Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neural Circuits ; 16: 972157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160948

RESUMEN

A fundamental task faced by the auditory system is the detection of events that are signaled by fluctuations in sound. Spiking in auditory cortical neurons is critical for sound detection, but the causal roles of specific cell types and circuits are still mostly unknown. Here we tested the role of a genetically identified population of layer 4 auditory cortical neurons in sound detection. We measured sound detection using a common variant of pre-pulse inhibition of the acoustic startle response, in which a silent gap in background noise acts as a cue that attenuates startle. We used a Gpr26-Cre driver line, which we found expressed predominantly in layer 4 of auditory cortex. Photostimulation of these cells, which were responsive to gaps in noise, was sufficient to attenuate the startle reflex. Photosuppression of these cells reduced neural responses to gaps throughout cortex, and impaired behavioral gap detection. These data demonstrate that cortical Gpr26 neurons are both necessary and sufficient for top-down modulation of the acoustic startle reflex, and are thus likely to be involved in sound detection.


Asunto(s)
Corteza Auditiva , Estimulación Acústica , Acústica , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Neuronas , Inhibición Prepulso , Reflejo de Sobresalto/fisiología
2.
Biol Psychiatry ; 91(9): 798-809, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861977

RESUMEN

BACKGROUND: Information processing in cortical cell microcircuits involves regulation of excitatory pyramidal (PYR) cells by inhibitory somatostatin- (SST), parvalbumin-, and vasoactive intestinal peptide-expressing interneurons. Human postmortem and rodent studies show impaired PYR cell dendritic morphology and decreased SST cell markers in major depressive disorder or after chronic stress. However, knowledge of coordinated changes across microcircuit cell types is virtually absent. METHODS: We investigated the transcriptomic effects of unpredictable chronic mild stress (UCMS) on distinct microcircuit cell types in the medial prefrontal cortex (cingulate regions 24a, 24b, and 32) in mice. C57BL/6 mice, exposed to UCMS or control housing for 5 weeks, were assessed for anxiety- and depressive-like behaviors. Microcircuit cell types were laser microdissected and processed for RNA sequencing. RESULTS: UCMS induced predicted elevations in behavioral emotionality in mice. DESeq2 analysis revealed unique differentially expressed genes in each cell type after UCMS. Presynaptic functions, oxidative stress response, metabolism, and translational regulation were differentially dysregulated across cell types, whereas nearly all cell types showed downregulated postsynaptic gene signatures. Across the cortical microcircuit, we observed a shift from a distributed transcriptomic coordination across cell types in control mice toward UCMS-induced increased coordination between PYR, SST, and parvalbumin cells and a hub-like role for PYR cells. Finally, we identified a microcircuit-wide coexpression network enriched in synaptic, bioenergetic, and oxidative stress response genes that correlated with UCMS-induced behaviors. CONCLUSIONS: These findings suggest cell-specific deficits, microcircuit-wide synaptic reorganization, and a shift in cells regulating the cortical excitation-inhibition balance, suggesting increased coordinated regulation of PYR cells by SST and parvalbumin cells.


Asunto(s)
Trastorno Depresivo Mayor , Parvalbúminas , Animales , Trastorno Depresivo Mayor/metabolismo , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Transcriptoma
3.
Front Neural Circuits ; 15: 718270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630046

RESUMEN

Many neurodegenerative diseases are associated with the death of specific neuron types in particular brain regions. What makes the death of specific neuron types particularly harmful for the integrity and dynamics of the respective network is not well understood. To start addressing this question we used the most up-to-date biologically realistic dense neocortical microcircuit (NMC) of the rodent, which has reconstructed a volume of 0.3 mm3 and containing 31,000 neurons, ∼37 million synapses, and 55 morphological cell types arranged in six cortical layers. Using modern network science tools, we identified hub neurons in the NMC, that are connected synaptically to a large number of their neighbors and systematically examined the impact of abolishing these cells. In general, the structural integrity of the network is robust to cells' attack; yet, attacking hub neurons strongly impacted the small-world topology of the network, whereas similar attacks on random neurons have a negligible effect. Such hub-specific attacks are also impactful on the network dynamics, both when the network is at its spontaneous synchronous state and when it was presented with synchronized thalamo-cortical visual-like input. We found that attacking layer 5 hub neurons is most harmful to the structural and functional integrity of the NMC. The significance of our results for understanding the role of specific neuron types and cortical layers for disease manifestation is discussed.


Asunto(s)
Neuronas , Sinapsis , Encéfalo , Red Nerviosa
4.
J Neurosci ; 40(44): 8513-8529, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33037076

RESUMEN

Ca2+ spikes initiated in the distal trunk of layer 5 pyramidal cells (PCs) underlie nonlinear dynamic changes in the gain of cellular response, critical for top-down control of cortical processing. Detailed models with many compartments and dozens of ionic channels can account for this Ca2+ spike-dependent gain and associated critical frequency. However, current models do not account for all known Ca2+-dependent features. Previous attempts to include more features have required increasing complexity, limiting their interpretability and utility for studying large population dynamics. We overcome these limitations in a minimal two-compartment biophysical model. In our model, a basal-dendrites/somatic compartment included fast-inactivating Na+ and delayed-rectifier K+ conductances, while an apical-dendrites/trunk compartment included persistent Na+, hyperpolarization-activated cation (I h ), slow-inactivating K+, muscarinic K+, and Ca2+ L-type. The model replicated the Ca2+ spike morphology and its critical frequency plus three other defining features of layer 5 PC synaptic integration: linear frequency-current relationships, back-propagation-activated Ca2+ spike firing, and a shift in the critical frequency by blocking I h Simulating 1000 synchronized layer 5 PCs, we reproduced the current source density patterns evoked by Ca2+ spikes and describe resulting medial-frontal EEG on a male macaque monkey. We reproduced changes in the current source density when I h was blocked. Thus, a two-compartment model with five crucial ionic currents in the apical dendrites reproduces all features of these neurons. We discuss the utility of this minimal model to study the microcircuitry of agranular areas of the frontal lobe involved in cognitive control and responsible for event-related potentials, such as the error-related negativity.SIGNIFICANCE STATEMENT A minimal model of layer 5 pyramidal cells replicates all known features crucial for distal synaptic integration in these neurons. By redistributing voltage-gated and returning transmembrane currents in the model, we establish a theoretical framework for the investigation of cortical microcircuit contribution to intracranial local field potentials and EEG. This tractable model will enable biophysical evaluation of multiscale electrophysiological signatures and computational investigation of cortical processing.


Asunto(s)
Biofisica , Modelos Neurológicos , Neocórtex/fisiología , Red Nerviosa/fisiología , Células Piramidales/fisiología , Algoritmos , Animales , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/fisiología , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/fisiología , Dendritas/fisiología , Electroencefalografía , Potenciales Evocados/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Macaca radiata , Masculino , Neocórtex/citología , Red Nerviosa/citología , Canales de Sodio/fisiología
5.
Front Neural Circuits ; 13: 34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133821

RESUMEN

Histological studies of myelin-stained sectioned cadaver brain and in vivo myelin-weighted magnetic resonance imaging (MRI) show that the cerebral cortex is organized into cortical areas with generally well-defined boundaries, which have consistent internal patterns of myelination. The process of myelination is largely driven by neural experience, in which the axonal passage of action potentials stimulates neighboring oligodendrocytes to perform their task. This bootstrapping process, such that the traffic of action potentials facilitates increased traffic, suggests the hypothesis that the specific pattern of myelination (myeloarchitecture) in each cortical area reveals the principal cortical microcircuits required for the function of that area. If this idea is correct, the observable sequential maturation of specific brain areas can provide evidence for models of the stages of cognitive development.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Modelos Neurológicos , Vaina de Mielina , Fibras Nerviosas Mielínicas/fisiología , Vías Nerviosas/crecimiento & desarrollo , Animales , Humanos
6.
Mol Neuropsychiatry ; 4(4): 204-215, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30815456

RESUMEN

Converging evidence suggests that deficits in somatostatin (SST)-expressing neuron signaling contributes to major depressive disorder. Preclinical studies show that enhancing this signaling, specifically at α5 subunit-containing γ-ami-nobutyric acid subtype A receptors (α5-GABAARs), provides a potential means to overcome low SST neuron function. The cortical microcircuit comprises multiple subtypes of inhibitory γ-aminobutyric acid (GABA) neurons and excitatory pyramidal cells (PYCs). In this study, multilabel fluorescence in situ hybridization was used to characterize α5-GABAAR gene expression in PYCs and three GABAergic neuron subgroups - vasoactive intestinal peptide (VIP)-, SST-, and parvalbumin (PV)-expressing cells - in the human and mouse frontal cortex. Across species, we found the majority of gene expression in PYCs (human: 39.7%; mouse: 54.14%), less abundant expression in PV neurons (human: 20%; mouse: 16.33%), and no expression in VIP neurons (0%). Only human SST cells expressed GABRA5, albeit at low levels (human: 8.3%; mouse: 0%). Together, this localization suggests potential roles for α5-GABAARs within the cortical microcircuit: (1) regulators of PYCs, (2) regulators of PV cell activity across species, and (3) sparse regulators of SST cell inhibition in humans. These results will advance our ability to predict the effects of pharmacological agents targeting α5-GABAARs, which have shown therapeutic potential in preclinical animal models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA