 participants who underwent preoperative 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and T2-weighted sequences. The cohort was divided into training and validation cohorts in a 7:3 ratio. In the training cohort, a Rad-score was constructed based on radiomic features selected by intraclass correlation coefficients, pearson correlation coefficient and least absolute shrinkage and selection operator . Multivariate logistic regression was used to develop a nomogram combined radiomics and clinical indices. In the validation cohort, the performances of the models were evaluated by ROC, calibration, and decision curves. RESULTS: In the validation cohort, the area under ROC curve of 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and T2-weighted models were 0.87(95% confidence interval (CI):0.73-1.00), 0.79(95%CI:0.63-0.96) and 0.77(95%CI:0.60-0.93), respectively. The differences in signal-to-noise ratio and contrast-to-noise ratio between 3D-CS-T2-weighted-SPACE and 3D-T2-weighted-SPACE sequences were not statistically significant(p > 0.05). While the clinical model composed of three clinical indices was 0.74(95%CI:0.55-0.94) and the radiomics-clinical nomogram model was 0.88(95%CI:0.75-1.00). The calibration curves confirmed high goodness of fit, and the decision curve also showed that the radiomics model and combined nomogram model yielded higher net benefits than the clinical model. CONCLUSION: The radiomics model based on compressed sensing 3D T2WI sequence, which was acquired within a shorter acquisition time, showed superior diagnostic efficacy in muscle invasion of bladder cancer. Additionally, the nomogram model could enhance the diagnostic performance.


Asunto(s)
Imagenología Tridimensional , Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Masculino , Femenino , Persona de Mediana Edad , Invasividad Neoplásica/diagnóstico por imagen , Estudios Prospectivos , Imagenología Tridimensional/métodos , Anciano , Imagen por Resonancia Magnética/métodos , Curva ROC , Nomogramas , Radiómica
6.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894072

RESUMEN

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

7.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38894372

RESUMEN

For orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, the estimation of time-varying multipath channels not only has a large error, which affects system performance, but also requires plenty of pilots, resulting in low spectral efficiency. To address these issues, we propose a time-varying multipath channel estimation method based on distributed compressed sensing and a multi-symbol complex exponential basis expansion model (MS-CE-BEM) by exploiting the temporal correlation and the joint delay sparsity of wideband wireless channels within the duration of multiple OFDM symbols. Furthermore, in the proposed method, a sparse pilot pattern with the self-cancellation of pilot intercarrier interference (ICI) is adopted to reduce the input parameter error of the MS-CE-BEM, and a symmetrical extension technique is introduced to reduce the modeling error. Simulation results show that, compared with existing methods, this proposed method has superior performances in channel estimation and spectrum utilization for sparse time-varying channels.

8.
J Med Imaging (Bellingham) ; 11(3): 033504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38938501

RESUMEN

Purpose: We present a method that combines compressed sensing with parallel imaging that takes advantage of the structure of the sparsifying transformation. Approach: Previous work has combined compressed sensing with parallel imaging using model-based reconstruction but without taking advantage of the structured sparsity. Blurry images for each coil are reconstructed from the fully sampled center region. The optimization problem of compressed sensing is modified to take these blurry images into account, and it is solved to estimate the missing details. Results: Using data of brain, ankle, and shoulder anatomies, the combination of compressed sensing with structured sparsity and parallel imaging reconstructs an image with a lower relative error than does sparse SENSE or L1 ESPIRiT, which do not use structured sparsity. Conclusions: Taking advantage of structured sparsity improves the image quality for a given amount of data as long as a fully sampled region centered on the zero frequency of the appropriate size is acquired.

9.
Entropy (Basel) ; 26(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38920476

RESUMEN

Block compressed sensing (BCS) is a promising method for resource-constrained image/video coding applications. However, the quantization of BCS measurements has posed a challenge, leading to significant quantization errors and encoding redundancy. In this paper, we propose a quantization method for BCS measurements using convolutional neural networks (CNN). The quantization process maps measurements to quantized data that follow a uniform distribution based on the measurements' distribution, which aims to maximize the amount of information carried by the quantized data. The dequantization process restores the quantized data to data that conform to the measurements' distribution. The restored data are then modified by the correlation information of the measurements drawn from the quantized data, with the goal of minimizing the quantization errors. The proposed method uses CNNs to construct quantization and dequantization processes, and the networks are trained jointly. The distribution parameters of each block are used as side information, which is quantized with 1 bit by the same method. Extensive experiments on four public datasets showed that, compared with uniform quantization and entropy coding, the proposed method can improve the PSNR by an average of 0.48 dB without using entropy coding when the compression bit rate is 0.1 bpp.

10.
Radiologie (Heidelb) ; 2024 Jun 12.
Artículo en Alemán | MEDLINE | ID: mdl-38864874

RESUMEN

CLINICAL/METHODICAL ISSUE: Magnetic resonance imaging (MRI) is a central component of musculoskeletal imaging. However, long image acquisition times can pose practical barriers in clinical practice. STANDARD RADIOLOGICAL METHODS: MRI is the established modality of choice in the diagnostic workup of injuries and diseases of the musculoskeletal system due to its high spatial resolution, excellent signal-to-noise ratio (SNR), and unparalleled soft tissue contrast. METHODOLOGICAL INNOVATIONS: Continuous advances in hardware and software technology over the last few decades have enabled four-fold acceleration of 2D turbo-spin-echo (TSE) without compromising image quality or diagnostic performance. The recent clinical introduction of deep learning (DL)-based image reconstruction algorithms helps to minimize further the interdependency between SNR, spatial resolution and image acquisition time and allows the use of higher acceleration factors. PERFORMANCE: The combined use of advanced acceleration techniques and DL-based image reconstruction holds enormous potential to maximize efficiency, patient comfort, access, and value of musculoskeletal MRI while maintaining excellent diagnostic accuracy. ACHIEVEMENTS: Accelerated MRI with DL-based image reconstruction has rapidly found its way into clinical practice and proven to be of added value. Furthermore, recent investigations suggest that the potential of this technology does not yet appear to be fully harvested. PRACTICAL RECOMMENDATIONS: Deep learning-reconstructed fast musculoskeletal MRI examinations can be reliably used for diagnostic work-up and follow-up of musculoskeletal pathologies in clinical practice.

11.
Magn Reson Med ; 92(4): 1363-1375, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860514

RESUMEN

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.


Asunto(s)
Algoritmos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Relación Señal-Ruido , Femenino , Imagenología Tridimensional/métodos , Adulto , Fantasmas de Imagen , Artefactos , Compresión de Datos/métodos , Reproducibilidad de los Resultados , Pulmón/diagnóstico por imagen , Medios de Contraste/química
12.
J Med Imaging (Bellingham) ; 11(3): 035003, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38827777

RESUMEN

Purpose: There are a number of algorithms for smooth l0-norm (SL0) approximation. In most of the cases, sparsity level of the reconstructed signal is controlled by using a decreasing sequence of the modulation parameter values. However, predefined decreasing sequences of the modulation parameter values cannot produce optimal sparsity or best reconstruction performance, because the best choice of the parameter values is often data-dependent and dynamically changes in each iteration. Approach: We propose an adaptive compressed sensing magnetic resonance image reconstruction using the SL0 approximation method. The SL0 approach typically involves one-step gradient descent of the SL0 approximating function parameterized with a modulation parameter, followed by a projection step onto the feasible solution set. Since the best choice of the parameter values is often data-dependent and dynamically changes in each iteration, it is preferable to adaptively control the rate of decrease of the parameter values. In order to achieve this, we solve two subproblems in an alternating manner. One is a sparse regularization-based subproblem, which is solved with a precomputed value of the parameter, and the second subproblem is the estimation of the parameter itself using a root finding technique. Results: The advantage of this approach in terms of speed and accuracy is illustrated using a compressed sensing magnetic resonance image reconstruction problem and compared with constant scale factor continuation based SL0-norm and adaptive continuation based l1-norm minimization approaches. The proposed adaptive estimation is found to be at least twofold faster than automated parameter estimation based iterative shrinkage-thresholding algorithm in terms of CPU time, on an average improvement of reconstruction performance 15% in terms of normalized mean squared error. Conclusions: An adaptive continuation-based SL0 algorithm is presented, with a potential application to compressed sensing (CS)-based MR image reconstruction. It is a data-dependent adaptive continuation method and eliminates the problem of searching for appropriate constant scale factor values to be used in the CS reconstruction of different types of MRI data.

13.
Magn Reson Med ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38923009

RESUMEN

PURPOSE: Quantitative T1 mapping has the potential to replace biopsy for noninvasive diagnosis and quantitative staging of chronic liver disease. Conventional T1 mapping methods are confounded by fat and B 1 + $$ {B}_1^{+} $$ inhomogeneities, resulting in unreliable T1 estimations. Furthermore, these methods trade off spatial resolution and volumetric coverage for shorter acquisitions with only a few images obtained within a breath-hold. This work proposes a novel, volumetric (3D), free-breathing T1 mapping method to account for multiple confounding factors in a single acquisition. THEORY AND METHODS: Free-breathing, confounder-corrected T1 mapping was achieved through the combination of non-Cartesian imaging, magnetization preparation, chemical shift encoding, and a variable flip angle acquisition. A subspace-constrained, locally low-rank image reconstruction algorithm was employed for image reconstruction. The accuracy of the proposed method was evaluated through numerical simulations and phantom experiments with a T1/proton density fat fraction phantom at 3.0 T. Further, the feasibility of the proposed method was investigated through contrast-enhanced imaging in healthy volunteers, also at 3.0 T. RESULTS: The method showed excellent agreement with reference measurements in phantoms across a wide range of T1 values (200 to 1000 ms, slope = 0.998 (95% confidence interval (CI) [0.963 to 1.035]), intercept = 27.1 ms (95% CI [0.4 54.6]), r2 = 0.996), and a high level of repeatability. In vivo imaging studies demonstrated moderate agreement (slope = 1.099 (95% CI [1.067 to 1.132]), intercept = -96.3 ms (95% CI [-82.1 to -110.5]), r2 = 0.981) compared to saturation recovery-based T1 maps. CONCLUSION: The proposed method produces whole-liver, confounder-corrected T1 maps through simultaneous estimation of T1, proton density fat fraction, and B 1 + $$ {B}_1^{+} $$ in a single, free-breathing acquisition and has excellent agreement with reference measurements in phantoms.

14.
Magn Reson Med ; 92(3): 1138-1148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730565

RESUMEN

PURPOSE: To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS: TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS: The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION: TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.


Asunto(s)
Algoritmos , Neoplasias Renales , Riñón , Fantasmas de Imagen , Humanos , Neoplasias Renales/diagnóstico por imagen , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Adulto , Masculino , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Persona de Mediana Edad , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Contencion de la Respiración
15.
Magn Reson Med ; 92(3): 1232-1247, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38748852

RESUMEN

PURPOSE: We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior approach with a multidomain, sparsity-enforcing loss function to achieve higher image quality at a faster convergence speed than previously reported methods. METHODS: Two-dimensional MRI data from the FastMRI dataset with Cartesian undersampling in phase-encoding direction were reconstructed for different acceleration rates for single coil and multicoil data. RESULTS: The performance of our architecture was compared to state-of-the-art Compressed Sensing methods and ConvDecoder, another untrained Neural Network for two-dimensional MRI reconstruction. SCAMPI outperforms these by better reducing undersampling artifacts and yielding lower error metrics in multicoil imaging. In comparison to ConvDecoder, the U-Net architecture combined with an elaborated loss-function allows for much faster convergence at higher image quality. SCAMPI can reconstruct multicoil data without explicit knowledge of coil sensitivity profiles. Moreover, it is a novel tool for reconstructing undersampled single coil k-space data. CONCLUSION: Our approach avoids overfitting to dataset features, that can occur in Neural Networks trained on databases, because the network parameters are tuned only on the reconstruction data. It allows better results and faster reconstruction than the baseline untrained Neural Network approach.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Encéfalo/diagnóstico por imagen , Compresión de Datos/métodos
16.
Magn Reson Med ; 92(4): 1440-1455, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38725430

RESUMEN

PURPOSE: To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS: The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS: The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from 8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to 8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from 2 × 31 $$ 2\times 31 $$ min to 2 × 23 $$ 2\times 23 $$ min. CONCLUSION: The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.


Asunto(s)
Algoritmos , Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido , Sodio , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sodio/química , Procesamiento de Imagen Asistido por Computador/métodos , Isótopos de Sodio , Imagenología Tridimensional/métodos , Simulación por Computador
17.
Magn Reson Med ; 92(4): 1525-1539, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38725149

RESUMEN

PURPOSE: To accelerate whole-brain quantitative T 2 $$ {\mathrm{T}}_2 $$ mapping in preclinical imaging setting. METHODS: A three-dimensional (3D) multi-echo spin echo sequence was highly undersampled with a variable density Poisson distribution to reduce the acquisition time. Advanced iterative reconstruction based on linear subspace constraints was employed to recover high-quality raw images. Different subspaces, generated using exponential or extended-phase graph (EPG) simulations or from low-resolution calibration images, were compared. The subspace dimension was investigated in terms of T 2 $$ {\mathrm{T}}_2 $$ precision. The method was validated on a phantom containing a wide range of T 2 $$ {\mathrm{T}}_2 $$ and was then applied to monitor metastasis growth in the mouse brain at 4.7T. Image quality and T 2 $$ {\mathrm{T}}_2 $$ estimation were assessed for 3 acceleration factors (6/8/10). RESULTS: The EPG-based dictionary gave robust estimations of a large range of T 2 $$ {\mathrm{T}}_2 $$ . A subspace dimension of 6 was the best compromise between T 2 $$ {\mathrm{T}}_2 $$ precision and image quality. Combining the subspace constrained reconstruction with a highly undersampled dataset enabled the acquisition of whole-brain T 2 $$ {\mathrm{T}}_2 $$ maps, the detection and the monitoring of metastasis growth of less than 500 µ m 3 $$ \mu {\mathrm{m}}^3 $$ . CONCLUSION: Subspace-based reconstruction is suitable for 3D T 2 $$ {\mathrm{T}}_2 $$ mapping. This method can be used to reach an acceleration factor up to 8, corresponding to an acquisition time of 25 min for an isotropic 3D acquisition of 156 µ $$ \mu $$ m on the mouse brain, used here for monitoring metastases growth.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional , Fantasmas de Imagen , Animales , Ratones , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos
18.
ArXiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38745700

RESUMEN

Magnetic resonance imaging (MRI) has revolutionized medical imaging, providing a non-invasive and highly detailed look into the human body. However, the long acquisition times of MRI present challenges, causing patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, researchers are exploring various techniques to reduce acquisition time and improve the overall efficiency of MRI. One such technique is compressed sensing (CS), which reduces data acquisition by leveraging image sparsity in transformed spaces. In recent years, deep learning (DL) has been integrated with CS-MRI, leading to a new framework that has seen remarkable growth. DL-based CS-MRI approaches are proving to be highly effective in accelerating MR imaging without compromising image quality. This review comprehensively examines DL-based CS-MRI techniques, focusing on their role in increasing MR imaging speed. We provide a detailed analysis of each category of DL-based CS-MRI including end-to-end, unroll optimization, self-supervised, and federated learning. Our systematic review highlights significant contributions and underscores the exciting potential of DL in CS-MRI. Additionally, our systematic review efficiently summarizes key results and trends in DL-based CS-MRI including quantitative metrics, the dataset used, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based CS-MRI in the advancement of medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based CS-MRI publications and publicly available datasets - https://github.com/mosaf/Awesome-DL-based-CS-MRI.

19.
Sci Rep ; 14(1): 10991, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744904

RESUMEN

We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature VarNet, which propagates information throughout the cascades of the network in an N-channel feature-space instead of a 2-channel feature-space. Then, we add an attention layer that utilizes the spatial locations of Cartesian undersampling artifacts to further improve performance. Lastly, we combined the Feature and E2E VarNets into the Feature-Image (FI) VarNet, to facilitate cross-domain learning and boost accuracy. Reconstructions were evaluated on the fastMRI dataset using standard metrics and clinical scoring by three neuroradiologists. Feature and FI VarNets outperformed the E2E VarNet for 4 × , 5 × and 8 × Cartesian undersampling in all studied metrics. FI VarNet secured second place in the public fastMRI leaderboard for 4 × Cartesian undersampling, outperforming all open-source models in the leaderboard. Radiologists rated FI VarNet brain reconstructions with higher quality and sharpness than the E2E VarNet reconstructions. FI VarNet excelled in preserving anatomical details, including blood vessels, whereas E2E VarNet discarded or blurred them in some cases. The proposed FI VarNet enhances the reconstruction quality of undersampled MRI and could enable clinically acceptable reconstructions at higher acceleration factors than currently possible.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Algoritmos
20.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732775

RESUMEN

Photoacoustic imaging (PAI) is a rapidly developing emerging non-invasive biomedical imaging technique that combines the strong contrast from optical absorption imaging and the high resolution from acoustic imaging. Abnormal biological tissues (such as tumors and inflammation) generate different levels of thermal expansion after absorbing optical energy, producing distinct acoustic signals from normal tissues. This technique can detect small tissue lesions in biological tissues and has demonstrated significant potential for applications in tumor research, melanoma detection, and cardiovascular disease diagnosis. During the process of collecting photoacoustic signals in a PAI system, various factors can influence the signals, such as absorption, scattering, and attenuation in biological tissues. A single ultrasound transducer cannot provide sufficient information to reconstruct high-precision photoacoustic images. To obtain more accurate and clear image reconstruction results, PAI systems typically use a large number of ultrasound transducers to collect multi-channel signals from different angles and positions, thereby acquiring more information about the photoacoustic signals. Therefore, to reconstruct high-quality photoacoustic images, PAI systems require a significant number of measurement signals, which can result in substantial hardware and time costs. Compressed sensing is an algorithm that breaks through the Nyquist sampling theorem and can reconstruct the original signal with a small number of measurement signals. PAI based on compressed sensing has made breakthroughs over the past decade, enabling the reconstruction of low artifacts and high-quality images with a small number of photoacoustic measurement signals, improving time efficiency, and reducing hardware costs. This article provides a detailed introduction to PAI based on compressed sensing, such as the physical transmission model-based compressed sensing method, two-stage reconstruction-based compressed sensing method, and single-pixel camera-based compressed sensing method. Challenges and future perspectives of compressed sensing-based PAI are also discussed.


Asunto(s)
Algoritmos , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Diagnóstico por Imagen/métodos , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA