Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39056902

RESUMEN

Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value. In this paper, we focus on the implementation of cCCM in causality analysis. More specifically, we demonstrate the effectiveness of cCCM in identifying both linear and nonlinear causal coupling in various settings through a large number of examples, including Gaussian random variables with additive noise, sinusoidal waveforms, autoregressive models, stochastic processes with a dominant spectral component embedded in noise, deterministic chaotic maps, and systems with memory, as well as experimental fMRI data. In particular, we analyze the impact of shadow manifold construction on the performance of cCCM and provide detailed guidelines on how to configure the key parameters of cCCM in different applications. Overall, our analysis indicates that cCCM is a promising and easy-to-implement tool for causality analysis in a wide spectrum of applications.

2.
J Environ Sci (China) ; 145: 139-151, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844315

RESUMEN

Linking meteorology and air pollutants is a key challenge. The study investigated meteorological effects on PM2.5 concentration using the advanced convergent cross mapping method, utilizing hourly PM2.5 concentration and six meteorological factors across eight provinces and cities in Vietnam. Results demonstrated that temperature (ρ = 0.30) and radiation (ρ = 0.30) produced the highest effects, followed by humidity (ρ = 0.28) and wind speed (ρ = 0.24), while pressure (ρ = 0.22) and wind direction (ρ = 0.17) produced the weakest effects on PM2.5 concentration. Comparing the ρ values showed that temperature, wind speed, and wind direction had greater impacts on PM2.5 concentration during the dry season whereas radiation had a more influence during the wet season; Southern stations experienced larger meteorological effects. Temperature, humidity, pressure, and wind direction had both positive and negative influences on PM2.5 concentration, while radiation and wind speed mostly had negative influences. During PM2.5 pollution episodes, there was more contribution of meteorological effects on PM2.5 concentration indicated by ρ values. At contaminated levels, humidity (ρ = 0.45) was the most dominant factor affecting PM2.5 concentration, followed by temperature (ρ = 0.41) and radiation (ρ = 0.40). Pollution episodes were pointed out to be more prevalent under higher humidity, higher pressure, lower temperature, lower radiation, and lower wind speed. The ρ calculation also revealed that lower temperature, lower radiation, and higher humidity greatly accelerated each other under pollution episodes, further enhancing PM2.5 concentration. The findings contributed to the literature on meteorology and air pollution interaction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Material Particulado , Vietnam , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Conceptos Meteorológicos , Estaciones del Año , Viento
3.
Front Aging ; 5: 1396636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803576

RESUMEN

Frailty is a geriatric syndrome associated with the lack of physiological reserve and consequent adverse outcomes (therapy complications and death) in older adults. Recent research has shown associations between heart rate (HR) dynamics (HR changes during physical activity) with frailty. The goal of the present study was to determine the effect of frailty on the interconnection between motor and cardiac systems during a localized upper-extremity function (UEF) test. Fifty-six individuals aged 65 or above were recruited and performed the previously developed UEF test consisting of 20-s rapid elbow flexion with the right arm. Frailty was assessed using the Fried phenotype. Wearable gyroscopes and electrocardiography were used to measure motor function and HR dynamics. In this study, the interconnection between motor (angular displacement) and cardiac (HR) performance was assessed, using convergent cross-mapping (CCM). A significantly weaker interconnection was observed among pre-frail and frail participants compared to non-frail individuals (p < 0.01, effect size = 0.81 ± 0.08). Using logistic models, pre-frailty and frailty were identified with sensitivity and specificity of 82%-89%, using motor, HR dynamics, and interconnection parameters. Findings suggested a strong association between cardiac-motor interconnection and frailty. Adding CCM parameters in a multimodal model may provide a promising measure of frailty.

4.
Environ Pollut ; 345: 123526, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355085

RESUMEN

Understanding the role of meteorology in determining air pollutant concentrations is an important goal for better comprehension of air pollution dispersion and fate. It requires estimating the strength of the causal associations between all the relevant meteorological variables and the pollutant concentrations. Unfortunately, many of the meteorological variables are not routinely observed. Furthermore, the common analysis methods cannot establish causality. Here we use the output of a numerical weather prediction model as a proxy for real meteorological data, and study the causal relationships between a large suite of its meteorological variables, including some rarely observed ones, and the corresponding nitrogen dioxide (NO2) concentrations at multiple observation locations. Time-lagged convergent cross mapping analysis is used to ascertain causality and its strength, and the Pearson and Spearman correlations are used to study the direction of the associations. The solar radiation, temperature lapse rate, boundary layer height, horizontal wind speed and wind shear were found to be causally associated with the NO2 concentrations, with mean time lags of their maximal impact at -3, -1, -2 and -3 hours, respectively. The nature of the association with the vertical wind speed was found to be uncertain and region-dependent. No causal association was found with relative humidity, temperature and precipitation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Meteorología , Tiempo (Meteorología) , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , China , Conceptos Meteorológicos
5.
JMIR Form Res ; 8: e46087, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285495

RESUMEN

BACKGROUND: The COVID-19 pandemic has highlighted gaps in the current handling of medical resource demand surges and the need for prioritizing scarce medical resources to mitigate the risk of health care facilities becoming overwhelmed. OBJECTIVE: During a health care emergency, such as the COVID-19 pandemic, the public often uses social media to express negative sentiment (eg, urgency, fear, and frustration) as a real-time response to the evolving crisis. The sentiment expressed in COVID-19 posts may provide valuable real-time information about the relative severity of medical resource demand in different regions of a country. In this study, Twitter (subsequently rebranded as X) sentiment analysis was used to investigate whether an increase in negative sentiment COVID-19 tweets corresponded to a greater demand for hospital intensive care unit (ICU) beds in specific regions of the United States, Brazil, and India. METHODS: Tweets were collected from a publicly available data set containing COVID-19 tweets with sentiment labels and geolocation information posted between February 1, 2020, and March 31, 2021. Regional medical resource shortage data were gathered from publicly available data sets reporting a time series of ICU bed demand across each country. Negative sentiment tweets were analyzed using the Granger causality test and convergent cross-mapping (CCM) analysis to assess the utility of the time series of negative sentiment tweets in forecasting ICU bed shortages. RESULTS: For the United States (30,742,934 negative sentiment tweets), the results of the Granger causality test (for whether negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a stochastic system) were significant (P<.05) for 14 (28%) of the 50 states that passed the augmented Dickey-Fuller test at lag 2, and the results of the CCM analysis (for whether negative sentiment COVID-19 tweets forecast ICU bed shortage, assuming a dynamic system) were significant (P<.05) for 46 (92%) of the 50 states. For Brazil (3,004,039 negative sentiment tweets), the results of the Granger causality test were significant (P<.05) for 6 (22%) of the 27 federative units, and the results of the CCM analysis were significant (P<.05) for 26 (96%) of the 27 federative units. For India (4,199,151 negative sentiment tweets), the results of the Granger causality test were significant (P<.05) for 6 (23%) of the 26 included regions (25 states and the national capital region of Delhi), and the results of the CCM analysis were significant (P<.05) for 26 (100%) of the 26 included regions. CONCLUSIONS: This study provides a novel approach for identifying the regions of high hospital bed demand during a health care emergency scenario by analyzing Twitter sentiment data. Leveraging analyses that take advantage of natural language processing-driven tweet extraction systems has the potential to be an effective method for the early detection of medical resource demand surges.

6.
Sci Total Environ ; 913: 169601, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159751

RESUMEN

Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton biomass (chlorophyll a) and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops. Phytoplankton biomass exhibited the highest feedbacks with total inorganic nitrogen and ammonia and the lowest with nitrate. The feedbacks between phytoplankton biomass and environmental factors from 2000 to 2017 could be classified into two groups: the local environments (e.g., nutrients, pH, transparency, zooplankton biomass)-driven enhancement loops promoting the response of the phytoplankton biomass, and the climate (e.g., wind speed)-driven regulatory loops suppressing it. The two counterbalanced groups modified the emergent macroecological patterns. Our findings revealed that the causal feedback networks loosened significantly after 2007 following nutrient loading reduction and unsuccessful biomanipulation restoration attempts by stocking carp. The strength of enhancement loops underwent marked decreases leading to reduced phytoplankton responses to the tested drivers, while the climate (decreasing wind speed, warming winter)-driven regulatory loops increased- like a tug-of-war. To counteract the self-amplifying feedback loops, the present eutrophication mitigation efforts, especially nutrient reduction, should be continued, and introduction of alternative measures to indirectly regulate the critical components (e.g., pH, Secchi depth, zooplankton biomass) of the loops would be beneficial.


Asunto(s)
Cambio Climático , Lagos , Animales , Humanos , Retroalimentación , Clorofila A , Fitoplancton/fisiología , Biomasa , Eutrofización , Zooplancton
7.
Proc Natl Acad Sci U S A ; 120(35): e2305050120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603760

RESUMEN

Primary productivity response to climatic drivers varies temporally, indicating state-dependent interactions between climate and productivity. Previous studies primarily employed equation-based approaches to clarify this relationship, ignoring the state-dependent nature of ecological dynamics. Here, using 40 y of climate and productivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlinear time-series analysis to reveal sensitivity patterns of productivity to climate change and variability and clarify underlying mechanisms. We showed that productivity responded positively to annual precipitation in mesic regions but negatively in arid regions, with the opposite pattern observed for annual mean temperature. Furthermore, productivity responded negatively to decreasing annual aridity that integrated precipitation and temperature across Mongolia. Productivity responded negatively to interannual variability in precipitation and aridity in mesic regions but positively in arid regions. Overall, interannual temperature variability enhanced productivity. These response patterns are largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate effects modify annual productivity responses to annual climate conditions. Notably, our results suggest that the sensitivity of annual productivity to increasing annual precipitation and decreasing annual aridity can even be negative when the negative time-delayed effects of annual precipitation and aridity on productivity prevail across time. Second, the proportion of plant species resistant to water and temperature stresses at a site determines the sensitivity of productivity to climate variability. Thus, we highlight the importance of nonlinear, state-dependent sensitivity of productivity to climate change and variability, accurately forecasting potential biosphere feedback to the climate system.

8.
J Environ Manage ; 344: 118452, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348305

RESUMEN

Urban areas experience numerous environmental challenges, among which the anthropogenic emissions of heat and carbon are two major contributors, the former is responsible for the notorious urban heat effect, the latter longterm climate changes. Moreover, the exchange of heat and carbon dioxide are closely interlinked in the built environment, and can form positive feedback loops that accelerate the degradation of urban environmental quality. Among a handful countermeasures for heat and carbon mitigation, urban irrigation is believed to be effective in cooling, yet the understanding of its impact on the co-evolution of heat and carbon emission remains obscure. In this study, we conducted multiphysics urban climate modeling for all urban areas in the contiguous United States, and evaluated the irrigation-induced cooling and carbon mitigation. Furthermore, we assessed the impact of urban irrigation on the potential heat-carbon feedback loop, with their strength of coupling quantified by an advanced causal inference method using the convergent cross mapping algorithms. It is found that the impact of urban irrigation varies vastly in geographically different cities, with its local and non-local effect unraveling distinct pathways of heat-carbon feedback mechanism.


Asunto(s)
Frío , Calor , Estados Unidos , Ciudades , Temperatura , Retroalimentación
9.
Sci Total Environ ; 892: 164643, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37271382

RESUMEN

The potential roles of temperature and phytoplankton in nutrient cycling throughout the water column were investigated nearby aquaculture farms. Using the convergent cross mapping (CCM), we examined the relative strength of phytoplankton and temperature effects on nutrients. High δ15N values of particulate organic matter in the inner bay were detected compared to those in the outer bay. δ15N values >5 ‰ throughout the bay indicate that nitrogen influxes from the aquaculture farms are the critical nitrogen source in the study region. Our CCM models revealed that temperature positively and strongly affected the potential regeneration of nutrients, associated with PO43- while phytoplankton utilized nutrients as soon as available. The temperature-driven nutrient regeneration was higher in the bottom layer than that in the surface layer, indicating that temperature was a more important controlling factor in nutrient fluxes from the surface sediments.


Asunto(s)
Nitrógeno , Agua de Mar , Temperatura , Nitrógeno/análisis , Material Particulado , Acuicultura , Nutrientes , República de Corea , Monitoreo del Ambiente
10.
Sci Total Environ ; 888: 164216, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196968

RESUMEN

Droughts propagate through the hydrologic cycle, leading to water deficiencies in various hydro-climate variables, such as rainfall, streamflow, soil moisture, and/or groundwater. Understanding drought propagation characteristics is an essential issue in water resources planning and management. This study aims to detect the causal relationships from meteorological drought to hydrologic drought and how these natural phenomena cause water shortage using CCM (convergent cross mapping). The causal influences among the SPI (standardized precipitation index), SSI (standardized streamflow index), and SWHI (standardized water shortage index) of the Nanhua Reservoir-Jiaxian Weir system located in southern Taiwan are identified based on 1960-2019 records. Since water shortages are influenced by reservoir operation models, three different models, the SOP (standard operating policy), RC (rule-curve-based model), and OPT (optimal hedging model), are considered in this study. The results reveal that clear and strong causality is observed between SPI and SSI for both watersheds. The causality of SSI-SWHI is stronger than that of SPI-SWHI, but both causalities are weaker than that of SPI-SSI. Among the three operation models, the no hedging SOP leads to the weakest causal links of SPI/SSI-SWHI, and the strongest causality is noted for OPT since the optimally derived hedging policy uses future hydrologic information. The CCM-based causal network of drought propagation reveals that the Nanhua Reservoir and Jiaxian Weir are equally important for water supplies since nearly identical causal strengths are observed in both watersheds.

11.
BMC Public Health ; 23(1): 929, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221507

RESUMEN

The detrimental influence of inhaled ozone on human respiratory system is ambiguous due to the complexity of dose response relationship between ozone and human respiratory system. This study collects inhaled ozone concentration and respiratory disease data from Shenzhen City to reveal the impact of ozone on respiratory diseases using the Generalized Additive Models (GAM) and Convergent Cross Mapping (CCM) method at the 95% confidence level. The result of GAM exhibits a partially significant lag effect on acute respiratory diseases in cumulative mode. Since the traditional correlation analysis is incapable of capturing causality, the CCM method is applied to examine whether the inhaled ozone affects human respiratory system. The results demonstrate that the inhaled ozone has a significant causative impact on hospitalization rates of both upper and lower respiratory diseases. Furthermore, the harmful causative effects of ozone to the human health are varied with gender and age. Females are more susceptible to inhaled ozone than males, probably because of the estrogen levels and the differential regulation of lung immune response. Adults are more sensitive to ozone exposure than children, potentially due to the fact that children need longer time to react to ozone stress than adults, and the elderly are more tolerant than adults and children, which may be related to pulmonary hypofunction of the elderly while has little correlation with ozone exposure.


Asunto(s)
Ozono , Sistema Respiratorio , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Hospitalización , Procesos Mentales , Tórax
12.
Environ Res ; 222: 115360, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709029

RESUMEN

Harbin-Changchun megalopolis (HCM) is the typical cold urban agglomeration in China, where PM2.5 pollution is still serious in winter against the backdrop of continuous improvement in annual air quality in China. To further understand interactions of atmospheric pollution among HCM cities, inter-city causality and regional transport of PM2.5 in the winter in the HCM were comprehensively investigated by using convergent cross mapping (CCM) and CMAQ-BFM methods. CCM analysis results suggest strong bidirectional causal relationships between cities in the HCM, and the causality during polluted episodes were significantly larger than that during clean period. In addition, the influence on local PM2.5 from the HCM western cities were larger than that from cities in the southeast. Inter-city and regional transport contributions results demonstrated that although local emission were the largest contributors among 14 sub-regions for most HCM cities, interactions among cities were strong. Regional transport (42.8%-77.4%) largely contributes to HCM cities' PM2.5 concentrations. Among three regions outside the HCM, NMG (including part of inner Mongolia and Baicheng city in Jilin, 9.1%) was the largest contributor to the PM2.5 concentration in the whole HCM, followed by JLS (including Liaoning Province, Tonghua and Baishan cities in Jilin province, 5.1%) and HLJ (including cities of Heihe, Yichun, Jiamusi, Hegang, Shuangyashan, Jixi, Qitaihe in the Heilongjiang province, 3.8%). Regional transport contribution to the most HCM cities increased significantly from excellent to heavily polluted days. Furthermore, close relationships between transport paths/intensity and wind direction/speed in studied region suggests that we can quantitatively guide the regional joint emergency prevention and control before and during heavily polluted events based on regional weather forecasts in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Ciudades , Material Particulado/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , China , Estaciones del Año
13.
J Environ Manage ; 322: 116001, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030637

RESUMEN

The quantification of cross-regional interactions for the atmospheric transport processes is of crucial importance to improve the predictive capacity of climatic and environmental system modeling. The dynamic interactions in these complex systems are often nonlinear and non-separable, making conventional approaches of causal inference, such as statistical correlation or Granger causality, infeasible or ineffective. In this study, we applied an advanced approach, based on the convergent cross mapping algorithm, to detect and quantify the causal influence among different climate regions in the contiguous U.S. in response to temperature perturbations using the long-term (1901-2018) climatology of near surface air temperature record. Our results show that the directed causal network constructed by convergent cross mapping algorithm, enables us to distinguish the causal links from spurious ones rendered by statistical correlation. We also find that the Ohio Valley region, as an atmospheric convergent zone, acts as the regional gateway and mediator to the long-term thermal environments in the U.S. In addition, the temporal evolution of dynamic causality of temperature exhibits superposition of periodicities at various time scales, highlighting the impact of prominent low frequency climate variabilities such as El Niño-Southern Oscillation. The proposed method in this work will help to promote novel system-based and data-driven framework in studying the integrated environmental system dynamics.


Asunto(s)
Algoritmos , Ohio , Temperatura , Estados Unidos
14.
Elife ; 112022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35983746

RESUMEN

Complex systems are challenging to understand, especially when they defy manipulative experiments for practical or ethical reasons. Several fields have developed parallel approaches to infer causal relations from observational time series. Yet, these methods are easy to misunderstand and often controversial. Here, we provide an accessible and critical review of three statistical causal discovery approaches (pairwise correlation, Granger causality, and state space reconstruction), using examples inspired by ecological processes. For each approach, we ask what it tests for, what causal statement it might imply, and when it could lead us astray. We devise new ways of visualizing key concepts, describe some novel pathologies of existing methods, and point out how so-called 'model-free' causality tests are not assumption-free. We hope that our synthesis will facilitate thoughtful application of methods, promote communication across different fields, and encourage explicit statements of assumptions. A video walkthrough is available (Video 1 or https://youtu.be/AIV0ttQrjK8).


Asunto(s)
Factores de Tiempo , Causalidad
15.
Environ Sci Pollut Res Int ; 29(36): 55003-55025, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35314931

RESUMEN

In the process of exploiting mineral resources, dust enters the environment through air suspended particles and surface runoff, which has a serious impact on the atmospheric environment and human health. From all-year and seasonal scenarios, the migration trajectories and cumulative concentration based on the secondary development of Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) in four mining areas (SF, BC, SJZ, and MJT) in Northwest China are studied. The convergent cross mapping (CCM) method is used to study the causal relationship between concentration and meteorological factors. In this process, the problem of missing non-station meteorological data is solved with the help of the inverse distance weighted interpolation method, and the problem in which the convergence requirements of the CCM algorithm cannot meet the requirements is solved with the bootstrap method. The results indicated that the short path has the characteristics of slow movement, short migration path, low altitude(< 1 km), and high contribution rate, while the long path has the opposite characteristics. Furthermore, the results demonstrated that the concentration is centered on the pollution source and diffuses around, with a diffusion radius of 220-270 km, showing a serious pollution center and slight gradient settlement on the edge, but the overall distribution of accumulated concentration is uneven. The results also show that temperature (TEMP and S_TEMP), evaporation, and air pressure are the main meteorological factors affecting the all-year concentration. The concentration and meteorological factors in the four mining areas also show significant seasonal characteristics, and the correlation in spring, summer, and autumn is stronger than that in winter. This study not only provides a reference for the green and sustainable exploitation of mineral resources but also provides theoretical support for the joint prevention and control of transboundary pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Conceptos Meteorológicos , Meteorología , Material Particulado/análisis , Estaciones del Año
16.
Environ Sci Pollut Res Int ; 29(8): 11185-11195, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34528209

RESUMEN

Association between fine particulate matter (PM2.5) and respiratory health has attracted great concern in China. Substantial epidemiological evidences confirm the correlational relationship between PM2.5 and respiratory disease in many Chinese cities. However, the causative impact of PM2.5 on respiratory disease remains uncertain and comparative analysis is limited. This study aims to explore and compare the correlational relationship as well as the causal connection between PM2.5 and upper respiratory tract infection (URTI) in two typical cities (Beijing, Shenzhen) with rather different ambient air environment conditions. The distributed lag nonlinear model (DLNM) was used to detect the correlational relationship between PM2.5 and URTI by revealing the lag effect pattern of PM2.5 on URTI. The convergent cross mapping (CCM) method was applied to explore the causal connection between PM2.5 and URTI. The results from DLNM indicate that an increase of 10 µg/m3 in PM2.5 concentration is associated with an increase of 1.86% (95% confidence interval: 0.74%-2.99%) in URTI at a lag of 13 days in Beijing, compared with 2.68% (95% confidence interval: 0.99-4.39%) at a lag of 1 day in Shenzhen. The causality detection with CCM quantitatively demonstrates the significant causative influence of PM2.5 on URTI in both two cities. Findings from the two methods consistently show that people living in low-concentration areas (Shenzhen) are less tolerant to PM2.5 exposure than those in high-concentration areas (Beijing). In general, our study highlights the adverse health effects of PM2.5 pollution on the general public in cities with various PM2.5 levels and emphasizes the needs for the government to provide appropriate solutions to control PM2.5 pollution, even in cities with low PM2.5 concentration.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , China/epidemiología , Ciudades , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Material Particulado/análisis , Material Particulado/toxicidad
17.
Front Neurogenom ; 3: 843005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38235459

RESUMEN

This article investigates the differences in cognitive and neural mechanisms between human-human and human-virtual agent interaction using a dataset recorded in an ecologically realistic environment. We use Convergent Cross Mapping (CCM) to investigate functional connectivity between pairs of regions involved in the framework of social cognitive neuroscience, namely the fusiform gyrus, superior temporal sulcus (STS), temporoparietal junction (TPJ), and the dorsolateral prefrontal cortex (DLPFC)-taken as prefrontal asymmetry. Our approach is a compromise between investigating local activation in specific regions and investigating connectivity networks that may form part of larger networks. In addition to concording with previous studies, our results suggest that the right TPJ is one of the most reliable areas for assessing processes occurring during human-virtual agent interactions, both in a static and dynamic sense.

18.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4539-4548, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951296

RESUMEN

The convergent cross mapping (CCM) is a method to analyze causality of nonlinear time series variables. Different from the traditional linear system analysis method, CCM gets historical information based on their state space reconstruction. The presence of causality can be confirmed when the estimated values perform convergent with time series extension. Here, we introduced the develop-ment history of CCM and its advantages over the traditional Granger causality test, and elaborated the principle, algorithm process, and implementation approach. As a system analysis method aiming at the coupling relationship between variables from weak to moderate, CCM can effectively solve the complex causality among nonlinear multivariable in ecosystems. When it is applied to the causality analysis of multi-point time series variables with spatial information, the spatial autocorrelation among points should be fully considered and combined with the method that can remove the spatial correlation between variables and sequences, so as to ensure more accurate causality analysis using CCM and more convincing results.


Asunto(s)
Ecología , Ecosistema , Algoritmos
19.
Front Plant Sci ; 12: 640442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777074

RESUMEN

Many plant species overwinter before they flower. Transition to flowering is aligned to the seasonal transition as a response to the prolonged cold in winter by a process called vernalization. Multiple well-documented vernalization properties in crucifer species with diverse life histories are derived from environmental regulation of a central inhibitor of the flowering gene, Flowering Locus C (FLC). Episode(s) of flowering are prevented during high FLC expression and enabled during low FLC expression. FLC repression outlasts the winter to coincide with spring; this heterochronic aspect is termed "winter memory." In the annual Arabidopsis thaliana, winter memory has long been associated with the highly conserved histone modifiers Polycomb and Trithorax, which have antagonistic roles in transcription. However, there are experimental limitations in determining how dynamic, heterogenous histone modifications within the FLC locus generate the final transcriptional output. Recent theoretical considerations on cell-to-cell variability in gene expression and histone modifications generating bistable states brought support to the hypothesis of chromatin-encoded memory, as with other experimental systems in eukaryotes. Furthermore, these advances unify multiple properties of vernalization, not only the winter memory. Similarly, in the perennial Arabidopsis halleri ssp. gemmifera, recent integration of molecular with mathematical and ecological approaches unifies FLC chromatin features with the all-year-round memory of seasonal temperature. We develop the concept of FLC season-meter to combine existing information from the contrasting annual/perennial and experimental/theoretical sectors into a transitional framework. We highlight simplicity, high conservation, and discrete differences across extreme life histories in crucifers.

20.
Sensors (Basel) ; 21(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562131

RESUMEN

The intelligent prosthesis driven by electromyography (EMG) signal provides a solution for the movement of the disabled. The proper position of EMG sensors can improve the prosthesis's motion recognition ability. To exert the amputee's action-oriented ability and the prosthesis' control ability, the EMG spatial distribution and internal connection of the prosthetic wearer is analyzed in three kinds of movement conditions: appropriate angle, excessive angle, and angle too small. Firstly, the correlation characteristics between the EMG channels are analyzed by mutual information to construct a muscle functional network. Secondly, the network's features of different movement conditions are analyzed by calculating the characteristic of nodes and evaluating the importance of nodes. Finally, the convergent cross-mapping method is applied to construct a directed network, and the critical muscle groups which can reflect the user's movement intention are determined. Experiment shows that this method can accurately determine the EMG location and simplify the distribution of EMG sensors inside the prosthetic socket. The network characteristics of key muscle groups can distinguish different movements effectively and provide a new strategy for decoding the relationship between limb nerve control and body movement.


Asunto(s)
Miembros Artificiales , Electromiografía , Movimiento (Física) , Movimiento , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA