Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Exp Bot ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101508

RESUMEN

In the field, plants face constantly changing light conditions caused by both atmospheric effects and neighbouring vegetation. This interplay creates a complex, fluctuating light environment within plant canopies. Shade-intolerant species rely on light cues from competitors to trigger shade avoidance responses, ensuring access to light for photosynthesis. While research often uses controlled growth chambers with steady light to study shade avoidance responses, the influence of light fluctuations in real-world settings remains unclear. This review examines the dynamic light environments found in woodlands, grasslands, and crops. We explore how plants respond to some fluctuations but not others, analyse the potential reasons for these differences, and discuss the possible molecular mechanisms regulating this sensitivity. We propose that studying shade avoidance responses under fluctuating light conditions offers a valuable tool to explore the intricate regulatory network behind them.

2.
Front Microbiol ; 13: 981788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386616

RESUMEN

Photosynthetic organisms are continuously exposed to solar ultraviolet radiation-B (UV-B) because of their autotrophic lifestyle. UV-B provokes DNA damage, such as cyclobutane pyrimidine dimers (CPD) or pyrimidine (6-4) pyrimidone photoproducts (6-4 PPs). The cryptochrome/photolyase family (CPF) comprises flavoproteins that can bind damaged or undamaged DNA. Photolyases (PHRs) are enzymes that repair either CPDs or 6-4 PPs. A natural bifunctional CPD/(6-4)- PHR (PhrSph98) was recently isolated from the UV-resistant bacteria Sphingomonas sp. UV9. In this work, phylogenetic studies of bifunctional CPD/(6-4)- photolyases and their evolutionary relationship with other CPF members were performed. Amino acids involved in electron transfer and binding to FAD cofactor and DNA lesions were conserved in proteins from proteobacteria, planctomycete, bacteroidete, acidobacteria and cyanobacteria clades. Genome analysis revealed that the cyanobacteria Synechococcus sp. PCC 7335 encodes a two-gene assembly operon coding for a PHR and a bifunctional CPD/(6-4) PHR- like. Operon structure was validated by RT-qPCR analysis and the polycistronic transcript accumulated after 15 min of UV-B irradiation. Conservation of structure and evolution is discussed. This study provides evidence for a UV-B inducible PHR operon that encodes a CPD/(6-4)- photolyase homolog with a putative bifunctional role in the repair of CPDs and 6-4 PPs damages in oxygenic photosynthetic organisms.

3.
Parasit Vectors ; 15(1): 374, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258200

RESUMEN

BACKGROUND: The study of behavioral and physiological traits in mosquitoes has been mainly focused on females since males are not hematophagous and thus do not transfer the parasites that cause diseases in human populations. However, the performance of male mosquitoes is key for the expansion of populations and the perpetuation of mosquito species. Pre-copulatory communication between males and females is the initial and essential step for the success of copulation and studying the male facet of this interaction provides fertile ground for the improvement of vector control strategies. Like in most animals, reproduction, feeding, and oviposition are closely associated with locomotor activity in mosquitoes. Rhythmic cycles of locomotor activity have been previously described in Aedes aegypti, and in females, they are known to be altered by blood-feeding and arbovirus infection. In previous work, we found that males in the presence of females significantly change their locomotor activity profiles, with a shift in the phase of the activity peak. Here, we investigated whether this shift is associated with changes in the expression level of three central circadian clock genes. METHODS: Real-time PCR reactions were performed for the gene period, cycle, and cryptochrome 2 in samples of heads, antennae, and abdominal tips of solitary males and males in the presence of females. Assays with antennae-ablated males were also performed, asking whether this is an essential organ mediating the communication and the variation in activity profiles. RESULTS: The gene period showed a conserved expression pattern in all tissues and conditions, while the other two genes varied according to the male condition. A remarking pattern was observed in cry2, where the difference between the amplitude of expression at the beginning of photophase and the expression peak in the scotophase was greater when males were in the presence of females. Antennae ablation in males did not have a significant effect on the expression profiles, suggesting that female recognition may involve other senses besides hearing and olfaction. CONCLUSION: Our results suggest that the expression of gene cryptochrome 2 varies in association with the interaction between males and females.


Asunto(s)
Aedes , Animales , Humanos , Femenino , Masculino , Aedes/fisiología , Mosquitos Vectores/fisiología , Transcriptoma , Criptocromos/genética , Oviposición
4.
J Plant Physiol ; 258-259: 153374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626482

RESUMEN

The participation of plant cryptochromes in water deficit response mechanisms has been highlighted in several reports. However, the role of tomato (Solanum lycopersicum L.) cryptochrome 1a (cry1a) in the blue light fluence-dependent modulation of the water deficit response remains largely elusive. The tomato cry1a mutant and its wild-type counterpart were grown in water (no stress) or PEG6000 (osmotic stress) treatments under white light (60 µmol m-2 s-1) or from low to high blue light fluence (1, 5, 10, 15 and 25 µmol m-2 s-1). We first demonstrate that under nonstress conditions cry1a regulates seedling growth by mechanisms that involve pigmentation, lipid peroxidation and osmoprotectant accumulation in a blue light-dependent manner. In addition, we further highlighted under osmotic stress conditions that cry1a increased tomato growth by reduced malondialdehyde (MDA) and proline accumulation. Although blue light is an environmental signal that influences osmotic stress responses mediated by tomato cry1a, specific blue light fluence rates are required during these responses. Here, we show that CRY1a manipulation may be a potential biotechnological target to develop a drought-tolerant tomato variety. Nevertheless, the complete understanding of this phenomenon requires further investigation.


Asunto(s)
Criptocromos/metabolismo , Osmorregulación/genética , Presión Osmótica , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiología , Luz , Solanum lycopersicum/genética
5.
J Exp Bot ; 69(2): 213-228, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29036463

RESUMEN

Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade-avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection between light and auxin signalling. Low activity of photo-sensory receptors caused by the presence of neighbouring vegetation enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs), which directly promote the expression of genes involved in auxin biosynthesis, conjugation, transport, perception, and signalling. In seedlings, neighbour signals increase auxin levels in the foliage, which then moves to the stem, where it reaches epidermal tissues to promote growth. However, this model only partially accounts for shade-avoidance responses (which may also occur in the absence of increased auxin levels), and understanding the whole picture will require further insight into the functional significance of the multiple links between shade and auxin networks.


Asunto(s)
Ácidos Indolacéticos , Luz , Fototropismo , Reguladores del Crecimiento de las Plantas/fisiología , Desarrollo de la Planta , Transducción de Señal
6.
J Plant Physiol ; 185: 13-23, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26264966

RESUMEN

Light is the environmental factor that most affects plant growth and development through its impact on photomorphogenesis and photosynthesis. A quadruple photoreceptor mutant lacking four of the most important photoreceptors in plants, phytochromes A and B (phyA, phyB) and cryptochromes 1 and 2 (cry1, cry2), is severely affected in terms of growth and development. Previous studies have suggested that in addition to a photomorphogenic disorder, the phyA phyB cry1 cry2 quadruple mutant might have severe alterations in photosynthetic ability. Here, we investigated the photosynthetic processes altered in the quadruple mutant and performed a proteomic profiling approach to identify some of the proteins involved. The phyA phyB cry1 cry2 quadruple mutant showed reduced leaf area and total chlorophyll content. Photosynthetic rates at high irradiances were reduced approximately 65% compared to the wild type (WT). Light-saturated photosynthesis and the response of net CO2 exchange to low and high internal CO2 concentrations suggest that the levels or activity of the components of the Calvin cycle and electron transport might be reduced in the quadruple mutant. Most of the under-expressed proteins in the phyA phyB cry1 cry2 quadruple mutant consistently showed a chloroplastic localization, whereas components of the Calvin cycle and light reaction centers were overrepresented. Additionally, Rubisco expression was reduced threefold in the phyA phyB cry1 cry2 quadruple mutant. Together, these results highlight the importance of the phytochrome and cryptochrome families in proper autotrophy establishment in plants. They also suggest that an overall limitation in the chlorophyll levels, expression of Rubisco, and enzymes of the Calvin Cycle and electron transport that affect ribulose-1,5-biphosphate (RuBP) regeneration reduced photosynthetic capacity in the phyA phyB cry1 cry2 quadruple mutant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteoma , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Electroforesis en Gel Bidimensional , Mutación
7.
New Phytol ; 205(1): 329-38, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25264216

RESUMEN

Although cooperative interactions among kin have been established in a variety of biological systems, their occurrence in plants remains controversial. Plants of Arabidopsis thaliana were grown in rows of either a single or multiple accessions. Plants recognized kin neighbours and horizontally reoriented leaf growth, a response not observed when plants were grown with nonkin. Plant kin recognition involved the perception of the vertical red/far-red light and blue light profiles. Disruption of the light profiles, mutations at the PHYTOCHROME B, CRYPTOCHROME 1 or 2, or PHOTOTROPIN 1 or 2 photoreceptor genes or mutations at the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 gene required for auxin (growth hormone) synthesis impaired the response. The leaf-position response increases plant self-shading, decreases mutual shading between neighbours and increases fitness. Light signals from neighbours are known to shape a more competitive plant body. Here we show that photosensory receptors mediate cooperative rather than competitive interactions among kin neighbours by reducing the competition for local pools of resources.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fotorreceptores de Plantas/metabolismo , Fototransducción , Hojas de la Planta/fisiología
8.
Neuroscience ; 247: 280-93, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23727010

RESUMEN

Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Plasticidad Neuronal/fisiología , Fotoperiodo , Animales , Humanos , Actividad Motora/fisiología , Red Nerviosa/metabolismo , Proteínas Circadianas Period/metabolismo
9.
Genet. mol. biol ; Genet. mol. biol;30(3,suppl): 780-793, 2007. ilus, tab
Artículo en Inglés | LILACS | ID: lil-467257

RESUMEN

Studies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST) were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins), scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA