Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2409262121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145929

RESUMEN

Insig-1 and Insig-2 are endoplasmic reticulum (ER) proteins that inhibit lipid synthesis by blocking transport of sterol regulatory element-binding proteins (SREBP-1 and SREBP-2) from ER to Golgi. In the Golgi, SREBPs are processed proteolytically to release their transcription-activating domains, which enhance the synthesis of fatty acids, triglycerides, and cholesterol. Heretofore, the two Insigs have redundant functions, and there is no rationale for two isoforms. The current data identify a specific function for Insig-2. We show that eicosapentaenoic acid (EPA), a polyunsaturated fatty acid, inhibits fatty acid synthesis in human fibroblasts and rat hepatocytes by activating adenylate cyclase, which induces protein kinase A (PKA) to phosphorylate serine-106 in Insig-2. Phosphorylated Insig-2 inhibits the proteolytic processing of SREBP-1, thereby blocking fatty acid synthesis. Phosphorylated Insig-2 does not block the processing of SREBP-2, which activates cholesterol synthesis. Insig-1 lacks serine-106 and is not phosphorylated at this site. EPA inhibition of SREBP-1 processing was reduced by the replacement of serine-106 in Insig-2 with alanine or by treatment with KT5720, a PKA inhibitor. Inhibition did not occur in mutant human fibroblasts that possess Insig-1 but lack Insig-2. These data provide an Insig-2-specific mechanism for the long-known inhibition of fatty acid synthesis by polyunsaturated fatty acids.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Fibroblastos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Fosforilación , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Ácido Eicosapentaenoico/farmacología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Hepatocitos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-39093001

RESUMEN

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the IP3 signalling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process. We expressed the fluorescence resonance energy transfer (FRET) based cytosolic cAMP sensor EPAC-SH187 in neonatal rat atrial myocytes (NRAMs) and neonatal rat ventricular myocytes (NRVMs). In NRAMs, addition of the α-1 agonist phenylephrine (PE, 3 µM) resulted in a FRET change 21.20 ± 7.43 % and addition of membrane permeant IP3 derivative, 2,3,6-tri-O-Butyryl-myo-IP3(1,4,5)-hexakis(acetoxymethyl)ester (IP3-AM, 20 µM) resulted in a peak of 20.31 ± 6.74 %. These FRET changes imply an increase in cAMP. Prior application of IP3 receptor (IP3R) inhibitors 2-Aminoethyl diphenylborinate (2-APB, 2.5µM) or Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to PE. Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to IP3-AM. The FRET change in response to PE in NRVMs were not inhibited by 2-APB or Xestospongin-C. Finally, the localisation of cAMP signals was tested by expressing the FRET-based cAMP sensor, AKAP79-CUTie, which targets the intracellular surface of the plasmalemma. We found in NRAMs that PE led to FRET change corresponding to an increase in cAMP that was inhibited by 2-APB and Xestospongin C. These data support further investigation of the pro-arrhythmic nature and components of IP3 induced cAMP signalling to identify potential pharmacological targets.

3.
mSphere ; : e0040724, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078132

RESUMEN

Bordetella pertussis infects the upper airways of humans and disarms host defense by the potent immuno-subversive activities of its pertussis (PT) and adenylate cyclase (CyaA) toxins. CyaA action near-instantly ablates the bactericidal activities of sentinel CR3-expressing myeloid phagocytes by hijacking cellular signaling pathways through the unregulated production of cAMP. Moreover, CyaA-elicited cAMP signaling also inhibits the macrophage colony-stimulating factor (M-CSF)-induced differentiation of incoming inflammatory monocytes into bactericidal macrophages. We show that CyaA/cAMP signaling via protein kinase A (PKA) downregulates the M-CSF-elicited expression of monocyte receptors for transferrin (CD71) and hemoglobin-haptoglobin (CD163), as well as the expression of heme oxygenase-1 (HO-1) involved in iron liberation from internalized heme. The impact of CyaA action on CD71 and CD163 levels in differentiating monocytes is largely alleviated by the histone deacetylase inhibitor trichostatin A (TSA), indicating that CyaA/cAMP signaling triggers epigenetic silencing of genes for micronutrient acquisition receptors. These results suggest a new mechanism by which B. pertussis evades host sentinel phagocytes to achieve proliferation on airway mucosa.IMPORTANCETo establish a productive infection of the nasopharyngeal mucosa and proliferate to sufficiently high numbers that trigger rhinitis and aerosol-mediated transmission, the pertussis agent Bordetella pertussis deploys several immunosuppressive protein toxins that compromise the sentinel functions of mucosa patrolling phagocytes. We show that cAMP signaling elicited by very low concentrations (22 pM) of Bordetella adenylate cyclase toxin downregulates the iron acquisition systems of CD14+ monocytes. The resulting iron deprivation of iron, a key micronutrient, then represents an additional aspect of CyaA toxin action involved in the inhibition of differentiation of monocytes into the enlarged bactericidal macrophage cells. This corroborates the newly discovered paradigm of host defense evasion mechanisms employed by bacterial pathogens, where manipulation of cellular cAMP levels blocks monocyte to macrophage transition and replenishment of exhausted phagocytes, thereby contributing to the formation of a safe niche for pathogen proliferation and dissemination.

4.
bioRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39071414

RESUMEN

Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.

5.
Pharmaceutics ; 16(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38931817

RESUMEN

Glucagon-like peptide-1 (GLP-1) is a multifunctional incretin hormone with various physiological effects beyond its well-characterized effect of stimulating glucose-dependent insulin secretion in the pancreas. An emerging role for GLP-1 and its receptor, GLP-1R, in brain neuroprotection and in the suppression of inflammation, has been documented in recent years. GLP-1R is a G protein-coupled receptor (GPCR) that couples to Gs proteins that stimulate the production of the second messenger cyclic 3',5'-adenosine monophosphate (cAMP). cAMP, acting through its two main effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), exerts several anti-inflammatory (and some pro-inflammatory) effects in cells, depending on the cell type. The present review discusses the cAMP-dependent molecular signaling pathways elicited by the GLP-1R in cardiomyocytes, cardiac fibroblasts, central neurons, and even in adrenal chromaffin cells, with a particular focus on those that lead to anti-inflammatory effects by the GLP-1R. Fully elucidating the role cAMP plays in GLP-1R's anti-inflammatory properties can lead to new and more precise targets for drug development and/or provide the foundation for novel therapeutic combinations of the GLP-1R agonist medications currently on the market with other classes of drugs for additive anti-inflammatory effect.

6.
Handb Exp Pharmacol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844580

RESUMEN

ß-Adrenoceptors (ß-ARs) provide an important therapeutic target for the treatment of cardiovascular disease. Three ß-ARs, ß1-AR, ß2-AR, ß3-AR are localized to the human heart. Activation of ß1-AR and ß2-ARs increases heart rate, force of contraction (inotropy) and consequently cardiac output to meet physiological demand. However, in disease, chronic over-activation of ß1-AR is responsible for the progression of disease (e.g. heart failure) mediated by pathological hypertrophy, adverse remodelling and premature cell death. Furthermore, activation of ß1-AR is critical in the pathogenesis of cardiac arrhythmias while activation of ß2-AR directly influences blood pressure haemostasis. There is an increasing awareness of the contribution of ß2-AR in cardiovascular disease, particularly arrhythmia generation. All ß-blockers used therapeutically to treat cardiovascular disease block ß1-AR with variable blockade of ß2-AR depending on relative affinity for ß1-AR vs ß2-AR. Since the introduction of ß-blockers into clinical practice in 1965, ß-blockers with different properties have been trialled, used and evaluated, leading to better understanding of their therapeutic effects and tolerability in various cardiovascular conditions. ß-Blockers with the property of intrinsic sympathomimetic activity (ISA), i.e. ß-blockers that also activate the receptor, were used in the past for post-treatment of myocardial infarction and had limited use in heart failure. The ß-blocker carvedilol continues to intrigue due to numerous properties that differentiate it from other ß-blockers and is used successfully in the treatment of heart failure. The discovery of ß3-AR in human heart created interest in the role of ß3-AR in heart failure but has not resulted in therapeutics at this stage.

7.
J Oral Biosci ; 66(3): 519-524, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38925352

RESUMEN

BACKGROUND: Asthma is a common chronic inflammatory disease affecting more than 260 million people worldwide. Nocturnal exacerbations of asthma symptoms significantly affect sleep quality and contribute to the most serious asthma exacerbations, which can lead to respiratory failure or death. Although ß2-adrenoceptor agonists are the standard of care for asthma, their bronchodilatory effect for nocturnal asthma is limited, and medications that specifically target symptoms of nocturnal asthma are lacking. HIGHLIGHT: Melatonin, which is secreted by the pineal gland, plays a crucial role in regulating circadian rhythms. Peak serum melatonin concentrations, which are inversely correlated with diurnal changes in pulmonary function, are higher in patients with nocturnal asthma than in healthy individuals. Melatonin potentiates bronchoconstriction through the melatonin MT2 receptor expressed in the smooth muscles of the airway and attenuates the bronchodilatory effects of ß2-adrenoceptor agonists, thereby exacerbating asthma symptoms. Melatonin inhibits mucus secretion and airway inflammation, potentially ameliorating asthma symptoms. CONCLUSION: Melatonin may exacerbate or ameliorate various pathophysiological conditions associated with asthma. As a potential therapeutic agent for asthma, the balance between its detrimental effects on airway smooth muscles and its beneficial effects on mucus production and inflammation remains unclear. Further studies are needed to elucidate whether melatonin worsens or improves asthma symptoms.


Asunto(s)
Asma , Ritmo Circadiano , Melatonina , Melatonina/metabolismo , Asma/tratamiento farmacológico , Asma/metabolismo , Asma/fisiopatología , Humanos , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de los fármacos
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731883

RESUMEN

The serine-threonine kinase protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent intracellular protein with multiple roles in cellular biology including metabolic and transcription regulation functions. The cAMP-dependent protein kinase inhibitor ß (PKIB) is one of three known endogenous protein kinase inhibitors of PKA. The role of PKIB is not yet fully understood. Hormonal signaling is correlated with increased PKIB expression through genetic regulation, and increasing PKIB expression is associated with decreased cancer patient prognosis. Additionally, PKIB impacts cancer cell behavior through two mechanisms; the first is the nuclear modulation of transcriptional activation and the second is the regulation of oncogenic AKT signaling. The limited research into PKIB indicates the oncogenic potential of PKIB in various cancers. However, some studies suggest a role of PKIB in non-cancerous disease states. This review aims to summarize the current literature and background of PKIB regarding cancer and related issues. In particular, we will focus on cancer development and therapeutic possibilities, which are of paramount interest in PKIB oncology research.


Asunto(s)
Neoplasias , Animales , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Inhibidores de Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo
9.
Front Cell Neurosci ; 18: 1363219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694536

RESUMEN

Introduction: Cochlear afferent synapses connecting inner hair cells to spiral ganglion neurons are susceptible to excitotoxic trauma on exposure to loud sound, resulting in a noise-induced cochlear synaptopathy (NICS). Here we assessed the ability of cyclic AMP-dependent protein kinase (PKA) signaling to promote cochlear synapse regeneration, inferred from its ability to promote axon regeneration in axotomized CNS neurons, another system refractory to regeneration. Methods: We mimicked NICS in vitro by applying a glutamate receptor agonist, kainic acid (KA) to organotypic cochlear explant cultures and experimentally manipulated cAMP signaling to determine whether PKA could promote synapse regeneration. We then delivered the cAMP phosphodiesterase inhibitor rolipram via implanted subcutaneous minipumps in noise-exposed CBA/CaJ mice to test the hypothesis that cAMP signaling could promote cochlear synapse regeneration in vivo. Results: We showed that the application of the cell membrane-permeable cAMP agonist 8-cpt-cAMP or the cAMP phosphodiesterase inhibitor rolipram promotes significant regeneration of synapses in vitro within twelve hours after their destruction by KA. This is independent of neurotrophin-3, which also promotes synapse regeneration. Moreover, of the two independent signaling effectors activated by cAMP - the cAMP Exchange Protein Activated by cAMP and the cAMP-dependent protein kinase - it is the latter that mediates synapse regeneration. Finally, we showed that systemic delivery of rolipram promotes synapse regeneration in vivo following NICS. Discussion: In vitro experiments show that cAMP signaling promotes synapse regeneration after excitotoxic destruction of cochlear synapses and does so via PKA signaling. The cAMP phosphodiesterase inhibitor rolipram promotes synapse regeneration in vivo in noise-exposed mice. Systemic administration of rolipram or similar compounds appears to provide a minimally invasive therapeutic approach to reversing synaptopathy post-noise.

10.
Kidney Int ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821447

RESUMEN

Unlike classical protein kinase A, with separate catalytic and regulatory subunits, EPACs are single chain multi-domain proteins containing both catalytic and regulatory elements. The importance of cAMP-Epac-signaling as an energy provider has emerged over the last years. However, little is known about Epac1 signaling in chronic kidney disease. Here, we examined the role of Epac1 during the progression of glomerulonephritis (GN). We first observed that total genetic deletion of Epac1 in mice accelerated the progression of nephrotoxic serum (NTS)-induced GN. Next, mice with podocyte-specific conditional deletion of Epac1 were generated and showed that NTS-induced GN was exacerbated in these mice. Gene expression analysis in glomeruli at the early and late phases of GN showed that deletion of Epac1 in podocytes was associated with major alterations in mitochondrial and metabolic processes and significant dysregulation of the glycolysis pathway. In vitro, Epac1 activation in a human podocyte cell line increased mitochondrial function to cope with the extra energy demand under conditions of stress. Furthermore, Epac1-induced glycolysis and lactate production improved podocyte viability. To verify the in vivo therapeutic potential of Epac1 activation, the Epac1 selective cAMP mimetic 8-pCPT was administered in wild type mice after induction of GN. 8-pCPT alleviated the progression of GN by improving kidney function with decreased structural injury with decreased crescent formation and kidney inflammation. Importantly, 8-pCPT had no beneficial effect in mice with Epac1 deletion in podocytes. Thus, our data suggest that Epac1 activation is an essential protective mechanism in GN by reprogramming podocyte metabolism. Hence, targeting Epac1 activation could represent a potential therapeutic approach.

11.
FEBS Lett ; 598(13): 1591-1604, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724485

RESUMEN

Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aß) plaques in a mouse model of AD but that Aß directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aß as it possesses a unique binding site. Intriguingly, exogenous addition of Aß to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aß, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , AMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Neuronas , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Péptidos beta-Amiloides/metabolismo , AMP Cíclico/metabolismo , Ratones , Neuronas/metabolismo , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Unión Proteica , Activación Enzimática , Ratones Transgénicos , Placa Amiloide/metabolismo , Placa Amiloide/patología
13.
Gut Liver ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38638101

RESUMEN

Background/Aims: : The occurrence and development of circular RNAs in gastric cancer (GC) has attracted increasing attention. This study focused on investigating the biological role and molecular mechanism of circ_0043947 in GC. Methods: : The expression levels of circ_0043947, miR-384 and CAMP response element binding protein (CREB1) were determined by quantitative real-time polymerase chain reaction or Western blotting. Cell proliferation, migration, and invasion, the cell cycle and apoptosis were determined using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry assay. The interaction between miR-384 and circ_0043947 or CREB1 was verified by dual-luciferase reporter assay and RNA pull-down assay. The in vivo assay was conducted using a xenograft mouse model. Results: : Circ_0043947 and CREB1 expression levels were significantly upregulated, whereas miR-384 expression levels were downregulated in GC tissues and cells. Functionally, knockdown of circ_0043947 inhibited cell proliferation, migration and invasion and induced G0/G1 phase arrest and apoptosis in vitro. Circ_0043947 could upregulate CREB1 expression by directly sponging miR-384. Rescue experiments showed that a miR-384 inhibitor significantly reversed the inhibitory effect of si-circ_0043947 on GC progression, and CREB1 overexpression significantly reversed the inhibitory effect of miR-384 mimics on the progression of GC cells. Furthermore, silencing of circ_0043947 inhibited tumor growth in vivo. Conclusions: : Circ_0043947 acted as an oncogenic factor in GC to mediate GC cell proliferation, migration, and invasion, the cell cycle and apoptosis by regulating the miR-384/CREB1 axis. Circ_0043947 may be a potential target for GC diagnosis and therapy.

14.
J Biol Chem ; 300(5): 107287, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636658

RESUMEN

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.


Asunto(s)
Proteínas Bacterianas , AMP Cíclico , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , AMP Cíclico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Viabilidad Microbiana , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Unión Proteica
15.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593080

RESUMEN

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Asunto(s)
Marchantia , Masculino , Animales , Marchantia/genética , AMP Cíclico/metabolismo , Motilidad Espermática/genética , Semillas/metabolismo , Adenilil Ciclasas/metabolismo , Espermatozoides/metabolismo
16.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598031

RESUMEN

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Cloruro de Calcio , Estrés Salino/genética , Etanolamina , Etanolaminas , Proteínas Fluorescentes Verdes
17.
Cell Mol Life Sci ; 81(1): 132, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472446

RESUMEN

P2Y11 is a G protein-coupled ATP receptor that activates IL-1 receptor (IL-1R) in a cyclic AMP dependent manner. In human macrophages, P2Y11/IL-1R crosstalk with CCL20 as a prime target is controlled by phosphodiesterase 4 (PDE4), which mediates breakdown of cyclic AMP. Here, we used gene expression analysis to identify activation of CXCR4 and CXCR7 as a hallmark of P2Y11 signaling. We found that PDE4 inhibition with rolipram boosts P2Y11/IL-1R-induced upregulation of CXCR7 expression and CCL20 production in an epidermal growth factor receptor dependent manner. Using an astrocytoma cell line, naturally expressing CXCR7 but lacking CXCR4, P2Y11/IL-1R activation effectively induced and CXCR7 agonist TC14012 enhanced CCL20 production even in the absence of PDE4 inhibition. Moreover, CXCR7 depletion by RNA interference suppressed CCL20 production. In macrophages, the simultaneous activation of P2Y11 and CXCR7 by their respective agonists was sufficient to induce CCL20 production with no need of PDE4 inhibition, as CXCR7 activation increased its own and eliminated CXCR4 expression. Finally, analysis of multiple CCL chemokines in the macrophage secretome revealed that CXCR4 inactivation and CXCR7 activation selectively enhanced P2Y11/IL-1R-mediated secretion of CCL20. Altogether, our data establish CXCR7 as an integral component of the P2Y11/IL-1R-initiated signaling cascade and CXCR4-associated PDE4 as a regulatory checkpoint.


Asunto(s)
Receptores CXCR4 , Transducción de Señal , Humanos , Línea Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , AMP Cíclico/metabolismo , Macrófagos/metabolismo , Receptores CXCR4/genética , Receptores Purinérgicos/metabolismo
18.
J Pharmacol Sci ; 154(4): 294-300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485347

RESUMEN

Cardio-stimulatory actions of aciclovir have been considered to primarily depend on the sympathetically-mediated reflex resulting from its hypotensive effect. To further clarify onset mechanisms of the cardio-stimulatory actions, we initially studied them using isoflurane-anesthetized dogs under thorough ß1-adrenoceptor blockade with atenolol (1 mg/kg, i.v.) (n = 4). Aciclovir (20 mg/kg/10 min, i.v.) decreased mean arterial blood pressure by 10 mmHg, whereas it increased heart rate by 10 bpm and maximum upstroke velocity of ventricular pressure by 928 mmHg/s, and shortened AH interval by 2 ms, indicating that cardio-stimulatory actions were not totally abolished by ß1-adrenoceptor blockade. Then, unknown mechanisms of cardio-stimulatory action were explored. Since aciclovir has a similar chemical structure to theophylline, in silico molecular docking simulation was performed, indicating aciclovir as well as theophylline possesses strong likelihood of interactions with phosphodiesterase 1A, 1C and 3A. Indeed, aciclovir inhibited phosphodiesterase 1A derived from the bovine heart (n = 4), moreover it exerted positive chronotropic action on the atrial tissue preparation of rats along with an increase of tissue cyclic AMP concentration (n = 4). These results indicate that cardio-stimulatory actions of aciclovir could result from not only hypotension-induced, reflex-mediated increase of sympathetic tone but also its inhibitory effects on phosphodiesterase in the heart.


Asunto(s)
Hipotensión , Teofilina , Animales , Bovinos , Ratas , Perros , Teofilina/farmacología , Aciclovir/farmacología , Simulación del Acoplamiento Molecular , Presión Sanguínea , Atrios Cardíacos , Frecuencia Cardíaca , Hidrolasas Diéster Fosfóricas , Receptores Adrenérgicos
19.
Plant Signal Behav ; 19(1): 2310963, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38314783

RESUMEN

In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.


Asunto(s)
Brassica napus , Ciclopentanos , Oxilipinas , Reguladores del Crecimiento de las Plantas , Animales , Reguladores del Crecimiento de las Plantas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo
20.
mSphere ; 9(2): e0063523, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38315033

RESUMEN

Noelia Lander works on cell signaling in American trypanosomes and studies the role of cyclic adenosine monophosphate (cAMP) microdomains in environmental sensing and differentiation. In this mSphere of Influence, Dr. Lander reflects on three research articles in different eukaryotic models that had impacted on the way she thinks about the regulation of cAMP signals in Trypanosoma cruzi, the etiologic agent of Chagas disease. The articles "FRET biosensor uncovers cAMP nano-domains at ß-adrenergic targets that dictate precise tuning of cardiac contractility" (N. C. Surdo, M. Berrera, A. Koschinski, M. Brescia, et al., Nat Commun 8:15031, 2017, https://doi.org/10.1038/ncomms15031), "Cyclic AMP signaling and glucose metabolism mediate pH taxis by African trypanosomes" (S. Shaw, S. Knüsel, D. Abbühl, A. Naguleswaran, et al., Nat Commun 13:603, 2022, https://doi.org/10.1038/s41467-022-28293-w), and "Encystation stimuli sensing is mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia" (H. W. Shih, G. C. M. Alas, and A. R. Paredez, Nat Commun 14:7245, 2023, https://doi.org/10.1038/s41467-023-43028-1) influenced her current hypothesis that cAMP signals are generated in response to environmental cues leading to changes in membrane fluidity at the flagellar tip and the contractile vacuole complex of T. cruzi, structures where cAMP mediates key cellular processes for developmental progression.


Asunto(s)
Trypanosoma cruzi , Femenino , Estados Unidos , Humanos , Trypanosoma cruzi/metabolismo , AMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA