Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Front Pharmacol ; 15: 1387756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948468

RESUMEN

Introduction: Tetrandrine (Tet) is the main pharmacological component of Stephania tetrandra S. Moore, which is a well-documented traditional Chinese medicine known for its diuretic and antihypertensive properties. Unraveling the specific targets and mechanisms of Tet involved in inducing diuresis and mitigating hypertension can provide valuable insights into its therapeutic effects. This study aimed to explore the diuretic and antihypertensive targets and mechanisms of Tet using chemical biology coupled with activity analyses in vivo and in vitro. Methods: The diuretic effects of Tet were evaluated using a water-loaded mouse model. The direct target proteins for the diuretic and antihypertensive effects of Tet were determined using chemical biology. Furthermore, the molecular mechanism of Tet binding to target proteins was analyzed using a multidisciplinary approach based on the structure and function of the proteins. Finally, the effects of the Tet-targeted protein on downstream signaling pathways and blood pressure were evaluated in hypertensive model rats. Results: Tet exhibited significant antihypertensive and potassium-preserving diuretic effects. The mechanism underlying these effects involves the modulation of the enzyme activity by covalent binding of Tet to Cys423 of CYP11A1. This interaction alters the stability of heme within CYP11A1, subsequently impeding electron transfer and inhibiting aldosterone biosynthesis. Discussion: This study not only revealed the mechanism of the diuretic and antihypertensive effects of Tet but also discovered a novel covalent inhibitor of CYP11A1. These findings contribute significantly to our understanding of the therapeutic potential of Tet and provide a foundation for future research in the development of targeted treatments for hypertension.

2.
ChemMedChem ; : e202400394, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977403

RESUMEN

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity. Inhibition of the tautomerase activity has been associated with loss of biological activity of MIF and a potential anticancer target. Isothiocyanates (ITCs) are a class of compounds present in cruciferous vegetables that inhibit the MIF tautomerase activity via covalent modification of the N-terminal proline. A range of substituted ITCs featuring benzyl, phenethyl and phenyl propyl isothiocyanates were designed, synthesised and tested to determine any structure activity relationship for inhibiting MIF. Crystal structures of covalent compounds 8 and 9 in complex with rhMIF revealed key hydrogen bonding and edge-to-face π stacking interactions. Compound 9 and 11 with sub micromolar activity were tested in the NCI60 cancer cell lines panel. Both compounds showed tissue-specific reduced growth in colon and renal cancer cell lines, while one of these showed potent, dose-dependent inhibition of growth against all seven colon cancer cell lines (GI50 < 2.5 µM) and all eight renal cancer cell lines (GI50 < 2.2 µM).

3.
Purinergic Signal ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879664

RESUMEN

The human equilibrative nucleoside transporter 1 (SLC29A1, hENT1) is a solute carrier that modulates the passive transport of nucleosides and nucleobases, such as adenosine. This nucleoside regulates various physiological processes, such as vasodilation and -constriction, neurotransmission and immune defense. Marketed drugs such as dilazep and dipyridamole have proven useful in cardiovascular afflictions, but the application of hENT1 inhibitors can be beneficial in a number of other diseases. In this study, 39 derivatives of dilazep's close analogue ST7092 were designed, synthesized and subsequently assessed using [3H]NBTI displacement assays and molecular docking. Different substitution patterns of the trimethoxy benzoates of ST7092 reduced interactions within the binding pocket, resulting in diminished hENT1 affinity. Conversely, [3H]NBTI displacement by potentially covalent compounds 14b, 14c, and 14d resulted in high affinities (Ki values between 1.1 and 17.5 nM) for the transporter, primarily by the ability of accommodating the inhibitors in various ways in the binding pocket. However, any indication of covalent binding with amino acid residue C439 remained absent, conceivably as a result of decreased nucleophilic residue reactivity. In conclusion, this research introduces novel dilazep derivatives that are active as hENT1 inhibitors, along with the first high affinity dilazep derivatives equipped with an electrophilic warhead. These findings will aid the rational and structure-based development of novel hENT1 inhibitors and pharmacological tools to study hENT1's function, binding mechanisms, and its relevance in (patho)physiological conditions.

4.
Front Oncol ; 14: 1394702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841166

RESUMEN

The Kirsten rat sarcoma viral oncoprotein homolog (KRAS) is currently a primary focus of oncologists and translational scientists, driven by exciting results with KRAS-targeted therapies for non-small cell lung cancer (NSCLC) patients. While KRAS mutations continue to drive high cancer diagnosis and death, researchers have developed unique strategies to target KRAS variations. Having been investigated over the past 40 years and considered "undruggable" due to the lack of pharmacological binding pockets, recent breakthroughs and accelerated FDA approval of the first covalent inhibitors targeting KRASG12C, have largely sparked further drug development. Small molecule development has targeted the previously identified primary location alterations such as G12, G13, Q61, and expanded to address the emerging secondary mutations and acquired resistance. Of interest, the non-covalent KRASG12D targeting inhibitor MRTX-1133 has shown promising results in humanized pancreatic cancer mouse models and is seemingly making its way from bench to bedside. While this manuscript was under review a novel class of first covalent inhibitors specific for G12D was published, These so-called malolactones can crosslink both GDP and GTP bound forms of G12D. Inhibition of the latter state suppressed downstream signaling and cancer cell proliferation in vitro and in mouse xenografts. Moreover, a non-covalent pan-KRAS inhibitor, BI-2865, reduced tumor proliferation in cell lines and mouse models. Finally, the next generation of KRAS mutant-specific and pan-RAS tri-complex inhibitors have revolutionized RAS drug discovery. This review will give a structural biology perspective on the current generation of KRAS inhibitors through the lens of emerging secondary mutations and acquired resistance.

5.
Angew Chem Int Ed Engl ; 63(28): e202404195, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38695161

RESUMEN

Remarkable progress has been made in the development of cysteine-targeted covalent inhibitors. In kinase drug discovery, covalent inhibitors capable of targeting other nucleophilic residues (i.e. lysine, or K) have emerged in recent years. Besides a highly conserved catalytic lysine, almost all human protein kinases possess an equally conserved glutamate/aspartate (e.g. E/D) that forms a K-E/D salt bridge within the enzyme's active site. Electrophilic ynamides were previously used as effective peptide coupling reagents and to develop E/D-targeting covalent protein inhibitors/probes. In the present study, we report the first ynamide-based small-molecule inhibitors capable of inducing intramolecular cross-linking of various protein kinases, leading to subsequent irreversible inhibition of kinase activity. Our strategy took advantage of the close distance between the highly conserved catalytic K and E/D residues in a targeted kinase, thus providing a conceptually general approach to achieve irreversible kinase inhibition with high specificity and desirable cellular potency. Finally, this ynamide-facilitated, ligand-induced mechanism leading to intramolecular kinase cross-linking and inhibition was unequivocally established by using recombinant ABL kinase as a representative.


Asunto(s)
Inhibidores de Proteínas Quinasas , Bibliotecas de Moléculas Pequeñas , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Reactivos de Enlaces Cruzados/química , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Estructura Molecular , Amidas/química , Amidas/farmacología
6.
Phytomedicine ; 129: 155657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692076

RESUMEN

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Asunto(s)
Neoplasias Pulmonares , Vía de Pentosa Fosfato , Xantonas , Xantonas/farmacología , Animales , Vía de Pentosa Fosfato/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Humanos , Fosfogluconato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad
7.
J Comput Aided Mol Des ; 38(1): 21, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693331

RESUMEN

Covalent inhibition offers many advantages over non-covalent inhibition, but covalent warhead reactivity must be carefully balanced to maintain potency while avoiding unwanted side effects. While warhead reactivities are commonly measured with assays, a computational model to predict warhead reactivities could be useful for several aspects of the covalent inhibitor design process. Studies have shown correlations between covalent warhead reactivities and quantum mechanic (QM) properties that describe important aspects of the covalent reaction mechanism. However, the models from these studies are often linear regression equations and can have limitations associated with their usage. Applications of machine learning (ML) models to predict covalent warhead reactivities with QM descriptors are not extensively seen in the literature. This study uses QM descriptors, calculated at different levels of theory, to train ML models to predict reactivities of covalent acrylamide warheads. The QM/ML models are compared with linear regression models built upon the same QM descriptors and with ML models trained on structure-based features like Morgan fingerprints and RDKit descriptors. Experiments show that the QM/ML models outperform the linear regression models and the structure-based ML models, and literature test sets demonstrate the power of the QM/ML models to predict reactivities of unseen acrylamide warhead scaffolds. Ultimately, these QM/ML models are effective, computationally feasible tools that can expedite the design of new covalent inhibitors.


Asunto(s)
Cisteína , Diseño de Fármacos , Aprendizaje Automático , Teoría Cuántica , Cisteína/química , Acrilamida/química , Humanos , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Modelos Lineales , Estructura Molecular
8.
Proc Natl Acad Sci U S A ; 121(22): e2319029121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781214

RESUMEN

The HapImmuneTM platform exploits covalent inhibitors as haptens for creating major histocompatibility complex (MHC)-presented tumor-specific neoantigens by design, combining targeted therapies with immunotherapy for the treatment of drug-resistant cancers. A HapImmune antibody, R023, recognizes multiple sotorasib-conjugated KRAS(G12C) peptides presented by different human leukocyte antigens (HLAs). This high specificity to sotorasib, coupled with broad HLA-binding capability, enables such antibodies, when reformatted as T cell engagers, to potently and selectively kill sotorasib-resistant KRAS(G12C) cancer cells expressing different HLAs upon sotorasib treatment. The loosening of HLA restriction could increase the patient population that can benefit from this therapeutic approach. To understand the molecular basis for its unconventional binding capability, we used single-particle cryogenic electron microscopy to determine the structures of R023 bound to multiple sotorasib-peptide conjugates presented by different HLAs. R023 forms a pocket for sotorasib between the VH and VL domains, binds HLAs in an unconventional, angled way, with VL making most contacts with them, and makes few contacts with the peptide moieties. This binding mode enables the antibody to accommodate different hapten-peptide conjugates and to adjust its conformation to different HLAs presenting hapten-peptides. Deep mutational scanning validated the structures and revealed distinct levels of mutation tolerance by sotorasib- and HLA-binding residues. Together, our structural information and sequence landscape analysis reveal key features for achieving MHC-restricted recognition of multiple hapten-peptide antigens, which will inform the development of next-generation therapeutic antibodies.


Asunto(s)
Péptidos , Humanos , Péptidos/inmunología , Péptidos/química , Antígenos HLA/inmunología , Antígenos HLA/metabolismo , Complejo Mayor de Histocompatibilidad/inmunología , Haptenos/inmunología , Unión Proteica , Microscopía por Crioelectrón
9.
Eur J Med Chem ; 271: 116415, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643670

RESUMEN

Fibroblast growth factor receptor (FGFR) is an attractive target for cancer therapy, but existing FGFR inhibitors appear to hardly meet the demand for clinical application. Herein, a number of irreversible covalent FGFR inhibitors were designed and synthesized by selecting several five- and six-membered azaheterocycles as parent scaffold with different substituents to take over the hydrophobic region in the active pocket of FGFR proteins. Among the resulting target compounds, III-30 showed the most potent effect on enzyme activity inhibition and anti-proliferative activity against the tested cancer cell lines. Significantly, III-30 could inhibit the enzyme activity by achieving irreversible covalent binding with FGFR1 and FGFR4 proteins. It could also regulate FGFR-mediated signaling pathway and mitochondrial apoptotic pathway to promote cancer cell apoptosis and inhibit cancer cell invasion and metastasis. Moreover, III-30 had a good metabolic stability and showed relatively potent anti-tumor activity in the MDA-MB-231 xenograft tumor mice model.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Humanos , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Ratones , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Estructura Molecular , Línea Celular Tumoral , Purinas/farmacología , Purinas/química , Purinas/síntesis química , Descubrimiento de Drogas , Apoptosis/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Relación Dosis-Respuesta a Droga , Ratones Desnudos , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Femenino
10.
Trends Pharmacol Sci ; 45(6): 472-474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653668

RESUMEN

In a recent study in Nature Chemical Biology, Zheng et al. exploiting strain release by malolactone-based electrophiles designed a first-in-class covalent inhibitor that targets the elusive aspartate of the Kirsten rat sarcoma viral oncogene homolog (K-Ras)-G12D variant, which is highly prevalent in pancreatic cancer. The compound drastically inhibited oncogenic signaling and tumor growth in preclinical K-Ras-G12D-mutant pancreatic cancer models, expanding treatment potential beyond K-Ras-G12C-targeted therapies.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Mutación , Transducción de Señal/efectos de los fármacos
11.
Bioorg Chem ; 146: 107330, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579615

RESUMEN

The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 µM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.


Asunto(s)
Inhibidores Enzimáticos , Fosfoglicerato-Deshidrogenasa , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Serina , Glucosa , Línea Celular Tumoral
12.
Antiviral Res ; 225: 105874, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555023

RESUMEN

The main protease (MPro) of SARS-CoV-2, the causative agent of COVID-19, is a pivotal nonstructural protein critical for viral replication and pathogenesis. Its protease function relies on three active site pockets for substrate recognition and a catalytic cysteine for enzymatic activity. To develop potential SARS-CoV-2 antivirals, we successfully synthesized a diverse range of azapeptide inhibitors with various covalent warheads to target MPro's catalytic cysteine. Our characterization identified potent MPro inhibitors, including MPI89 that features an aza-2,2-dichloroacetyl warhead with a remarkable EC50 value of 10 nM against SARS-CoV-2 infection in ACE2+ A549 cells and a selective index of 875. MPI89 is also remarkably selective and shows no potency against SARS-CoV-2 papain-like protease and several human proteases. Crystallography analyses demonstrated that these inhibitors covalently engaged the catalytic cysteine and used the aza-amide carbonyl oxygen to bind to the oxyanion hole. MPI89 stands as one of the most potent MPro inhibitors, suggesting the potential for further exploration of azapeptides and the aza-2,2-dichloroacetyl warhead for developing effective therapeutics against COVID-19.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Cisteína , Cisteína Endopeptidasas/metabolismo , Proteínas no Estructurales Virales , Inhibidores de Proteasas/farmacología , Antivirales/farmacología
13.
Pharmaceutics ; 16(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38399271

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented an enormous challenge to health care systems and medicine. As a result of global research efforts aimed at preventing and effectively treating SARS-CoV-2 infection, vaccines with fundamentally new mechanisms of action and some small-molecule antiviral drugs targeting key proteins in the viral cycle have been developed. The most effective small-molecule drug approved to date for the treatment of COVID-19 is PaxlovidTM, which is a combination of two protease inhibitors, nirmatrelvir and ritonavir. Nirmatrelvir is a reversible covalent peptidomimetic inhibitor of the main protease (Mpro) of SARS-CoV-2, which enzyme plays a crucial role in viral reproduction. In this combination, ritonavir serves as a pharmacokinetic enhancer, it irreversibly inhibits the cytochrome CYP3A4 enzyme responsible for the rapid metabolism of nirmatrelvir, thereby increasing the half-life and bioavailability of nirmatrelvir. In this tutorial review, we summarize the development and pharmaceutical chemistry aspects of Paxlovid, covering the evolution of protease inhibitors, the warhead design, synthesis and the mechanism of action of nirmatrelvir, as well as the synthesis of ritonavir and its CYP3A4 inhibition mechanism. The efficacy of Paxlovid to novel virus mutants is also overviewed.

14.
Future Med Chem ; 16(7): 665-677, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38390730

RESUMEN

Background: DJ-1 is a ubiquitously expressed protein with multiple functions. Its overexpression has been associated with the occurrence of several cancers, positioning DJ-1 as a promising therapeutic target for cancer treatment. Methods: To find novel inhibitors of DJ-1, we employed a hybrid virtual screening strategy that combines structure-based and ligand-based virtual screening on a comprehensive compound library. Results: In silico study identified six hit compounds as potential DJ-1 inhibitors that were assessed in vitro at the cellular level. Compound 797780-71-3 exhibited antiproliferation activity in ACHN cells with an IC50 value of 12.18 µM and was able to inhibit the Wnt signaling pathway. This study discovers a novel covalent inhibitor for DJ-1 and paves the way for further optimization.


Asunto(s)
Evaluación Preclínica de Medicamentos , Proteína Desglicasa DJ-1 , Simulación del Acoplamiento Molecular , Proteína Desglicasa DJ-1/antagonistas & inhibidores , Antineoplásicos/química
15.
J Agric Food Chem ; 72(3): 1539-1549, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38226494

RESUMEN

The lethal mutation C423D in Fusarium graminearum myosin I (FgMyoI) occurs close to the binding pocket of the allosteric inhibitor phenamacril and causes severe inhibition on mycelial growth of F. graminearum strain PH-1. Here, based on extensive Gaussian accelerated molecular dynamics simulations and wet experiments, we elucidate the underlying molecular mechanism of the abnormal functioning of the FgMyoIC423D mutant at the atomistic level. Our results suggest that the damaging mutation C423D exhibits a synergistic allosteric inhibition mechanism similar to but more robust than that of phenamacril, including effects on the active site and actin binding. Unlike phenamacril-induced closure of Switch2, the mutation results in unfolding of the N-terminal relay helix with a partially opened Switch2 and blocks the structural rearrangement of the relay/SH1 helices, impairing the proper initiation of the recovery stroke. Due to the significant influence of C423D mutation on the function of FgMyoI, designing covalent inhibitors targeting this site holds tremendous potential.


Asunto(s)
Cianoacrilatos , Fungicidas Industriales , Fusarium , Miosina Tipo I/genética , Fungicidas Industriales/farmacología , Mutación , Simulación de Dinámica Molecular
16.
Int J Biol Macromol ; 259(Pt 1): 129211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184034

RESUMEN

The overexpression and overactivation of epidermal growth factor receptor (EGFR) are frequently observed in human cancers, including squamous cell carcinoma and adenocarcinoma. In this study, a covalent EGFR probe was developed by conjugating afatinib to an iridium(III) scaffold. Complex 1 showed enhanced luminescence in living epidermoid squamous carcinoma A431 cells compared to other cell lines, via engaging EGFR as confirmed via CETSA and knockdown experiments. Moreover, complex 1 inhibited downstream targets of EGFR in cellulo with repression persisting after removal of the complex, indicating an irreversible mode of inhibition. Finally, complex 1 showed potent antiproliferative activity against A431 cells with comparable potency to afatinib alone. To our knowledge, complex 1 is the first EGFR covalent inhibitor based on an iridium scaffold reported in the literature, with the potential to be further explored as a theranostic agent in the future.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Afatinib , Iridio/farmacología , Quinazolinas/farmacología , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología
17.
Angew Chem Int Ed Engl ; 63(12): e202316394, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38248139

RESUMEN

Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.


Asunto(s)
Lisina , Fosfotransferasas , Animales , Humanos , Lisina/química , Unión Proteica , Espectrometría de Masas , Catálisis , Mamíferos/metabolismo
18.
Mol Cell Biochem ; 479(4): 831-841, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37199893

RESUMEN

Metastasis is the cause of poor prognosis in ovarian cancer (OC). Enhancer of Zeste homolog 2 (EZH2), a histone-lysine N-methyltransferase enzyme, promotes OC cell migration and invasion by regulating the expression of tissue inhibitor of metalloproteinase-2 (TIMP2) and matrix metalloproteinases-9 (MMP9). Hence, we speculated that EZH2-targeting therapy might suppress OC migration and invasion. In this study, the expression of EZH2, TIMP2, and MMP9 in OC tissues and cell lines was analyzed using The Cancer Genome Atlas (TCGA) database and western blotting, respectively. The effects of SKLB-03220, an EZH2 covalent inhibitor, on OC cell migration and invasion were investigated using wound-healing assays, Transwell assays, and immunohistochemistry. TCGA database analysis confirmed that the EZH2 and MMP9 mRNA expression was significantly higher in OC tissues, whereas TIMP2 expression was significantly lower than that in normal ovarian tissues. Moreover, EZH2 negatively correlated with TIMP2 and positively correlated with MMP9 expression. In addition to the anti-tumor activity of SKLB-03220 in a PA-1 xenograft model, immunohistochemistry results showed that SKLB-03220 markedly increased the expression of TIMP2 and decreased the expression of MMP9. Additionally, wound-healing and Transwell assays showed that SKLB-03220 significantly inhibited the migration and invasion of both A2780 and PA-1 cells in a concentration-dependent manner. SKLB-03220 inhibited H3K27me3 and MMP9 expression and increased TIMP2 expression in PA-1 cells. Taken together, these results indicate that the EZH2 covalent inhibitor SKLB-03220 inhibits metastasis of OC cells by upregulating TIMP2 and downregulating MMP9, and could thus serve as a therapeutic agent for OC.


Asunto(s)
Acrilamidas , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Ováricas , Humanos , Femenino , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias Ováricas/genética , Línea Celular Tumoral , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
19.
Biochem Biophys Res Commun ; 692: 149352, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056159

RESUMEN

SARS-CoV-2 constantly circulates and evolves worldwide, generating many variants and posing a menace to global health. It is urgently needed to discover effective medicines to treat the disease caused by SARS-CoV-2 and its variants. An established target for anti-SARS-CoV-2 drug discovery is the main protease (Mpro), since it exerts an irreplaceable action in viral life cycle. CCF0058981, derived from ML300, is a non-covalent inhibitor that exhibits low nanomolar potency against SARS-CoV-2 Mpro and submicromolar anti-SARS-CoV-2 activity, thereby providing a valuable starting point for drug design. However, structural basis underlying inhibition of SARS-CoV-2 Mpro by CCF0058981 remains undetermined. In this study, the crystal structures of CCF0058981 in complex with two SARS-CoV-2 Mpro mutants (M49I and V186F), which have been identified in the recently emerged Omicron subvariants, were solved. Structural analysis defined the pivotal molecular factors responsible for the interactions between CCF0058981 and these two Mpro mutants, and revealed the binding modes of CCF0058981 to Mpro M49I and V186F mutants. These data not only provide structural insights for SARS-CoV-2 Mpro inhibition by CCF0058981, but also add to develop effective broad-spectrum drugs against SARS-CoV-2 as well as its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/química , Simulación del Acoplamiento Molecular
20.
Int J Biol Macromol ; 257(Pt 2): 128623, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070810

RESUMEN

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to human. Since there are still no effective treatment options against the new emerging variants of SARS-CoV-2, it is necessary to devote a continuous endeavor for more targeted drugs and the preparation for the next pandemic. Salvia miltiorrhiza and its active ingredients possess wide antiviral activities, including against SARS-CoV-2. Danshensu, as one of the most important active ingredients in Salvia miltiorrhiza, has been reported to inhibit the entry of SARS-CoV-2 into ACE2 (angiotensin-converting enzyme 2)-overexpressed HEK-293T cells and Vero-E6 cells. However, there is a paucity of information regarding its detailed target and mechanism against SARS-CoV-2. Here, we present Danshensu as a covalent inhibitor of 3-chymotrypsin-like protease (3CLpro) against SARS-CoV-2 by the time-dependent inhibition assay (TDI) and mass spectrometry analysis. Further molecular docking, site-directed mutagenesis, circular dichroism (CD) and fluorescence spectra revealed that Danshensu covalently binds to C145 of SARS-CoV-2 3CLpro, meanwhile forming the hydrogen bonds with S144, H163 and E166 in the S1 site. Structure-based optimization of Danshensu led to the discovery of the promising compounds with good inhibitory activity and microsomal stability in vitro. Due to Danshensu inhibiting lung inflammation in the mouse model, we found that Danshensu derivatives also showed better anti-inflammatory activity than Danshensu in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Thus, our study provides not only the clue of the efficacy of Salvia miltiorrhiza against SARS-CoV-2, but also a detailed mechanistic insight into the covalent mode of action of Danshensu for design of covalent inhibitors against SARS-CoV-2 3CLpro, highlighting its potential as a bifunctional molecule with antivirus and anti-inflammation.


Asunto(s)
COVID-19 , Lactatos , SARS-CoV-2 , Animales , Ratones , Humanos , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales/química , Antivirales/química , Péptido Hidrolasas/farmacología , Inhibidores de Proteasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA