Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.544
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931579

RESUMEN

Investigating aircraft flight dynamics often requires dynamic wind tunnel testing. This paper proposes a non-contact, off-board instrumentation method using vision-based techniques. The method utilises a sequential process of Harris corner detection, Kanade-Lucas-Tomasi tracking, and quaternions to identify the Euler angles from a pair of cameras, one with a side view and the other with a top view. The method validation involves simulating a 3D CAD model for rotational motion with a single degree-of-freedom. The numerical analysis quantifies the results, while the proposed approach is analysed analytically. This approach results in a 45.41% enhancement in accuracy over an earlier direction cosine matrix method. Specifically, the quaternion-based method achieves root mean square errors of 0.0101 rad/s, 0.0361 rad/s, and 0.0036 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. Notably, the method exhibits a 98.08% accuracy for the pitch rate. These results highlight the performance of quaternion-based attitude estimation in dynamic wind tunnel testing. Furthermore, an extended Kalman filter is applied to integrate the generated on-board instrumentation data (inertial measurement unit, potentiometer gimbal) and the results of the proposed vision-based method. The extended Kalman filter state estimation achieves root mean square errors of 0.0090 rad/s, 0.0262 rad/s, and 0.0034 rad/s for the dynamic measurements of roll rate, pitch rate, and yaw rate, respectively. This method exhibits an improved accuracy of 98.61% for the estimation of pitch rate, indicating its higher efficiency over the standalone implementation of the direction cosine method for dynamic wind tunnel testing.

2.
Sensors (Basel) ; 24(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931589

RESUMEN

Few prior works study self-driving cars by deep learning with IoT collaboration. SDC-Net, which is an end-to-end multitask self-driving car camera cocoon IoT-based system, is one of the research areas that tackles this direction. However, by design, SDC-Net is not able to identify the accident locations; it only classifies whether a scene is a crash scene or not. In this work, we introduce an enhanced design for the SDC-Net system by (1) replacing the classification network with a detection one, (2) adapting our benchmark dataset labels built on the CARLA simulator to include the vehicles' bounding boxes while keeping the same training, validation, and testing samples, and (3) modifying the shared information via IoT to include the accident location. We keep the same path planning and automatic emergency braking network, the digital automation platform, and the input representations to formulate the comparative study. The SDC-Net++ system is proposed to (1) output the relevant control actions, especially in case of accidents: accelerate, decelerate, maneuver, and brake, and (2) share the most critical information to the connected vehicles via IoT, especially the accident locations. A comparative study is also conducted between SDC-Net and SDC-Net++ with the same input representations: front camera only, panorama and bird's eye views, and with single-task networks, crash avoidance only, and multitask networks. The multitask network with a BEV input representation outperforms the nearest representation in precision, recall, f1-score, and accuracy by more than 15.134%, 12.046%, 13.593%, and 5%, respectively. The SDC-Net++ multitask network with BEV outperforms SDC-Net multitask with BEV in precision, recall, f1-score, accuracy, and average MSE by more than 2.201%, 2.8%, 2.505%, 2%, and 18.677%, respectively.

3.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931620

RESUMEN

The proliferation of digital technologies is substantially transforming inspection methodologies for construction activities. Although the implementation of a three-dimensional (3D) model has emerged as an advantageous, feasible inspection application, the selection of the most suitable 3D models is challenging due to multiple technology options. The primary objectives of this study were to investigate current trends and identify future technologies for 3D models in the construction industry. This study utilized systematic reviews by identifying and selecting quality journals, analyzing selected articles, and conducting content analysis and meta-analysis to identify dominant themes in 3D models. Results showed that the top technologies used to model construction projects are building information models, remote sensing, stereo vision system/photo processing programs, and augmented reality/virtual reality. The main benefits and challenges of these technologies for modeling were also determined. This study identified three areas with significant knowledge gaps for future research: (1) the amalgamation of two or more technologies to overcome project obstacles; (2) solution optimization for inspections in remote areas; and (3) the development of algorithm-based technologies. This research contributes to the body of knowledge by exploring current trends and future directions of 3D model technologies in the construction industry.

4.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931796

RESUMEN

Physical aggression is a serious and widespread problem in society, affecting people worldwide. It impacts nearly every aspect of life. While some studies explore the root causes of violent behavior, others focus on urban planning in high-crime areas. Real-time violence detection, powered by artificial intelligence, offers a direct and efficient solution, reducing the need for extensive human supervision and saving lives. This paper is a continuation of a systematic mapping study and its objective is to provide a comprehensive and up-to-date review of AI-based video violence detection, specifically in physical assaults. Regarding violence detection, the following have been grouped and categorized from the review of the selected papers: 21 challenges that remain to be solved, 28 datasets that have been created in recent years, 21 keyframe extraction methods, 16 types of algorithm inputs, as well as a wide variety of algorithm combinations and their corresponding accuracy results. Given the lack of recent reviews dealing with the detection of violence in video, this study is considered necessary and relevant.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Grabación en Video , Violencia , Humanos , Grabación en Video/métodos , Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador/métodos
5.
Front Plant Sci ; 15: 1352935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938642

RESUMEN

Introduction: Precise semantic segmentation of microbial alterations is paramount for their evaluation and treatment. This study focuses on harnessing the SegFormer segmentation model for precise semantic segmentation of strawberry diseases, aiming to improve disease detection accuracy under natural acquisition conditions. Methods: Three distinct Mix Transformer encoders - MiT-B0, MiT-B3, and MiT-B5 - were thoroughly analyzed to enhance disease detection, targeting diseases such as Angular leaf spot, Anthracnose rot, Blossom blight, Gray mold, Leaf spot, Powdery mildew on fruit, and Powdery mildew on leaves. The dataset consisted of 2,450 raw images, expanded to 4,574 augmented images. The Segment Anything Model integrated into the Roboflow annotation tool facilitated efficient annotation and dataset preparation. Results: The results reveal that MiT-B0 demonstrates balanced but slightly overfitting behavior, MiT-B3 adapts rapidly with consistent training and validation performance, and MiT-B5 offers efficient learning with occasional fluctuations, providing robust performance. MiT-B3 and MiT-B5 consistently outperformed MiT-B0 across disease types, with MiT-B5 achieving the most precise segmentation in general. Discussion: The findings provide key insights for researchers to select the most suitable encoder for disease detection applications, propelling the field forward for further investigation. The success in strawberry disease analysis suggests potential for extending this approach to other crops and diseases, paving the way for future research and interdisciplinary collaboration.

6.
J Neurodev Disord ; 16(1): 35, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918700

RESUMEN

BACKGROUND: Minor physical anomalies (MPAs) are congenital morphological abnormalities linked to disruptions of fetal development. MPAs are common in 22q11.2 deletion syndrome (22q11DS) and psychosis spectrum disorders (PS) and likely represent a disruption of early embryologic development that may help identify overlapping mechanisms linked to psychosis in these disorders. METHODS: Here, 2D digital photographs were collected from 22q11DS (n = 150), PS (n = 55), and typically developing (TD; n = 93) individuals. Photographs were analyzed using two computer-vision techniques: (1) DeepGestalt algorithm (Face2Gene (F2G)) technology to identify the presence of genetically mediated facial disorders, and (2) Emotrics-a semi-automated machine learning technique that localizes and measures facial features. RESULTS: F2G reliably identified patients with 22q11DS; faces of PS patients were matched to several genetic conditions including FragileX and 22q11DS. PCA-derived factor loadings of all F2G scores indicated unique and overlapping facial patterns that were related to both 22q11DS and PS. Regional facial measurements of the eyes and nose were smaller in 22q11DS as compared to TD, while PS showed intermediate measurements. CONCLUSIONS: The extent to which craniofacial dysmorphology 22q11DS and PS overlapping and evident before the impairment or distress of sub-psychotic symptoms may allow us to identify at-risk youths more reliably and at an earlier stage of development.


Asunto(s)
Anomalías Craneofaciales , Síndrome de DiGeorge , Trastornos Psicóticos , Humanos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatología , Trastornos Psicóticos/genética , Femenino , Masculino , Adolescente , Niño , Anomalías Craneofaciales/genética , Adulto Joven , Adulto , Aprendizaje Automático , Procesamiento de Imagen Asistido por Computador
7.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38920347

RESUMEN

Artificial intelligence (AI) powered drug development has received remarkable attention in recent years. It addresses the limitations of traditional experimental methods that are costly and time-consuming. While there have been many surveys attempting to summarize related research, they only focus on general AI or specific aspects such as natural language processing and graph neural network. Considering the rapid advance on computer vision, using the molecular image to enable AI appears to be a more intuitive and effective approach since each chemical substance has a unique visual representation. In this paper, we provide the first survey on image-based molecular representation for drug development. The survey proposes a taxonomy based on the learning paradigms in computer vision and reviews a large number of corresponding papers, highlighting the contributions of molecular visual representation in drug development. Besides, we discuss the applications, limitations and future directions in the field. We hope this survey could offer valuable insight into the use of image-based molecular representation learning in the context of drug development.


Asunto(s)
Desarrollo de Medicamentos , Desarrollo de Medicamentos/métodos , Inteligencia Artificial , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Aprendizaje Automático , Descubrimiento de Drogas/métodos
8.
J Imaging ; 10(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921619

RESUMEN

This article presents a computer vision-based approach to switching electric locomotive power supplies as the vehicle approaches a railway neutral section. Neutral sections are defined as a phase break in which the objective is to separate two single-phase traction supplies on an overhead railway supply line. This separation prevents flashovers due to high voltages caused by the locomotives shorting both electrical phases. The typical system of switching traction supplies automatically employs the use of electro-mechanical relays and induction magnets. In this paper, an image classification approach is proposed to replace the conventional electro-mechanical system with two unique visual markers that represent the 'Open' and 'Close' signals to initiate the transition. When the computer vision model detects either marker, the vacuum circuit breakers inside the electrical locomotive will be triggered to their respective positions depending on the identified image. A Histogram of Oriented Gradient technique was implemented for feature extraction during the training phase and a Linear Support Vector Machine algorithm was trained for the target image classification. For the task of image segmentation, the Circular Hough Transform shape detection algorithm was employed to locate the markers in the captured images and provided cartesian plane coordinates for segmenting the Object of Interest. A signal marker classification accuracy of 94% with 75 objects per second was achieved using a Linear Support Vector Machine during the experimental testing phase.

9.
Front Robot AI ; 11: 1331249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933083

RESUMEN

Implementing and deploying advanced technologies are principal in improving manufacturing processes, signifying a transformative stride in the industrial sector. Computer vision plays a crucial innovation role during this technological advancement, demonstrating broad applicability and profound impact across various industrial operations. This pivotal technology is not merely an additive enhancement but a revolutionary approach that redefines quality control, automation, and operational efficiency parameters in manufacturing landscapes. By integrating computer vision, industries are positioned to optimize their current processes significantly and spearhead innovations that could set new standards for future industrial endeavors. However, the integration of computer vision in these contexts necessitates comprehensive training programs for operators, given this advanced system's complexity and abstract nature. Historically, training modalities have grappled with the complexities of understanding concepts as advanced as computer vision. Despite these challenges, computer vision has recently surged to the forefront across various disciplines, attributed to its versatility and superior performance, often matching or exceeding the capabilities of other established technologies. Nonetheless, there is a noticeable knowledge gap among students, particularly in comprehending the application of Artificial Intelligence (AI) within Computer Vision. This disconnect underscores the need for an educational paradigm transcending traditional theoretical instruction. Cultivating a more practical understanding of the symbiotic relationship between AI and computer vision is essential. To address this, the current work proposes a project-based instructional approach to bridge the educational divide. This methodology will enable students to engage directly with the practical aspects of computer vision applications within AI. By guiding students through a hands-on project, they will learn how to effectively utilize a dataset, train an object detection model, and implement it within a microcomputer infrastructure. This immersive experience is intended to bolster theoretical knowledge and provide a practical understanding of deploying AI techniques within computer vision. The main goal is to equip students with a robust skill set that translates into practical acumen, preparing a competent workforce to navigate and innovate in the complex landscape of Industry 4.0. This approach emphasizes the criticality of adapting educational strategies to meet the evolving demands of advanced technological infrastructures. It ensures that emerging professionals are adept at harnessing the potential of transformative tools like computer vision in industrial settings.

10.
Sci Eng Ethics ; 30(3): 26, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856788

RESUMEN

The rapid development of computer vision technologies and applications has brought forth a range of social and ethical challenges. Due to the unique characteristics of visual technology in terms of data modalities and application scenarios, computer vision poses specific ethical issues. However, the majority of existing literature either addresses artificial intelligence as a whole or pays particular attention to natural language processing, leaving a gap in specialized research on ethical issues and systematic solutions in the field of computer vision. This paper utilizes bibliometrics and text-mining techniques to quantitatively analyze papers from prominent academic conferences in computer vision over the past decade. It first reveals the developing trends and specific distribution of attention regarding trustworthy aspects in the computer vision field, as well as the inherent connections between ethical dimensions and different stages of visual model development. A life-cycle framework regarding trustworthy computer vision is then presented by making the relevant trustworthy issues, the operation pipeline of AI models, and viable technical solutions interconnected, providing researchers and policymakers with references and guidance for achieving trustworthy CV. Finally, it discusses particular motivations for conducting trustworthy practices and underscores the consistency and ambivalence among various trustworthy principles and technical attributes.


Asunto(s)
Inteligencia Artificial , Humanos , Inteligencia Artificial/ética , Inteligencia Artificial/tendencias , Confianza , Procesamiento de Lenguaje Natural , Minería de Datos/ética , Bibliometría
11.
Comput Biol Med ; 178: 108800, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917534

RESUMEN

Computer vision falls under the broad umbrella of artificial intelligence that mimics human vision and plays a vital role in dental imaging. Dental practitioners visualize and interpret teeth, and the structure surrounding the teeth and detect abnormalities by manually examining various dental imaging modalities. Due to the complexity and cognitive difficulty of comprehending medical data, human error makes correct diagnosis difficult. Automated diagnosis may be able to help alleviate delays, hasten practitioners' interpretation of positive cases, and lighten their workload. Several medical imaging modalities like X-rays, CT scans, color images, etc. that are employed in dentistry are briefly described in this survey. Dentists employ dental imaging as a diagnostic tool in several specialties, including orthodontics, endodontics, periodontics, etc. In the discipline of dentistry, computer vision has progressed from classic image processing to machine learning with mathematical approaches and robust deep learning techniques. Here conventional image processing techniques solely as well as in conjunction with intelligent machine learning algorithms, and sophisticated architectures of dental radiograph analysis employ deep learning techniques. This study provides a detailed summary of several tasks, including anatomical segmentation, identification, and categorization of different dental anomalies with their shortfalls as well as future perspectives in this field.

12.
Foods ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928810

RESUMEN

Machine learning and computer vision have proven to be valuable tools for farmers to streamline their resource utilization to lead to more sustainable and efficient agricultural production. These techniques have been applied to strawberry cultivation in the past with limited success. To build on this past work, in this study, two separate sets of strawberry images, along with their associated diseases, were collected and subjected to resizing and augmentation. Subsequently, a combined dataset consisting of nine classes was utilized to fine-tune three distinct pretrained models: vision transformer (ViT), MobileNetV2, and ResNet18. To address the imbalanced class distribution in the dataset, each class was assigned weights to ensure nearly equal impact during the training process. To enhance the outcomes, new images were generated by removing backgrounds, reducing noise, and flipping them. The performances of ViT, MobileNetV2, and ResNet18 were compared after being selected. Customization specific to the task was applied to all three algorithms, and their performances were assessed. Throughout this experiment, none of the layers were frozen, ensuring all layers remained active during training. Attention heads were incorporated into the first five and last five layers of MobileNetV2 and ResNet18, while the architecture of ViT was modified. The results indicated accuracy factors of 98.4%, 98.1%, and 97.9% for ViT, MobileNetV2, and ResNet18, respectively. Despite the data being imbalanced, the precision, which indicates the proportion of correctly identified positive instances among all predicted positive instances, approached nearly 99% with the ViT. MobileNetV2 and ResNet18 demonstrated similar results. Overall, the analysis revealed that the vision transformer model exhibited superior performance in strawberry ripeness and disease classification. The inclusion of attention heads in the early layers of ResNet18 and MobileNet18, along with the inherent attention mechanism in ViT, improved the accuracy of image identification. These findings offer the potential for farmers to enhance strawberry cultivation through passive camera monitoring alone, promoting the health and well-being of the population.

13.
Life (Basel) ; 14(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38929762

RESUMEN

Computer-vision-based plant leaf segmentation technology is of great significance for plant classification, monitoring of plant growth, precision agriculture, and other scientific research. In this paper, the YOLOv8-seg model was used for the automated segmentation of individual leaves in images. In order to improve the segmentation performance, we further introduced a Ghost module and a Bidirectional Feature Pyramid Network (BiFPN) module into the standard Yolov8 model and proposed two modified versions. The Ghost module can generate several intrinsic feature maps with cheap transformation operations, and the BiFPN module can fuse multi-scale features to improve the segmentation performance of small leaves. The experiment results show that Yolov8 performs well in the leaf segmentation task, and the Ghost module and BiFPN module can further improve the performance. Our proposed approach achieves a 86.4% leaf segmentation score (best Dice) over all five test datasets of the Computer Vision Problems in Plant Phenotyping (CVPPP) Leaf Segmentation Challenge, outperforming other reported approaches.

14.
Cancers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927927

RESUMEN

Cancer diagnosis and classification are pivotal for effective patient management and treatment planning. In this study, a comprehensive approach is presented utilizing ensemble deep learning techniques to analyze breast cancer histopathology images. Our datasets were based on two widely employed datasets from different centers for two different tasks: BACH and BreakHis. Within the BACH dataset, a proposed ensemble strategy was employed, incorporating VGG16 and ResNet50 architectures to achieve precise classification of breast cancer histopathology images. Introducing a novel image patching technique to preprocess a high-resolution image facilitated a focused analysis of localized regions of interest. The annotated BACH dataset encompassed 400 WSIs across four distinct classes: Normal, Benign, In Situ Carcinoma, and Invasive Carcinoma. In addition, the proposed ensemble was used on the BreakHis dataset, utilizing VGG16, ResNet34, and ResNet50 models to classify microscopic images into eight distinct categories (four benign and four malignant). For both datasets, a five-fold cross-validation approach was employed for rigorous training and testing. Preliminary experimental results indicated a patch classification accuracy of 95.31% (for the BACH dataset) and WSI image classification accuracy of 98.43% (BreakHis). This research significantly contributes to ongoing endeavors in harnessing artificial intelligence to advance breast cancer diagnosis, potentially fostering improved patient outcomes and alleviating healthcare burdens.

15.
J Radiol Prot ; 44(2)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38834035

RESUMEN

Nuclear medicine (NM) professionals are potentially exposed to high doses of ionising radiation, particularly in the skin of the hands. Ring dosimeters are used by the workers to ensure extremity doses are kept below the legal limits. However, ring dosimeters are often susceptible to large uncertainties, so it is difficult to ensure a correct measurement using the traditional occupational monitoring methods. An alternative solution is to calculate the absorbed dose by using Monte Carlo simulations. This method could reduce the uncertainty in dose calculation if the exact positions of the worker and the radiation source are represented in these simulations. In this study we present a set of computer vision and artificial intelligence algorithms that allow us to track the exact position of unshielded syringes and the hands of NM workers. We showcase a possible hardware configuration to acquire the necessary input data for the algorithms. And finally, we assess the tracking confidence of our software. The tracking accuracy achieved for the syringe detection was 57% and for the hand detection 98%.


Asunto(s)
Algoritmos , Medicina Nuclear , Exposición Profesional , Humanos , Exposición Profesional/análisis , Mano/efectos de la radiación , Método de Montecarlo , Inteligencia Artificial , Radiometría/métodos , Jeringas
16.
PeerJ Comput Sci ; 10: e1957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855211

RESUMEN

Waste segregation is an essential aspect of a smoothly functioning waste management system. Usually, various recyclable waste types are disposed of together at the source, and this brings in the necessity to segregate them into their categories. Dry waste needs to be separated into its own categories to ensure that the proper procedures are implemented to treat and process it, which leads to an overall increased recycling rate and reduced landfill impact. Paper, plastics, metals, and glass are just a few examples of the many dry waste materials that can be recycled or recovered to create new goods or energy. Over the past years, much research has been conducted to devise effective and productive ways to achieve proper segregation for the waste that is being produced at an ever-increasing rate. This article introduces a multi-class garbage segregation system employing the YOLOv5 object detection model. Our final prototype demonstrates the capability of classifying dry waste categories and segregating them into their respective bins using a 3D-printed robotic arm. Within our controlled test environment, the system correctly segregated waste classes, mainly paper, plastic, metal, and glass, eight out of 10 times successfully. By integrating the principles of artificial intelligence and robotics, our approach simplifies and optimizes the traditional waste segregation process.

17.
Laryngoscope ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850247

RESUMEN

OBJECTIVES: To evaluate the performance of vision transformer-derived image embeddings for distinguishing between normal and neoplastic tissues in the oropharynx and to investigate the potential of computer vision (CV) foundation models in medical imaging. METHODS: Computational study using endoscopic frames with a focus on the application of a self-supervised vision transformer model (DINOv2) for tissue classification. High-definition endoscopic images were used to extract image patches that were then normalized and processed using the DINOv2 model to obtain embeddings. These embeddings served as input for a standard support vector machine (SVM) to classify the tissues as neoplastic or normal. The model's discriminative performance was validated using an 80-20 train-validation split. RESULTS: From 38 endoscopic NBI videos, 327 image patches were analyzed. The classification results in the validation cohort demonstrated high accuracy (92%) and precision (89%), with a perfect recall (100%) and an F1-score of 94%. The receiver operating characteristic (ROC) curve yielded an area under the curve (AUC) of 0.96. CONCLUSION: The use of large vision model-derived embeddings effectively differentiated between neoplastic and normal oropharyngeal tissues. This study supports the feasibility of employing CV foundation models like DINOv2 in the endoscopic evaluation of mucosal lesions, potentially augmenting diagnostic precision in Otorhinolaryngology. LEVEL OF EVIDENCE: 4 Laryngoscope, 2024.

18.
Micron ; 184: 103665, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38850965

RESUMEN

The High Resolution Transmission Electron Microscope (HRTEM) images provide valuable insights into the atomic microstructure, dislocation patterns, defects, and phase characteristics of materials. However, the current analysis and research of HRTEM images of crystal materials heavily rely on manual expertise, which is labor-intensive and susceptible to subjective errors. This study proposes a combined machine learning and deep learning approach to automatically partition the same phase regions in crystal HRTEM images. The entire image is traversed by a sliding window to compute the amplitude spectrum of the Fast Fourier Transform (FFT) in each window. The generated data is transformed into a 4-dimensional (4D) format. Principal component analysis (PCA) on this 4D data estimates the number of feature regions. Non-negative matrix factorization (NMF) then decomposes the data into a coefficient matrix representing feature region distribution, and a feature matrix corresponding to the FFT magnitude spectra. Phase recognition based on deep learning enables identifying the phase of each feature region, thereby achieving automatic segmentation and recognition of phase regions in HRTEM images of crystals. Experiments on zirconium and oxide nanoparticle HRTEM images demonstrate the proposed method achieve the consistency of manual analysis. Code and supplementary material are available at https://github.com/rememberBr/HRTEM2.

19.
J Dent Res ; : 220345241255593, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822561

RESUMEN

Endodontics is the dental specialty foremost concerned with diseases of the pulp and periradicular tissues. Clinicians often face patients with varying symptoms, must critically assess radiographic images in 2 and 3 dimensions, derive complex diagnoses and decision making, and deliver sophisticated treatment. Paired with low intra- and interobserver agreement for radiographic interpretation and variations in treatment outcome resulting from nonstandardized clinical techniques, there exists an unmet need for support in the form of artificial intelligence (AI), providing automated biomedical image analysis, decision support, and assistance during treatment. In the past decade, there has been a steady increase in AI studies in endodontics but limited clinical application. This review focuses on critically assessing the recent advancements in endodontic AI research for clinical applications, including the detection and diagnosis of endodontic pathologies such as periapical lesions, fractures and resorptions, as well as clinical treatment outcome predictions. It discusses the benefits of AI-assisted diagnosis, treatment planning and execution, and future directions including augmented reality and robotics. It critically reviews the limitations and challenges imposed by the nature of endodontic data sets, AI transparency and generalization, and potential ethical dilemmas. In the near future, AI will significantly affect the everyday endodontic workflow, education, and continuous learning.

20.
Prev Vet Med ; 229: 106235, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38833805

RESUMEN

Digital dermatitis (DD) is a bovine claw disease responsible for ulcerative lesions on the planar aspect of the hoof. DD is associated with massive herd outbreaks of lameness and influences cattle welfare and production. Early detection of DD can lead to prompt treatment and decrease lameness. Computer vision (CV) provides a unique opportunity to improve early detection. The study aims to train and compare applications for the real-time detection of DD in dairy cows. Eight CV models were trained for detection and scoring, compared using performance metrics and inference time, and the best model was automated for real-time detection using images and video. Images were collected from commercial dairy farms while facing the interdigital space on the plantar surface of the foot. Images were scored for M-stages of DD by a trained investigator using the M-stage DD classification system with distinct labels for hyperkeratosis (H) and proliferations (P). Two sets of images were compiled: the first dataset (Dataset 1) containing 1,177 M0/M4H and 1,050 M2/M2P images and the second dataset (Dataset 2) containing 240 M0, 17 M2, 51 M2P, 114 M4H, and 108 M4P images. Models were trained to detect and score DD lesions and compared for precision, recall, and mean average precision (mAP) in addition to inference time in frame per second (FPS). Seven of the nine CV models performed well compared to the ground truth of labeled images using Dataset 1. The six models, Faster R-CNN, Cascade R-CNN, YOLOv3, Tiny YOLOv3, YOLOv4, Tiny YOLOv4, and YOLOv5s achieved an mAP between 0.964 and 0.998, whereas the other two models, SSD and SSD Lite, yielded an mAP of 0.371 and 0.387 respectively. Overall, YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed all other models with almost perfect precision, perfect recall, and a higher mAP. Tiny YOLOv4 outperformed all other models with respect to inference time at 333 FPS, followed by YOLOv5s at 133 FPS and YOLOv4 at 65 FPS. YOLOv4 and Tiny YOLOv4 performed better than YOLOv5s compared to the ground truth using Dataset 2. YOLOv4 and Tiny YOLOv4 yielded a similar mAP of 0.896 and 0.895, respectively. However, Tiny YOLOv4 achieved both higher precision and recall compared to YOLOv4. Finally, Tiny YOLOv4 was able to detect DD lesions on a commercial dairy farm with high performance and speed. The proposed CV tool can be used for early detection and prompt treatment of DD in dairy cows. This result is a step towards applying CV algorithms to veterinary medicine and implementing real-time DD detection on dairy farms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...