Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Med Genet A ; : e63833, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119839

RESUMEN

Glycosylphosphatidylinositols (GPIs) are a type of glycolipid responsible for anchoring many important proteins to the cell membrane surface. Defects in the synthesis of GPIs can lead to a group of multisystem disorders known as the inherited GPI deficiencies (IGDs). Homozygosity for the c.-270C > G variant in the promoter of PIGM has been associated with a IGD subtype known as glycosylphosphatidylinositol biosynthesis defect-1 (GPIBD1). The several cases reported in the literature have been described to have a milder neurologic phenotype in comparison to the other IGDs and have been treated with sodium phenylbutyrate with some degree of success. These patients typically present with portal and hepatic vein thrombosis and mostly develop absence seizures. Here we describe a patient homozygous for a nonsynonymous variant in PIGM who deceased at 9 weeks of life and had multiple physical dysmorphisms (rocker bottom feet, midline cleft palate, thickened and lichenified skin), portal vein thrombosis, CNS structural anomalies (progressive multicystic encephalomalacia and ventriculomegaly), and a neurological phenotype of a diffuse encephalopathy. This is the first known case report of a PIGM-related IGD/CDG due to a coding variant.

2.
J Inherit Metab Dis ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105373

RESUMEN

PMM2-CDG (formerly CDG-1a), the most common type of congenital disorders of glycosylation, is inherited in an autosomal recessive pattern. PMM2-CDG frequently presents in infancy with multisystemic clinical involvement, and it has been diagnosed in over 1000 people worldwide. There have been few natural history studies reporting neurodevelopmental characterization of PMM2-CDG. Thus, a prospective study was conducted that included neurodevelopmental assessments as part of deep phenotyping. This study, Clinical and Basic Investigations into Known and Suspected Congenital Disorders of Glycosylation (NCT02089789), included 14 participants (8 males and 6 females ages 2-33 years) with a confirmed molecular diagnosis of PMM2-CDG. Clinical features of PMM2-CDG in this cohort were neurodevelopmental disorders, faltering growth, hypotonia, cerebellar atrophy, peripheral neuropathy, movement disorders, ophthalmological abnormalities, and auditory function differences. All PMM2-CDG participants met criteria for intellectual disability (or global developmental delay if younger than age 5). The majority never attained certain gross motor and language milestones. Only two participants were ambulatory, and almost all were considered minimally verbal. Overall, individuals with PMM2-CDG present with a complex neurodevelopmental profile characterized by intellectual disability and multisystemic presentations. This systematic quantification of the neurodevelopmental profile of PMM2-CDG expands our understanding of the range in impairments associated with PMM2-CDG and will help guide management strategies.

3.
Front Genet ; 15: 1402883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086474

RESUMEN

Introduction: Congenital disorders of glycosylation (CDG) refer to monogenetic diseases characterized by defective glycosylation of proteins or lipids causing multi-organ disorders. Here, we investigate the clinical features and genetic variants of SSR4-CDG and conduct a preliminary investigation of its pathogenesis. Methods: We retrospectively report the clinical data of a male infant with early life respiratory distress, congenital diaphragmatic eventration, cosmetic deformities, and moderate growth retardation. Peripheral blood was collected from the case and parents, genomic DNA was extracted and whole-exome sequencing was performed. The mRNA expression of SSR4 gene was quantified by Real-time Quantitative PCR. RNA sequencing analysis was subsequently performed on the case and a healthy child. Results: Whole-exome sequencing of the case and his parents' genomic DNA identified a hemizygous c.80_96del in SSR4, combined with the case's clinical features, the diagnosis of CDG was finally considered. In this case, the expression of SSR4 was downregulated. The case were present with 1,078 genes downregulated and 536 genes upregulated. SSR4 gene expression was significantly downregulated in the case. Meanwhile, gene set enrichment analysis (GSEA) revealed that SSR4-CDG may affect hemostasis, coagulation, catabolism, erythrocyte development and homeostatic regulation, and muscle contraction and regulation, etc. Improvement of growth retardation in case after high calorie formula feeding and rehabilitation training. Conclusion: Our study expanded the SSR4-CDG variant spectrum and clinical phenotype and analyzed pathways potentially affected by SSR4-CDG, which may provide further insights into the function of SSR4 and help clinicians better understand this disorder.

4.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963344

RESUMEN

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Asunto(s)
Diferenciación Celular , Chaperón BiP del Retículo Endoplásmico , Músculo Esquelético , Mioblastos , Receptor IGF Tipo 1 , Transducción de Señal , Tunicamicina , Animales , Ratones , Glicosilación , Mioblastos/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Tunicamicina/farmacología , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Músculo Esquelético/metabolismo , Desarrollo de Músculos/fisiología , Línea Celular , Ratones Transgénicos , Estrés del Retículo Endoplásmico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética
5.
Mol Genet Metab ; 142(4): 108509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959600

RESUMEN

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Masculino , Femenino , Estudios Transversales , Niño , Preescolar , Adolescente , Glicosilación , Adulto , Estudios Retrospectivos , Lactante , Adulto Joven , Estudios Prospectivos , Estudios de Cohortes
6.
Mol Genet Metab ; 143(1-2): 108531, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053125

RESUMEN

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.

7.
Am J Med Genet A ; : e63721, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822623

RESUMEN

N-acetyl-d-neuraminic acid synthase-congenital disorder of glycosylation (NANS-CDG) is a rare autosomal recessive defect in the N-acetyl-neuraminic acid biosynthesis pathway. Herein, we report the first Korean NANS-CDG patient. A 10-year-old boy was referred to our clinic because of incidental radiographic findings indicating spondyloepimetaphyseal dysplasia. The patient had microcephaly, cavum septum pellucidum, and ventriculomegaly at birth, and at 10 years, a very short stature. He had a history of idiopathic chronic immune thrombocytopenia, central adrenal insufficiency, and hypothyroidism since infancy. The first unprovoked seizure occurred at the age of 2 years, and he was subsequently admitted to the hospital frequently because of respiratory infections and intractable seizures. Exome sequencing identified unreported biallelic variants of the NANS gene. Clinical and genetic confirmation of NANS-CDG highlights its expanding phenotypic and genotypic diversity.

8.
Mol Genet Metab ; 142(3): 108511, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878498

RESUMEN

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.


Asunto(s)
Intrones , ARN Mensajero , Humanos , Masculino , Intrones/genética , ARN Mensajero/genética , ATPasas de Translocación de Protón Vacuolares/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Mutación , Secuenciación Completa del Genoma , Secuenciación del Exoma , Análisis de Secuencia de ARN , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Niño , Empalme del ARN/genética , Preescolar
9.
Mol Genet Metab ; 142(4): 108513, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917675

RESUMEN

INTRODUCTION: Congenital disorders of glycosylation (CDG) are a continuously expanding group of monogenic disorders that disrupt glycoprotein and glycolipid biosynthesis, leading to multi-systemic manifestations. These disorders are categorized into various groups depending on which part of the glycosylation process is impaired. The cardiac manifestations in CDG can significantly differ, not only across different types but also among individuals with the same genetic cause of CDG. Cardiomyopathy is an important phenotype in CDG. The clinical manifestations and progression of cardiomyopathy in CDG patients have not been well characterized. This study aims to delineate common patterns of cardiomyopathy across a range of genetic causes of CDG and to propose baseline screening and follow-up evaluation for this patient population. METHODS: Patients with molecular confirmation of CDG who were enrolled in the prospective or memorial arms of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study were ascertained for the presence of cardiomyopathy based on a retrospective review of their medical records. All patients were evaluated by clinical geneticists who are members of FCDGC at their respective academic centers. Patients were screened for cardiomyopathy, and detailed data were retrospectively collected. We analyzed their clinical and molecular history, imaging characteristics of cardiac involvement, type of cardiomyopathy, age at initial presentation of cardiomyopathy, additional cardiac features, the treatments administered, and their clinical outcomes. RESULTS: Of the 305 patients with molecularly confirmed CDG participating in the FCDGC natural history study as of June 2023, 17 individuals, nine females and eight males, were identified with concurrent diagnoses of cardiomyopathy. Most of these patients were diagnosed with PMM2-CDG (n = 10). However, cardiomyopathy was also observed in other diagnoses, including PGM1-CDG (n = 3), ALG3-CDG (n = 1), DPM1-CDG (n = 1), DPAGT1-CDG (n = 1), and SSR4-CDG (n = 1). All PMM2-CDG patients were reported to have hypertrophic cardiomyopathy. Dilated cardiomyopathy was observed in three patients, two with PGM1-CDG and one with ALG3-CDG; left ventricular non-compaction cardiomyopathy was diagnosed in two patients, one with PGM1-CDG and one with DPAGT1-CDG; two patients, one with DPM1-CDG and one with SSR4-CDG, were diagnosed with non-ischemic cardiomyopathy. The estimated median age of diagnosis for cardiomyopathy was 5 months (range: prenatal-27 years). Cardiac improvement was observed in three patients with PMM2-CDG. Five patients showed a progressive course of cardiomyopathy, while the condition remained unchanged in eight individuals. Six patients demonstrated pericardial effusion, with three patients exhibiting cardiac tamponade. One patient with SSR4-CDG has been recently diagnosed with cardiomyopathy; thus, the progression of the disease is yet to be determined. One patient with PGM1-CDG underwent cardiac transplantation. Seven patients were deceased, including five with PMM2-CDG, one with DPAGT1-CDG, and one with ALG3-CDG. Two patients died of cardiac tamponade from pericardial effusion; for the remaining patients, cardiomyopathy was not necessarily the primary cause of death. CONCLUSIONS: In this retrospective study, cardiomyopathy was identified in ∼6% of patients with CDG. Notably, the majority, including all those with PMM2-CDG, exhibited hypertrophic cardiomyopathy. Some cases did not show progression, yet pericardial effusions were commonly observed, especially in PMM2-CDG patients, occasionally escalating to life-threatening cardiac tamponade. It is recommended that clinicians managing CDG patients, particularly those with PMM2-CDG and PGM1-CDG, be vigilant of the cardiomyopathy risk and risk for potentially life-threatening pericardial effusions. Cardiac surveillance, including an echocardiogram and EKG, should be conducted at the time of diagnosis, annually throughout the first 5 years, followed by check-ups every 2-3 years if no concerns arise until adulthood. Subsequently, routine cardiac examinations every five years are advisable. Additionally, patients with diagnosed cardiomyopathy should receive ongoing cardiac care to ensure the effective management and monitoring of their condition. A prospective study will be required to determine the true prevalence of cardiomyopathy in CDG.


Asunto(s)
Cardiomiopatías , Trastornos Congénitos de Glicosilación , Fenotipo , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Femenino , Masculino , Cardiomiopatías/genética , Cardiomiopatías/diagnóstico , Niño , Preescolar , Adolescente , Lactante , Glicosilación , Estudios de Seguimiento , Adulto , Estudios Retrospectivos , Adulto Joven , Estudios Prospectivos , Recién Nacido
10.
JIMD Rep ; 65(3): 135-143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736633

RESUMEN

ALG1-CDG is a rare, clinically variable metabolic disease, caused by the defect of adding the first mannose (Man) to N-acetylglucosamine (GlcNAc2)-pyrophosphate (PP)-dolichol to the growing oligosaccharide chain, resulting in impaired N-glycosylation of proteins. N-glycosylation has a key role in functionality, stability, and half-life of most proteins. Therefore, congenital defects of glycosylation typically are multisystem disorders. Here we report a 3-year-old patient with severe neurological, cardiovascular, respiratory, musculoskeletal and gastrointestinal symptoms. ALG1-CDG was suggested based on exome sequencing and Western blot analysis. Despite her severe clinical manifestations and genetic diagnosis, serum transferrin glycoform analysis was normal. Western blot analysis of highly glycosylated proteins in fibroblasts revealed decreased intercellular adhesion molecule 1 (ICAM1), but normal lysosomal associated membrane protein 1 and 2 (LAMP1 and LAMP2) expression levels. Glycoproteomics in fibroblasts showed the presence of the abnormal tetrasacharide. Reviewing the literature, we found 86 reported ALG1-CDG patients, but only one with normal transferrin analysis. Based on our results we would like to highlight the importance of multiple approaches in diagnosing ALG1-CDG, as normal serum transferrin glycosylation or other biomarkers with normal expression levels can occur.

11.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735264

RESUMEN

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Manosa , Humanos , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Trastornos Congénitos de Glicosilación/metabolismo , Manosa/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Masculino , Fucosa/metabolismo , Glicosilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Femenino , Proteómica
12.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821050

RESUMEN

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Asunto(s)
Dolicoles , Dolicoles/metabolismo , Dolicoles/biosíntesis , Humanos , Glicosilación , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/genética , Masculino , Mutación Missense , Femenino
13.
Mol Genet Metab ; 142(2): 108472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703411

RESUMEN

ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/terapia , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/complicaciones , Glicosilación , Fenotipo , Mutación , Hipotonía Muscular/genética , Hipotonía Muscular/terapia , Hipotonía Muscular/diagnóstico , Guías de Práctica Clínica como Asunto , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/terapia , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Convulsiones/genética , Convulsiones/terapia , Convulsiones/diagnóstico , N-Acetilglucosaminiltransferasas
14.
Am J Med Genet A ; 194(9): e63660, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38717015

RESUMEN

Congenital disorders of glycosylation (CDG) are a group of rare autosomal recessive genetic disorders caused by pathogenic variants in genes coding for N-glycosylated glycoproteins, which play a role in folding, degrading, and transport of glycoproteins in their pathway. ALG12-CDG specifically is caused by biallelic pathogenic variants in ALG12. Currently reported features of ALG12-CDG include: developmental delay, hypotonia, failure to thrive and/or short stature, brain anomalies, recurrent infections, hypogammaglobulinemia, coagulation abnormalities, and genitourinary abnormalities. In addition, skeletal abnormalities resembling a skeletal dysplasia including shortened long bones and talipes equinovarus have been seen in more severe neonatal presentation of this disorder. We report on a case expanding the phenotype of ALG12-CDG to include bilateral, multicystic kidneys in a neonatal demise identified with homozygous pathogenic variants in the ALG12 gene at c.1001del (p.N334Tfs*15) through clinical trio exome sequencing.


Asunto(s)
Trastornos Congénitos de Glicosilación , Enfermedades Renales Poliquísticas , Femenino , Humanos , Embarazo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Secuenciación del Exoma , Glicosilación , Mutación , Fenotipo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Mortinato
15.
Mol Genet Metab ; 142(2): 108487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733638

RESUMEN

Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.


Asunto(s)
Trastornos Congénitos de Glicosilación , Fibroblastos , Liposomas , Manosafosfatos , Fosfotransferasas (Fosfomutasas) , Humanos , Glicosilación/efectos de los fármacos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Manosafosfatos/metabolismo , Fosfotransferasas (Fosfomutasas)/genética , Fosfotransferasas (Fosfomutasas)/metabolismo , Fosfotransferasas (Fosfomutasas)/deficiencia , Proteómica , Manosa/metabolismo
16.
Mol Genet Metab Rep ; 39: 101072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38559322

RESUMEN

We are documenting the case of An 11-year-old girl who has been followed up at our out-patient clinic since birth with clinical presentations including intrauterine growth restriction, recurrent periodic fever in infancy, hypotonia, global developmental delay, liver function impairment with cirrhotic changes, and clinodactyly. Congenital abnormalities were suspected but a series of examinations including brain MRI, liver biopsy and muscle biopsy yielded insignificant findings. Whole genome sequencing (WGS) was conducted and revealed three novel mutations (c2T > G, c1826T > C, c.556-560delAGTAAinsCT) of the COG5 gene. A diagnosis of COG5-congenital disorders of glycosylation (COG5-CDG, or CDG IIi), with neurologic presentation was established. Sanger sequencing in the patient and her parents confirmed the compound heterozygous mutation. Upon literature review, we identified the patient as the first case of COG5-CDG in Taiwan. Our study enhances the clarity of the correlation between the mutative genes and the presentation of COG5-CDG.

17.
Mol Genet Genomic Med ; 12(4): e2422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622837

RESUMEN

BACKGROUND: Congenital disorders of glycosylation (CDG) are a type of inborn error of metabolism (IEM) resulting from defects in glycan synthesis or failed attachment of glycans to proteins or lipids. One rare type of CDG is caused by homozygous or compound heterozygous loss-of-function variants in mannosidase alpha class 2B member 2 (MAN2B2). To date, only two cases of MAN2B2-CDG have been reported worldwide. METHODS: Trio whole-exome sequencing (Trio-WES) was conducted to screen for candidate variants. N-glycan profiles were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MAN2B2 expression was evaluated by western blotting. MX dynamin like GTPase 1 (MX1) function was estimated via Thogoto virus (THOV) minireplicon assay. RESULTS: Trio-WES identified compound heterozygous MAN2B2 (hg19, NM_015274.1) variants (c.384G>T; c.926T>A) in a CDG patient. This patient exhibited metabolic abnormalities, symptoms of digestive tract dysfunction, infection, dehydration, and seizures. Novel immune dysregulation characterized by abnormal lymphocytes and immunoglobulin was observed. The MAN2B2 protein level was not affected, while LC-MS/MS showed obvious disruption of N-glycans and N-linked glycoproteins. CONCLUSION: We described a CDG patient with novel phenotypes and disruptive N-glycan profiling caused by compound heterozygous MAN2B2 variants (c.384G>T; c.926T>A). Our findings broadened both the genetic and clinical spectra of CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Cromatografía Liquida , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/diagnóstico , Glicoproteínas , Polisacáridos , Espectrometría de Masas en Tándem
18.
Anal Bioanal Chem ; 416(15): 3595-3604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676823

RESUMEN

Nucleotide sugars (NS) fulfil important roles in all living organisms and in humans, related defects result in severe clinical syndromes. NS can be seen as the "activated" sugars used for biosynthesis of a wide range of glycoconjugates and serve as substrates themselves for the synthesis of other nucleotide sugars. NS analysis is complicated by the presence of multiple stereoisomers without diagnostic transition ions, therefore requiring separation by liquid chromatography. In this paper, we explored weak anion-exchange/reversed-phase chromatography on a hybrid column for the separation of 17 nucleotide sugars that can occur in humans. A robust and reproducible method was established with intra- and inter-day coefficients of variation below 10% and a linear range spanning three orders of magnitude. Application to patient fibroblasts with genetic defects in mannose-1-phosphate guanylyltransferase beta, CDP-L-ribitol pyrophosphorylase A, and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase showed abnormal levels of guanosine-5'-diphosphate-α-D-mannose (GDP-Man), cytidine-5'-diphosphate-L-ribitol (CDP-ribitol), and cytidine-5'-monophosphate-N-acetyl-ß-D-neuraminic acid (CMP-Neu5Ac), respectively, in consonance with expectations based on the diagnosis. In conclusion, a novel, semi-quantitative method was established for the analysis of nucleotide sugars that can be applied to diagnose several genetic glycosylation disorders in fibroblasts and beyond.


Asunto(s)
Cromatografía de Fase Inversa , Fibroblastos , Espectrometría de Masas en Tándem , Humanos , Fibroblastos/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía por Intercambio Iónico/métodos , Cromatografía de Fase Inversa/métodos , Nucleótidos/análisis , Nucleótidos/metabolismo , Aniones/análisis , Cromatografía Líquida con Espectrometría de Masas
19.
J Inherit Metab Dis ; 47(4): 766-777, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597022

RESUMEN

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Estrés del Retículo Endoplásmico , Fibroblastos , Manosiltransferasas , Polisacáridos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Humanos , Polisacáridos/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Fibroblastos/metabolismo , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Glicosilación , Células Cultivadas , Degradación Asociada con el Retículo Endoplásmico
20.
Eur Heart J Case Rep ; 8(3): ytae088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38449779

RESUMEN

Background: Congenital disorders of glycosylation (CDG) are rare genetically inherited defects leading to enzyme deficiency or malfunction in the glycosylation pathway. Normal glycosylation is essential to the development of normal cardiac anatomy and function. Congenital disorders of glycosylation-related cardiomyopathy are often the first manifestation detected in early life and may lead to sudden cardiac death. Approximately one-fifth of CDG types are related to cardiac diseases that include cardiomyopathy, rhythm disturbances, pericardial effusions, and structural heart disease. Case summary: We report a rare case of a 26-year-old lady with CDG-1 who presented with acute-onset dyspnoea. She had respiratory tract symptoms for the past 2 weeks. With the relevant clinical and biochemical findings, including supportive findings on echocardiogram and cardiac magnetic resonance imaging, we have managed to arrive at a diagnosis of severe pneumonia leading to acute decompensated heart failure, as well as the discovery of an underlying CDG-associated dilated cardiomyopathy (DCM) and acute myocarditis. Anti-failure medications and i.v. methylprednisolone were commenced, and she showed gradual clinical improvement with an increase of her left ventricular function. She was discharged home well with anti-failure therapy, prednisolone, and a follow-up echocardiogram with further review in the heart failure clinic. Discussion: In conclusion, this case report highlights the need for accurate diagnosis and prompt management of CDG-associated DCM, leading to a successful recovery and discharge from hospital care. With this, we hope to add to the increasing number of reported cases of CDG-related cardiac disease in the medical literature to emphasize the importance of screening and follow-up for any underlying cardiac diseases in patients with CDG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA