Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 23(12): e55044, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36278408

RESUMEN

FBXW7, which encodes a substrate-specific receptor of an SCF E3 ligase complex, is a frequently mutated human tumor suppressor gene known to regulate the post-translational stability of various proteins involved in cellular proliferation. Here, using genome-wide CRISPR screens, we report a novel synthetic lethal genetic interaction between FBXW7 and CCNL1 and describe CCNL1 as a new substrate of the SCF-FBXW7 E3 ligase. Further analysis showed that the CCNL1-CDK11 complex is critical at the G2-M phase of the cell cycle since defective CCNL1 accumulation, resulting from FBXW7 mutation, leads to shorter mitotic time. Cells harboring FBXW7 loss-of-function mutations are hypersensitive to treatment with a CDK11 inhibitor, highlighting a genetic vulnerability that could be leveraged for cancer treatment.


Asunto(s)
Ciclinas , Proteína 7 que Contiene Repeticiones F-Box-WD , Ubiquitina-Proteína Ligasas , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Mutación , Ubiquitina-Proteína Ligasas/genética , Ciclinas/metabolismo , Ubiquitinación
2.
Pharmaceuticals (Basel) ; 12(2)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30987032

RESUMEN

Cyclin dependent kinase 11 (CDK11) is a protein kinase that regulates RNA transcription, pre-mRNA splicing, mitosis, and cell death. Targeting of CDK11 expression levels is effective in the experimental treatment of breast and other cancers, but these data are lacking in melanoma. To understand CDK11 function in melanoma, we evaluated protein and RNA levels of CDK11, Cyclin L1 and Cyclin L2 in benign melanocytes and BRAF- as well as NRAS-mutant melanoma cell lines. We investigated the effectiveness of reducing expression of this survival kinase using RNA interference on viability, clonal survival, and tumorsphere formation in melanoma cell lines. We examined the impact of CDK11 loss in BRAF-mutant melanoma on more than 700 genes important in cancer signaling pathways. Follow-up analysis evaluated how CDK11 loss alters cell cycle function in BRAF- and NRAS-mutant melanoma cells. We present data on CDK11, CCNL1 and CCNL2 mRNA expression in melanoma patients, including prognosis for survival. In sum, we found that CDK11 is necessary for melanoma cell survival, and a major impact of CDK11 loss in melanoma is to cause disruption of the cell cycle distribution with accumulation of G1- and loss of G2/M-phase cancer cells.

3.
Cell Cycle ; 16(9): 861-868, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28318374

RESUMEN

Cyclin proteins are the key regulatory and activity partner of cyclin-dependent kinases (CDKs), which play pivotal regulatory roles in cell cycle progression. In the present study, we identified a Cyclin L1 and 2 CDK11 2 CDK11 splice variants, CDK11A and CDK11B, from silkworm, Bombyx mori. We determined that both Cyclin L1 and CDK11A/B are nuclear proteins, and further investigations were conducted to elucidate their spatiofunctional features. Cyclin L1 forms a complex with CDK11A/B and were co-localized to the nucleus. Moreover, the dimerization of CDK11A and CDK11B and the effects of Cyclin L1 and CDK11A/B on cell cycle regulation were also investigated. Using overexpression or RNA interference experiments, we demonstrated that the abnormal expression of Cyclin L1 and CDK11A/B leads to cell cycle arrest and cell proliferation suppression. Together, these findings indicate that CDK11A/B interacts with Cyclin L1 to regulate the cell cycle.


Asunto(s)
Bombyx/metabolismo , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas de Insectos/metabolismo , Secuencia de Aminoácidos , Animales , Puntos de Control del Ciclo Celular , Proliferación Celular , Clonación Molecular , Señales de Localización Nuclear , Filogenia , Multimerización de Proteína
4.
Cell Cycle ; 14(12): 1799-808, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25891934

RESUMEN

PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Percepción del Dolor , Secuencia de Aminoácidos , Animales , Linaje de la Célula , Cristalografía por Rayos X , Drosophila , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Humanos , Inmunohistoquímica , Masculino , Datos de Secuencia Molecular , Mutación , Neurogénesis/genética , Neuronas/metabolismo , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis
5.
Int J Mol Sci ; 9(8): 1504-1514, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19122807

RESUMEN

Previous studies using the yeast two-hybrid assay (Y2H) have identified cyclin L1 (CCNL1) and Ewing sarcoma breakpoint region 1 protein (EWSR1) as being interacting partners of tuftelin-interacting protein 11 (TFIP11). All three proteins are functionally related to the spliceosome and involved in pre-mRNA splicing activities. The spliceosome is a dynamic ribonucleoprotein complex responsible for pre-mRNA splicing of intronic regions, and is composed of five small nuclear RNAs (snRNAs) and µ140 proteins. TFIP11 appears to play a role in spliceosome disassembly allowing for the release of the bound lariat-intron. The roles of CCNL1 and EWSR1 in the spliceosome are poorly understood. Using fluorescently-tagged proteins and confocal microscopy we show that TFIP11, CCNL1 and EWSR1 frequently co-localize to speckled nuclear domains. These data would suggest that all three proteins participate in a common cellular activity related to RNA splicing events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...