Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Luminescence ; 39(7): e4845, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054772

RESUMEN

A recently developed antipsychotic drug, lurasidone, was determined using a simple, sensitive, and eco-friendly spectrofluorimetric approach. The suggested approach was based on the quantifiable quenching impact of lurasidone on the inherent fluorescence of erythrosine B in an acidic environment employing a Teorell-Stenhagen buffer (pH 4). Following excitation at 530 nm, the quenching of erythrosine B fluorescence was monitored at 552 nm. The system variables were systematically optimized to enhance the formation of the lurasidone-erythrosine B ion pair for analytical purposes. A linear calibration graph was built in the range of 20-600 ng mL-1 with 0.9998 as a coefficient of correlation. The quantitation and detection limits were 13.5 and 4.5 ng/mL, respectively. The analytical validity of the designed approach was assessed with respect to International Council on Harmonization (ICH) guiding principles. The proposed methodology was employed with high recoveries for assessing lurasidone in bulk powder and its therapeutic tablet dosage form. Additionally, the uniformity of tablet formulations was tested using the developed approach. Finally, the established approach was assessed for its greenness using various tools.


Asunto(s)
Eritrosina , Clorhidrato de Lurasidona , Espectrometría de Fluorescencia , Clorhidrato de Lurasidona/química , Clorhidrato de Lurasidona/análisis , Eritrosina/química , Electricidad Estática , Concentración de Iones de Hidrógeno , Comprimidos/análisis , Antipsicóticos/química , Colorantes Fluorescentes/química , Límite de Detección
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124596, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850823

RESUMEN

People frequently administer Tizanidine (TIZ) to treat spasticity resulting from diseases like multiple sclerosis or spinal cord injuries. It also helps prevent muscle spasms. It helps to relax and release tense and stiff muscles by inhibiting specific nerve signals in the brain and spinal cord. The technique employed in this study made use of the unique ability of benzofurazan to confer fluorescent character when reacted with TIZ at specific conditions. This fluorogenic property was harnessed to evolve a remarkably sensitive, affordable, and selective method to quantify TIZ. The resulting yellow fluorescent product was observedat a wavelength beam of 532.9 nm, and an excitation wavelength beam of 474.9 nm was applied. By looking at the response across the TIZ concentration, the calibration chart's linearity was assessed in the range of 40-500 ng/mL. By computation, the approach's detection level (LOD) was determined to be 11.9 ng/mL, while the quantitation level was approximated to be 36 ng/mL. All pertinent factors impacting the strategy's efficacy were thoroughly inspected and adjusted accordingly. The proposed strategy was validated following the guidelines outlined by the ICH. The outcomes confirmed the method's capability for the accurate quantifying of TIZ in tablets, spiked plasma, and pharmaceutical assessing content uniformity.


Asunto(s)
Benzoxazoles , Clonidina , Límite de Detección , Espectrometría de Fluorescencia , Comprimidos , Clonidina/análogos & derivados , Clonidina/análisis , Clonidina/sangre , Espectrometría de Fluorescencia/métodos , Humanos , Benzoxazoles/química , Colorantes Fluorescentes/química , Reproducibilidad de los Resultados , Calibración , Concentración de Iones de Hidrógeno
3.
BMC Chem ; 18(1): 111, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38863068

RESUMEN

A new, sensitive, and rapid isocratic reversed phase chromatographic method (RP-HPLC-UV) was developed for simultaneous separation of two newly co-formulated antiulcer mixtures; Amoxicillin, Vonoprazan and Clarithromycin [Mixture (I)], and Amoxicillin, Lansoprazole and Clarithromycin [Mixture (II)]. Analytical separation was performed using a Promosil C18 column and ultraviolet detection at 210 nm. The separation was achieved within only 8 min. For both mixtures, an aqueous solution, composed of (Acetonitrile: Methanol: 0. 2 M phosphoric acid) within ratio of (30: 30: 40) adjusted to final pH 3.0, was the mobile phase. This method was validated as per the International Conference on Harmonization guidelines. The linearity ranges of these proposed method of the (Mixture (I)) were 25.0-400.0 µg/mL Amoxicillin, 0.5-8.0 µg/mL Vonoprazan, and 12.5-200.0 µg/mL Clarithromycin. And the linearity ranges of the (Mixture (II)) were 10.0-300.0 µg/mL Amoxicillin, 0.3-9.0 µg/mL Lansoprazole and 5.0-150.0 µg/mL Clarithromycin. This method was firstly applied for effective separation of Amoxicillin, Vonoprazan and Clarithromycin [Mixture (I)]. It fulfilled good repeatability, sensitivity, and accuracy (R.S.D. < 2.0%). The mean recoveries of the analytes in their Tri-Pak formulations were acceptable. The greenness of the developed chromatographic methods was assessed using an Eco-scale method and it was applied for content uniformity testing as per the United States Pharmacopoeia (USP) and the acceptance value of Amoxicillin, in Mixture (I) was 2.88, the acceptance values for Amoxicillin, Lansoprazole in Mixture (II) were 2.592, 2.424, respectively.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124519, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815314

RESUMEN

Vilazodone is a recently approved antidepressant medicine used for treating major depressive disorder. A simple, extremely sensitive, accurate and green spectrofluorimetric method was constructed for its determination through formation of ion-pair complex with erythrosine B. The formation of ion-pair complex lowers the dye's native fluorescence emission measured at 552 nm (λ ex = 530 nm). In terms of analysis, the system's parameters for producing the vilazodone-erythrosine B complex have been optimized. The reaction was carried out in Teorell-Stenhagen buffering solution (pH 4.6). The fluorescence emission intensity of the dye decreased linearly in the range of 20 - 600 ng mL-1 and the correlation coefficient was 0.9999. The quantitation and detection limit values were 18.5 and 6.1 ng mL-1, respectively. The proposed strategy has been validated according to the ICH criteria. The proposed technique was thoroughly employed for evaluating vilazodone in raw material and pharmaceutical tablet dosage form. Furthermore, it was also successfully used for content uniformity testing. Lastly, using four advanced tools namely the Eco-Scale, the National Environmental Method Index (NEMI), the Green Analytical Procedure Index (GAPI), and the Analytical Greenness metric approach (AGREE), the greenness of the established technique was evaluated.


Asunto(s)
Límite de Detección , Espectrometría de Fluorescencia , Clorhidrato de Vilazodona , Clorhidrato de Vilazodona/análisis , Espectrometría de Fluorescencia/métodos , Reproducibilidad de los Resultados , Comprimidos , Tecnología Química Verde/métodos , Concentración de Iones de Hidrógeno , Formas de Dosificación
5.
Luminescence ; 39(4): e4741, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605268

RESUMEN

In the present study, a first validated and green spectrofluorimetric approach for its assessment and evaluation in different matrices was investigated. After using an excitation wavelength of 345 nm, Roxadustat (ROX) demonstrates a highly native fluorescence at an emission of 410 nm. The influences of experimental factors such as pH, diluting solvents, and different organized media were tested, and the most appropriate solvent choice was ethanol. It was confirmed that there was a linear relationship between the concentration of ROX and the relative fluorescence intensity in the range 60.0-1000.0 ng ml-1, with the limit of detection and limit of quantitation, respectively, being 17.0 and 53.0 ng ml-1. The mean recoveries % [±standard deviation (SD), n = 5] for pharmaceutical preparations were 100.11% ± 2.24%, whereas for plasma samples, they were 100.08 ± 1.08% (±SD, n = 5). The results obtained after the application of four greenness criteria, Analytical Eco-Scale metric, NEMI, GAPI, and AGREE metric, confirmed its eco-friendliness. In addition, the whiteness meter (RGB12) confirmed its level of sustainability. The International Council for Harmonisation (ICH) criteria were used to verify the developed method through the study in both spiked plasma samples and content uniformity evaluation. An appropriate standard for various applications in industry and quality control laboratories was developed.


Asunto(s)
Hematínicos , Humanos , Límite de Detección , Espectrometría de Fluorescencia/métodos , Eritropoyesis , Concentración de Iones de Hidrógeno , Solventes/química , Comprimidos/química , Isoquinolinas
6.
Pharmaceutics ; 16(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543235

RESUMEN

Hydroxypropyl methylcellulose (HPMC) is a preferred hydrophilic matrix former for controlled release formulations produced through continuous twin-screw wet granulation. However, a non-homogeneous API distribution over sieve fractions with underdosing in the fines fraction (<150 µm) was previously reported. This could result in content uniformity issues during downstream processing. Therefore, the current study investigated the root cause of the non-homogeneous theophylline distribution. The effect of process parameters (L/S-ratio and screw configuration) and formulation parameters (matrix former and filler type) on content uniformity was studied. Next, the influence of the formulation parameters on tableting and dissolution behavior was investigated. Altering the L/S-ratio or using a more aggressive screw configuration did not result in a homogeneous API distribution over the granule sieve fractions. Using microcrystalline cellulose (MCC) as filler improved the API distribution due to its similar behavior as HPMC. As excluding HPMC or including a hydrophobic matrix former (Kollidon SR) yielded granules with a homogeneous API distribution, HPMC was identified as the root cause of the non-homogeneous API distribution. This was linked to its fast hydration and swelling (irrespective of the HPMC grade) upon addition of the granulation liquid.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124168, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513420

RESUMEN

A typical drug used to treat Parkinson's disease is called rasagiline. It belongs to an assortment of drugs known as monoamine oxidase inhibitors, which function by raising dopamine levels in the brain. This work created a unique spectrofluorimetric method for the analytical assay of rasagiline for the first time. The approach utilized the synergistic utility of the fluorogenic properties of benzofurazan and salting-out assisted liquid-liquid extraction. By combining these techniques an ultrasensitive, and highly selective methodology for the assay of rasagiline was established. Measurements were made of the resultant yellow fluorescent product at 533 nm by applying an excitation wavelength of 475.3 nm. The calibration graph was examined to assess its linearity across a range of 30-600 ng/ml. Through estimation, the limit of detection was discovered to be 8.9 ng/ml, while the quantitation limit was estimated to be 27 ng/ml. All relevant parameters influencing the fulfillment of the developed method were thoroughly examined and tuned. Following the directives set by the (ICH) the suggested approach was confirmed and demonstrated its capability for the accurate determination of rasagiline in tablets, as well as for testing content uniformity. The incorporation of salting-out assisted liquid-liquid extraction technology enables effective tracking of rasagiline in plasma samples, providing a novel and innovative approach for its analysis in biological matrices.


Asunto(s)
4-Cloro-7-nitrobenzofurazano , Inhibidores de la Monoaminooxidasa , Cloruro de Sodio , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Indanos , Extracción Líquido-Líquido/métodos
8.
Luminescence ; 39(2): e4682, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332466

RESUMEN

A new, proven, economical spectrofluorimetric approach has been used to determine the proton pump inhibitor omeprazole (OMP). This innovative technique is based on the ability of OMP to quench the native fluorescence of the mercurochrome dye in an acidic (pH 3.6) solution. Because it was discovered that quenching is proportional to the drug concentration, this dye was used as a sensor for OMP detection. The fluorescence intensity was measured at 518/540 nm, and its linear response ranged from 0.2-10.0 µg/mL with a linear coefficient of 0.9999. The computation yielded a limit of quantification (LOQ) of 0.20 µg/mL and a limit of detection (LOD) of 0.07 µg/mL. Every circumstance and element impacting the reaction product was examined in detail. Pharmacopeial standards carried out the validation. The approved method investigated several commercial preparations and formulations, and the results were favorably compared with those provided by a reference method. According to United States Pharmacopeia (USP) rules, content consistency for two distinct formulations was evaluated.


Asunto(s)
Omeprazol , Comprimidos/química , Límite de Detección , Espectrometría de Fluorescencia/métodos
9.
BMC Chem ; 18(1): 18, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38268023

RESUMEN

For the treatment of rhinitis and asthma, a combination of Montelukast sodium and Bilastine has just been approved. Based on the first derivative of synchronous fluorescence, the current work developed a green, highly accurate, sensitive, and selective spectroscopic approach for estimating Montelukast sodium and Bilastine in pharmaceutical dosage form without previous separation. The selected technique focuses on measuring the synchronized fluorescence of the studied medications at a fixed wavelength range (Δλ) = 110 nm, and using the amplitude of the first derivative's peak at 381 and 324 nm, for quantitative estimation of Montelukast sodium and Bilastine, respectively. The impacts of different factors on the referred drugs' synchronized fluorescence intensity were investigated and adjusted. The calibration plots for were found to be linear over concentration ranges of 50-2000 ng mL-1 for Montelukast sodium and 50-1000 ng mL-1 for Bilastine. Montelukast sodium and Bilastine have LODs of 16.5 and 10.9 ng mL-1, respectively. In addition, LOQs were: 49.9 and 33.0 ng mL-1, for both drugs, respectively. The developed method was successfully employed to quantify the two drugs in synthetic tablets mixture and in laboratory prepared mixtures containing varied Montelukast and Bilastine ratios. To compare the results with the published analytical approach, a variance ratio F-test and a student t-test were used, which revealed no significant differences.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123725, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38070312

RESUMEN

The ability to determine antihistaminic drugs in biological matrices is critical for the medication adherence assessment. Among these antihistaminic medications, cyproheptadine (CPD); that is acting as a potent first-generation antihistaminic drug that has been extensively prescribed for allergic patients. Most of the established approaches for CPD detection are not appropriate for this purpose owing to their weak sensitivity, lack of rapidity, and complicated experimental procedures. Herein, we present a very fast, highly sensitive, and reproducible approach for the detection of CPD in its pure form, tablet formulation, and spiked human plasma. The photoluminescence approach depends on hindering the intramolecular photoinduced electron transfer (PET) effect of the lone pair of the N-atom present on the piperidine ring of CPD by making the surrounding medium acidic using 1.0 M acetic acid. Based on blocking PET, the target CPD drug has been sensitively detected from 5.0 to 500 ng mL-1 with a very low detection and quantitation limit of 7.01 and 21.25 ng mL-1, respectively. Moreover, the established approach was used for checking the tablet content uniformity testing for each tablet and spiked human plasma, and noteworthy, the matrices interference was insignificant.


Asunto(s)
Ciproheptadina , Electrones , Humanos , Espectrometría de Fluorescencia/métodos , Comprimidos
11.
BMC Chem ; 17(1): 175, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057838

RESUMEN

The psychoanaleptic medication atomoxetine (ATX) is prescribed to cure attention-deficit hyperactivity syndrome. ATX works by selective prevention of norepinephrine reuptake. It acts by raising the brain's natural level of norepinephrine, which is necessary for behavior regulation. In this study, a sensitive and practical experimental method was employed to analyze the presence of ATX. The approach utilized a green chemistry-compatible technique, known as a one-pot experiment. The main principle behind this method was the use of molecular-size-dependant resonance Rayleigh scattering (RRS) phenomenon, which occurred due to the interaction between the dual complex of Cilefa Pink B and ATX. When ATX medication and Cilefa Pink B were combined in an acidic environment, they formed an association complex, leading to an amplification of the RRS signal. This amplification directly correlated with the concentration of ATX, specifically within the range of 40-1250 ng/mL. The RRS signal was monitored at a wavelength of 352 nm. The sensitivity of the method was demonstrated by the determination of the limit of detection (LOD) at 12.9 ng/mL and the limit of quantitation (LOQ) at 39.2 ng/mL. The variables of the method were thoroughly investigated and optimized. To ensure the reliability of the method, it was validated according to the International Council for Harmonisation (ICH) guidelines. Furthermore, the method was successfully applied to analyze ATX in its prescribed dosage form. The achievement of using the established resonance Rayleigh scattering (RRS) technology to analyze the target drug in plasma and ensure content uniformity was a remarkable feat.

12.
Pharmaceutics ; 15(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38004554

RESUMEN

Modern pharmaceutical manufacturing based on Quality by Design and digitalisation is revolutionising the pharmaceutical industry. Continuous processes are promoted as they increase efficiency and improve quality control. Compared to batch blending, continuous blending is easier to scale and provides advantages for achieving blend homogeneity. One potential challenge of continuous blending is the risk of over-lubrication. In this study, blending homogeneity and lubricant sensitivity are investigated for both batch and continuous processes. Given their distinct chemical structures and morphologies, anhydrous lactose and granulated lactose are expected to exhibit varying sensitivities to changes in process settings across both technologies. The findings suggest that both lactose grades provide highly stable blends that can be safely utilised in both batch and continuous modes. Optimisation should focus on process variables, such as the quality of loss-in-weight feeders used for dosing low doses of ingredients. The most significant process parameter for lubricant sensitivity was the type of lactose used. Anhydrous lactose produced harder tablets than the more porous granulated lactose but was more sensitive to lubrication at the same settings. The magnesium stearate content and its interaction with the type of lactose are also critical factors, with magnesium stearate having a counterproductive impact on tabletability.

13.
Pharmaceutics ; 15(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38004620

RESUMEN

The paucity of suitable drug formulations for pediatric patients generates a need for customized, compounded medications. This research study was set out to comprehensively analyze the physical properties of the new, proprietary anhydrous oral vehicle SuspendIt® Anhydrous, which was designed for compounding pediatric oral liquids. A wide range of tests was used, including sedimentation volume, viscosity, droplet size after dispersion in simulated gastric fluid, microscopic examination and content uniformity measurements to evaluate the properties of the anhydrous vehicle. The results showed that the vehicle exhibited consistent physical properties under varying conditions and maintained stability over time. This can be attributed to the unique blend of excipients in its formulation, which not only maintain its viscosity but also confer thixotropic behavior. The unique combination of viscous, thixotropic and self-emulsifying properties allows for rapid redispersibility, sedimentation stability, accurate dosing, potential drug solubility, dispersion and promotion of enhanced gastrointestinal distribution and absorption. Furthermore, the vehicle demonstrated long-term sedimentation stability and content uniformity for a list of 13 anhydrous suspensions. These results suggest that the anhydrous oral vehicle could serve as a versatile base for pediatric formulation, potentially filling an important gap in pediatric drug delivery. Future studies can further investigate its compatibility, stability and performance with other drugs and in different clinical scenarios.

14.
Luminescence ; 38(12): 2065-2072, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37740522

RESUMEN

The prokinetic drug, prucalopride (PCP) succinate, was determined using a new spectrofluorimetric approach with a highly sensitive, rapid, and simple procedure. The method exploited the enhancement of the inherent native fluorescence of PCP by micellar aggregation with sodium lauryl sulfate (SLS) as an anionic surfactant. Different factors that could affect the fluorescence intensity were carefully studied in order to achieve the maximal fluorescence signal. Measurement of the enhanced fluorescence was done at 354 nm after the excitation at 276 nm. The fluorescence intensity-concentration plot was rectilinear in the concentration range of 50-600 ng/ml with detection and quantitation limits of 13.9 and 42.1 ng/ml, respectively. The method underwent validation according to the International Council for Harmonisation criteria in order to assess its analytical performance, and promising results were achieved that proved the validity and reliability of the method. Furthermore, the method was employed effectively for the analysis of the cited drug in commercial pharmaceutical tablets.


Asunto(s)
Succinatos , Límite de Detección , Espectrometría de Fluorescencia/métodos , Reproducibilidad de los Resultados , Comprimidos/análisis
15.
J Pharm Biomed Anal ; 236: 115721, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37769525

RESUMEN

Continuous manufacturing provides advantages compared to batch manufacturing and is increasingly gaining importance in the pharmaceutical industry. In particular, the implementation of tablet processes in continuous plants is an important part of current research. For this, in-line real-time monitoring of product quality through process analytical technology (PAT) tools is crucial. This study focuses on an in-line UV/Vis spectroscopy method for monitoring the active pharmaceutical ingredient (API) content in tablets. UV/Vis spectroscopy is particularly advantageous here, because it allows univariate data analysis without complex data processing. Experiments were conducted on a rotary tablet press. The tablets consisted of 7- 13 wt% theophylline monohydrate as API, lactose monohydrate and magnesium stearate. Two tablet production rates were investigated, 7200 and 20000 tablets per hour. The UV/Vis probe was mounted at the ejection position and measurements were taken on the tablet sidewall. Validation was according to ICH Q2 with respect to specificity, linearity, precision, accuracy and range. The specificity for this formulation was proven and linearity was sufficient with coefficients of determination of 0.9891 for the low throughput and 0.9936 for the high throughput. Repeatability and intermediate precision were investigated. Both were sufficient, indicated by coefficients of variations with a maximum of 6.46% and 6.34%, respectively. The accuracy was evaluated by mean percent recovery. This showed a higher accuracy at 20000 tablets per hour than 7200 tablets per hour. However, both throughputs demonstrate sufficient accuracy. Finally, UV/Vis spectroscopy is a promising alternative to the common NIR and Raman Spectroscopy.

16.
Eur J Pharm Biopharm ; 191: 276-289, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714414

RESUMEN

Transmission Raman spectroscopy (TRS) is a process analytical technology tool for nondestructive analysis of drug content in tablets. Although wet granulation is the most used tablet manufacturing method, most TRS studies have focused on tablets manufactured via direct compression. The effects of upstream process parameter variations, such as granulation, on the prediction performance of TRS quantitative models are unknown. We evaluated the effects of process parameter variations during granulation on the prediction performance of the TRS quantitative model. Tablets with a drug concentration of 1%w/w were used. We developed PLS calibration models for the drug concentration range of 70-130% label claims. Subsequently, we predicted the drug content of the tablets with different granulation parameters. The results of our study demonstrate that the variation in the predicted recovery due to the variation in granulation parameters was practically acceptable. The calibration model showed a good prediction performance for tablets manufactured at different granulation scales and thicknesses. Therefore, we conclude that TRS quantitative models are robust to variations in upstream processes, such as granulation and downstream variations in tableting parameters. These results suggest that TRS is a versatile non-destructive quantitative analysis method that can be applied in tablet manufacturing.


Asunto(s)
Química Farmacéutica , Espectrometría Raman , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Espectrometría Raman/métodos , Tecnología Farmacéutica/métodos , Comprimidos/química
17.
AAPS J ; 25(5): 90, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715005

RESUMEN

Process analytical technology (PAT) in late-stage drug product development is typically used for real-time process monitoring, in-process control, and real-time release testing. In early research and development (R&D), PAT usage is limited as the manufacturing scale is relatively small with frequent changes and only a few batches are produced on an annual basis. However, process understanding is critical at early R&D in order to identify process and formulation boundaries, so PAT applications could be particularly useful in early-stage R&D. For oral solid dosage form, conventional HPLC-based content uniformity (CU) methods with sampling of 3 tablets per stratified sampling location in early R&D are typically not sufficient to identify these manufacturing process boundaries and temporal profile. Here, we report a screening CU method based on a multivariate model using transmission Raman spectroscopy (TRS) data on a phase-appropriate calibration set of only 16 tablets. This initial model was used for multiple pre-GMP development batches to provide critical information about blend uniformity and content uniformity (CU). In this work, the precision of the TRS method was evaluated; multiple spectral preprocessing approaches were compared regarding their effects on measurement precision as well as their ability to mitigate the photo bleaching effects during precision experiments. Overall, the TRS-based CU method was much faster than a traditional HPLC-based method allowing a much larger number of tablets to be screened. This larger number of analyzed tablets enabled the processes boundaries and temporal changes in CU to be identified while providing proper statistical assurance on product quality.


Asunto(s)
Desarrollo de Medicamentos , Proyectos de Investigación , Calibración , Cromatografía Líquida de Alta Presión , Tecnología
18.
BMC Chem ; 17(1): 83, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468925

RESUMEN

Prucalopride (PCP) is a medication used for the management of constipation via regulating bowel motions. PCP is widely used all over the world. So, novel, rapid, and highly sensitive carbon dots N-CQDs were obtained from Eruca Sativa juice via microwave approach in 4 min. The luminescence power of N-CQDs was declined by the increasing prucalopride concentration at emission 518 nm with linearity ranged from 3.00 to 200.00 ng mL-1. The luminescent antecedent was utilized for the test of PCP in human plasma with the rate of recovery extending from 95.06 to 98.40%. The new technique is an eco-friendly analytical method that can be easily applied in clinical laboratories. This assay is also simple, sensitive, and applied to therapeutic laboratories and subsequent pharmacokinetic studies in several clinical laboratories. Furthermore, the N-CQDs nano-sensor was able to distinguish the target drug from interferents commonly found in human plasma, indicating its high specificity and selectivity for PCP detection.

19.
BMC Chem ; 17(1): 64, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349827

RESUMEN

In addition to its pure form, three accurate, rapid, and simple methods have been established for determining perindopril (PRD) in its tablet form. At pH 9.0 using a borate buffer, developing the three designated methods was successful according to the reaction between PRD and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and the formation of a chromogen (with a yellow color) measurable at 460 nm using the spectrophotometric method (Method I). In addition, the produced chromogen was assessed using the spectrofluorimetric method (Method II) at 535 nm following excitation at 461 nm. Afterward, the same reaction product was separated and determined using the HPLC method with fluorescence detection (Method III). A Promosil C18 stainless steel column (Q7 5 mm particle size, 250-4.6 mm) has proven suitable for separation. The mobile phase adjustment was made at pH 3.0, with a 1.0 mL min -1 flow rate; its composition was methanol-sodium dihydrogen phosphate, 0.02 M (60: 40, v/v). Through concentration ranges of 5.0-60.0, 0.5-6.0, and 1.0-10.0 µg mL-1, the calibration curves were rectilinear for Methods I, II, and III, respectively, with limits of quantification (LOQ) of 1.08, 0.16 and 0.19 µg mL-1 as well as limits of detection (LOD) of 0.36, 0.05 and 0.06 µg mL-1. The developed methods were implemented to estimate PRD in tablets, and a comparison between the obtained outcomes utilizing the developed methods as well as obtained from the official method revealed that they were comparable. The official BP method was based on dissolving PRD in anhydrous acetic acid and titrating with 0.1 M perchloric acid, then the potentiometric determination of the end-point. The designated methods were also implemented in content uniformity testing with satisfying results. The reaction pathway proposal was speculated, and according to ICH Guidelines, the statistical evaluation of the data was performed. The three proposed methods were confirmed to be green, eco-friendly and safe to environment using Green Analytical procedure index (GAPI) method.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122948, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285746

RESUMEN

Brexpiprazole (BRX) is a new antipsychotic drug that recently was used in the treatment of schizophrenia and other psychosis. The presence of benzothiophene ring in its chemical structure makes BRX naturally fluoresces. However, the native fluorescence of the drug was low in neutral or alkaline medium owing to the occurrence of photoinduced electron transfer (PET) from the nitrogen of the piperazine ring to the benzothiophene ring. Protonation of this nitrogen atom using sulfuric acid could efficiently block PET process and thus retaining the strong fluorescence of the compound. Accordingly, a straightforward, highly sensitive, fast and green spectrofluorimetric approach was established for BRX determination. In 1.0 M sulfuric acid solution, BRX exhibited significant native fluorescence measured at emission wavelength of 390 nm after excitation at 333 nm. ICH requirements were used to evaluate the method. The fluorescence intensity and BRX concentration were found to be correlated linearly within the range of 5-220 ng mL-1 with a coefficient of correlation 0.9999. The limit of quantitation was 2.38 ng mL-1 while limit of detection was 0.78 ng mL-1. The developed approach was successfully used to analyze BRX in biological fluids and pharmaceutical dosage form. The suggested approach worked well when applied for testing the uniformity of content.


Asunto(s)
Electrones , Humanos , Espectrometría de Fluorescencia/métodos , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA