Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Ecol Evol ; 14(7): e11705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38975267

RESUMEN

Endosymbionts are widespread in arthropods, living in host cells with effects that extend from parasitic to mutualistic. Newly acquired endosymbionts tend to be parasitic, but vertical transmission favors coevolution toward mutualism, with hosts sometimes developing dependency. Endosymbionts negatively affecting host fitness may still spread by impacting host reproductive traits, referred to as reproductive "manipulation," although costs for hosts are often assumed rather than demonstrated. For cytoplasmic incompatibility (CI) that involves endosymbiont-mediated embryo death, theory predicts directional shifts away from "manipulation" toward reduced CI strength; moreover, CI-causing endosymbionts need to increase host fitness to initially spread. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. We advocate for capturing this complexity through appropriate datasets, rather than relying on terms like "manipulation." Such imprecision can lead to the misclassification of endosymbionts along the parasitism-mutualism continuum.

2.
Proc Biol Sci ; 291(2027): 20240680, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39079670

RESUMEN

Rickettsia, a group of intracellular bacteria found in eukaryotes, exhibits diverse lifestyles, with some acting as vertebrate pathogens transmitted by arthropod vectors and others serving as maternally transmitted arthropod endosymbionts, some of which manipulate host reproduction for their own benefit. Two phenotypes, namely male-killing and parthenogenesis induction are known as Rickettsia-induced host reproductive manipulations, but it remains unknown whether Rickettsia can induce other types of host manipulation. In this study, we discovered that Rickettsia induced strong cytoplasmic incompatibility (CI), in which uninfected females produce no offspring when mated with infected males, in the predatory insect Nesidiocoris tenuis (Hemiptera: Miridae). Molecular phylogenetic analysis revealed that the Rickettsia strain was related to Rickettsia bellii, a common insect endosymbiont. Notably, this strain carried plasmid-encoded homologues of the CI-inducing factors (namely cifA-like and cifB-like genes), typically found in Wolbachia, which are well-known CI-inducing endosymbionts. Protein domain prediction revealed that the cifB-like gene encodes PD-(D/E)XK nuclease and deubiquitinase domains, which are responsible for Wolbachia-induced CI, as well as ovarian tumour-like (OTU-like) cysteine protease and ankyrin repeat domains. These findings suggest that Rickettsia and Wolbachia endosymbionts share underlying mechanisms of CI and that CI-inducing ability was acquired by microbes through horizontal plasmid transfer.


Asunto(s)
Hemípteros , Filogenia , Rickettsia , Simbiosis , Animales , Rickettsia/fisiología , Femenino , Hemípteros/microbiología , Hemípteros/fisiología , Masculino , Citoplasma , Wolbachia/fisiología
3.
Pest Manag Sci ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031863

RESUMEN

BACKGROUND: Releasing large numbers of Aedes albopictus males, carrying the artificially introduced Wolbachia 'wPip' strain, results in a decrease in the reproductive capacity of wild females due to a phenomenon known as cytoplasmic incompatibility (CI). This vector control strategy is referred to as the incompatible insect technique (IIT). However, its widespread implementation faces various challenges, including the complexity of removing fertile females from the males intended for release. Here, we present the results of semi-field experiments comparing the impact of minimal female co-release on two IIT modes: unidirectional CI-based (UnCI IIT) and bidirectional CI-based (BiCI IIT), specifically targeting Ae. albopictus. RESULTS: The contamination of 'wPip' infected females (2%) during male releases significantly weakened the overall effectiveness of IIT, emphasizing the need for thorough sex separation. Specifically, with UnCI IIT, despite the low rate of co-released females, there was a gradual rise in 'wPip' infection frequency, resulting in more compatible mating and subsequently higher rates of egg hatching. Conversely, this pattern was effectively mitigated in BiCI IIT owing to the reciprocal sterility between the wild-type and the 'wPip' infected populations. CONCLUSION: Through an experimental approach, conducted in a semi-field setting, we have contributed to advancing scientific understanding regarding the potential outcomes of implementing the IIT strategy in the absence of a complete sexing system. The results suggest that safety measures for mitigating the potential impacts of co-released females can be tailored according to the specific type of IIT being utilized. © 2024 Society of Chemical Industry.

4.
J Evol Biol ; 37(8): 926-934, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869236

RESUMEN

Oak gall wasps typically exhibit a life cycle with one sexual and one asexual generation each year. These wasps can carry various endosymbionts, one of which is the maternally inherited bacterium Wolbachia that can induce several reproductive manipulations on its host. Cytoplasmic incompatibility (CI) has been described as the most prominent of these manipulations. CI leads to embryonic mortality in the hosts' offspring when infected males mate with either uninfected females or with females that harbour different Wolbachia strains. It has been hypothesized that Wolbachia can induce CI in oak gall wasps. To address this hypothesis, we derived a mathematical model to investigate the spread of a bacterial infection in naive populations and to determine the plausibility of CI occurrence. To validate our model, we used published data from Wolbachia-infected Belonocnema kinseyi populations in two approaches. Our first approach uses measurements of infection frequencies and maternal transmission in the sexual generation. For the second approach, we extended the model to compare predictions to estimates of mtDNA-haplotypes, which, like Wolbachia, are maternally inherited, and can therefore be associated with the infection. Both approaches indicate that CI is present in these populations. Our model can be generalized to investigate the occurrence of CI not only for oak gall wasps but also for other species.


Asunto(s)
Partenogénesis , Avispas , Wolbachia , Wolbachia/fisiología , Animales , Avispas/microbiología , Avispas/fisiología , Femenino , Masculino , Quercus/microbiología , Modelos Biológicos , Simbiosis , Citoplasma
5.
Proc Biol Sci ; 291(2021): 20240429, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628128

RESUMEN

The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.


Asunto(s)
Aedes , Culex , Wolbachia , Animales , Femenino , Masculino , Wolbachia/genética , Inteligencia Artificial , Aedes/genética
6.
Insects ; 15(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535401

RESUMEN

The emergence of insecticide resistance in arbovirus vectors is putting the focus on the development of new strategies for control. In this regard, the exploitation of Wolbachia endosymbionts is receiving increasing attention due to its demonstrated effectiveness in reducing the vectorial capacity of Aedes mosquitoes. Here, we describe the establishment of a naïve Wolbachia infection in a wild Aedes albopictus population of eastern Spain through a hybridization approach to obtain males capable of sterilizing wild females. The obtained lines were compared with the Wolbachia donor, Ae. albopictus ARwP, previously artificially infected with Wolbachia wPip, regarding immature and adult survival, female fecundity, egg fertility, and level of induced sterility. Our results did not show significant differences between lines in any of the biological parameters analyzed, indicating the full suitability of the hybrids to be used as a control tool against Ae. albopictus. In particular, hybrid males induced 99.9% sterility in the eggs of wild females without the need for any preliminary treatment. Being harmless to non-target organisms and the environment, the use of this bacterium for the control of Ae. albopictus deserves further exploration. This is especially relevant in areas such as eastern Spain, where this mosquito species has recently spread and may represent a serious threat due to its competence as a vector for dengue, chikungunya, and Zika viruses.

7.
Semin Cell Dev Biol ; 159-160: 66-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394822

RESUMEN

B chromosomes are intriguing "selfish" genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism's reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect's essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.


Asunto(s)
Avispas , Humanos , Animales , Masculino , Femenino , Avispas/genética , Semen , Cromosomas/genética , Genoma , Secuencia de Bases
8.
Front Microbiol ; 15: 1304401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380092

RESUMEN

Liriomyza trifolii, an agricultural pest, is occasionally infected by Wolbachia. A Wolbachia strain present in Liriomyza trifolii is associated with cytoplasmic incompatibility (CI) effects, leading to the death of embryos resulting from incompatible crosses between antibiotic-treated or naturally Wolbachia-free strain females and Wolbachia-infected males. In this study, high-throughput sequencing of hypervariable rRNA genes was employed to characterize the bacterial community in Wolbachia-infected L. trifolii without antibiotic treatment. The analysis revealed that Wolbachia dominates the bacterial community in L. trifolii, with minor presence of Acinetobacter, Pseudomonas, and Limnobacter. To elucidate the genetic basis of the CI phenotype, metagenomic sequencing was also conducted to assemble the genome of the Wolbachia strain. The draft-genome of the Wolbachia strain wLtri was 1.35 Mbp with 34% GC content and contained 1,487 predicted genes. Notably, within the wLtri genome, there are three distinct types of cytoplasmic incompatibility factor (cif) genes: Type I, Type III, and Type V cifA;B. These genes are likely responsible for inducing the strong cytoplasmic incompatibility observed in L. trifolii.

9.
bioRxiv ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38105949

RESUMEN

About half of all insect species carry maternally inherited Wolbachia alphaproteobacteria, making Wolbachia the most common endosymbionts known in nature. Often Wolbachia spread to high frequencies within populations due to cytoplasmic incompatibility (CI), a Wolbachia-induced sperm modification caused by prophage-associated genes (cifs) that kill embryos without Wolbachia. Several Wolbachia variants also block viruses, including wMel from Drosophila melanogaster when transinfected into the mosquito Aedes aegypti. CI enables the establishment and stable maintenance of pathogen-blocking wMel in natural Ae. aegypti populations. These transinfections are reducing dengue disease incidence on multiple continents. While it has long been known that closely related Wolbachia occupy distantly related hosts, the timing of Wolbachia host switching and molecular evolution has not been widely quantified. We provide a new, conservative calibration for Wolbachia chronograms based on examples of co-divergence of Wolbachia and their insect hosts. Synthesizing publicly available and new genomic data, we use our calibration to demonstrate that wMel-like variants separated by only about 370,000 years have naturally colonized holometabolous dipteran and hymenopteran insects that diverged approximately 350 million years ago. Data from Wolbachia variants closely related to those currently dominant in D. melanogaster and D. simulans illustrate that cifs are rapidly acquired and lost among Wolbachia genomes, on a time scale of 104-105 years. This turnover occurs with and without the Wovirus prophages that contain them, with closely related cifs found in distantly related phages and distantly related cifs found in closely related phages. We present evidence for purifying selection on CI rescue function and on particular Cif protein domains. Our results quantify the tempo and mode of rapid host switching and horizontal gene transfer that underlie the spread and diversity of Wolbachia sampled from diverse host species. The wMel variants we highlight from hosts in different climates may offer new options for broadening Wolbachia-based biocontrol of diseases and pests.

10.
BMC Genomics ; 24(1): 657, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914998

RESUMEN

Wolbachia is a genus of maternally inherited endosymbionts that can affect reproduction of their hosts and influence metabolic processes. The pollinator, Valisia javana, is common in the male syconium of the dioecious fig Ficus hirta. Based on a high-quality chromosome-level V. javana genome with PacBio long-read and Illumina short-read sequencing, we discovered a sizeable proportion of Wolbachia sequences and used these to assemble two novel Wolbachia strains belonging to supergroup A. We explored its phylogenetic relationship with described Wolbachia strains based on MLST sequences and the possibility of induction of CI (cytoplasmic incompatibility) in this strain by examining the presence of cif genes known to be responsible for CI in other insects. We also identified mobile genetic elements including prophages and insertion sequences, genes related to biotin synthesis and metabolism. A total of two prophages and 256 insertion sequences were found. The prophage WOjav1 is cryptic (structure incomplete) and WOjav2 is relatively intact. IS5 is the dominant transposon family. At least three pairs of type I cif genes with three copies were found which may cause strong CI although this needs experimental verification; we also considered possible nutritional effects of the Wolbachia by identifying genes related to biotin production, absorption and metabolism. This study provides a resource for further studies of Wolbachia-pollinator-host plant interactions.


Asunto(s)
Ficus , Wolbachia , Ficus/genética , Wolbachia/genética , Biotina/genética , Simbiosis/genética , Filogenia , Elementos Transponibles de ADN/genética , Tipificación de Secuencias Multilocus , Profagos/genética , Reproducción
11.
J Biol Dyn ; 17(1): 2287077, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38018822

RESUMEN

In this paper, we formulate a population suppression model and a population replacement model with periodic impulsive releases of Nilaparvata lugens infected with wStri. The conditions for the stability of wild-N.lugens-eradication periodic solution of two systems are obtained by applying the Floquet theorem and comparison theorem. And the sufficient conditions for the persistence in the mean of wild N.lugens are also given. In addition, the sufficient conditions for the extinction and persistence of the wild N.lugens in the subsystem without wLug are also obtained. Finally, we give numerical analysis which shows that increasing the release amount or decreasing the release period are beneficial for controlling the wild N.lugens, and the efficiency of population replacement strategy in controlling wild populations is higher than that of population suppression strategy under the same release conditions.


Asunto(s)
Hemípteros , Wolbachia , Animales , Modelos Biológicos , Dinámica Poblacional
12.
Ecol Evol ; 13(11): e10722, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020682

RESUMEN

Wolbachia bacteria are maternally inherited symbionts that commonly infect terrestrial arthropods. Many Wolbachia reach high frequencies in their hosts by manipulating their reproduction, for example by causing reproductive incompatibilities between infected male and uninfected female hosts. However, not all strains manipulate reproduction, and a key unresolved question is how these non-manipulative Wolbachia persist in their hosts, often at intermediate to high frequencies. One such strain, wSuz, infects the invasive fruit pest Drosophila suzukii, spotted-wing drosophila. Here, we tested the hypothesis that wSuz infection provides a competitive benefit when resources are limited. Over the course of one season, we established population cages with varying amounts of food in a semi-field setting and seeded them with a 50:50 mixture of flies with and without Wolbachia. We predicted that Wolbachia-infected individuals should have higher survival and faster development than their uninfected counterparts when there was little available food. We found that while food availability strongly impacted fly fitness, there was no difference in development times or survival between Wolbachia-infected and uninfected flies. Interestingly, however, Wolbachia infection frequencies changed dramatically, with infections either increasing or decreasing by as much as 30% in a single generation, suggesting the possibility of unidentified factors shaping Wolbachia infection over the course of the season.

13.
Front Microbiol ; 14: 1244239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779725

RESUMEN

Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.

14.
Front Microbiol ; 14: 1116766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362913

RESUMEN

Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down population ecology models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility (CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors (cifs), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions and sequence length can bias evolution of cifs toward one mechanism or another.

15.
Annu Rev Microbiol ; 77: 299-316, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285552

RESUMEN

Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.


Asunto(s)
Wolbachia , Femenino , Masculino , Humanos , Wolbachia/genética , Semen , Reproducción/genética , Citoplasma , Biología Molecular , Simbiosis
16.
Insect Biochem Mol Biol ; 155: 103931, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36933571

RESUMEN

Wolbachia-mediated cytoplasmic incompatibility (CI) is a conditional embryonic lethality induced when Wolbachia-modified sperm fertilizes an uninfected egg. The Wolbachia proteins, CidA and CidB control CI. CidA is a rescue factor that reverses lethality. CidA binds to CidB. CidB contains a deubiquitinating enzyme and induces CI. Precisely how CidB induces CI and what it targets are unknown. Likewise, how CidA prevents sterilization by CidB is not clear. To identify CidB substrates in mosquitos we conducted pull-down assays using recombinant CidA and CidB mixed with Aedes aegypti lysates to identify the protein interactomes of CidB and the CidB/CidA protein complex. Our data allow us to cross compare CidB interactomes across taxa for Aedes and Drosophila. Our data replicate several convergent interactions, suggesting that CI targets conserved substrates across insects. Our data support a hypothesis that CidA rescues CI by tethering CidB away from its substrates. Specifically, we identify ten convergent candidate substrates including P32 (protamine-histone exchange factor), karyopherin alpha, ubiquitin-conjugating enzyme, and bicoid stabilizing factor. Future analysis on how these candidates contribute to CI will clarify mechanisms.


Asunto(s)
Aedes , Wolbachia , Animales , Masculino , Drosophila , Drosophila melanogaster , Semen , Citoplasma/metabolismo
17.
Front Microbiol ; 14: 1084839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36819029

RESUMEN

Introduction: The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods: Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results: Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion: This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.

18.
Insect Sci ; 30(6): 1689-1700, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36744754

RESUMEN

The endosymbiont Wolbachia manipulates host reproduction by several strategies, one of the most important of which is cytoplasmic incompatibility (CI). CI can be rescued when Wolbachia-infected males mate with females infected with the same Wolbachia strain. However, the potential rescue mechanism of CI in the small brown planthopper Laodelphax striatellus is unclear. In this study, comparative transcriptome analysis was applied to explore the effect of Wolbachia on L. striatellus eggs. A total of 1387 differentially expressed genes were identified. RNA interference of 7 Wolbachia-upregulated key planthopper genes reduced egg reproduction, suggesting that Wolbachia might improve fecundity in L. striatellus by affecting these 7 genes. Suppressing the expression of another upregulated gene, NDUFA8 (encoding NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 8-like) by RNA interference significantly increased the mortality of early embryos without affecting the number of deposited eggs. Wolbachia infection upregulated the mRNA level of NDUFA8, and dsNDUFA8 treatment of Wolbachia-infected females recreated CI-like symptoms, suggesting that NDUFA8 is associated with the rescue phenotype. Because all L. striatellus populations worldwide are infected with Wolbachia, NDUFA8 is a potential pest control target.


Asunto(s)
Hemípteros , Wolbachia , Femenino , Masculino , Animales , Wolbachia/genética , Hemípteros/genética , Hemípteros/metabolismo , Fertilidad , Reproducción , Perfilación de la Expresión Génica
19.
Proc Biol Sci ; 290(1990): 20221963, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629101

RESUMEN

Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.


Asunto(s)
Drosophila , Wolbachia , Animales , Masculino , Drosophila/genética , Wolbachia/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Transcriptoma , Semen , Espermatogénesis , Citoplasma/microbiología
20.
Mol Ecol ; 31(24): 6570-6587, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36201377

RESUMEN

The endosymbiotic Wolbachia is one of the most common intracellular bacteria known in arthropods and nematodes. Its ability for reproductive manipulation can cause unequal inheritance to male and female offspring, allowing the manipulator to spread, but potentially also impact the evolutionary dynamics of infected hosts. Estimated to be present in up to 66% of insect species, little is known about the phenotypic impact of Wolbachia within the order Coleoptera. Here, we describe the reproductive manipulation by the Wolbachia strain wSur harboured by the sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera, Silvanidae), through a combination of genomics approaches and bioassays. The Wolbachia strain wSur belongs to supergroup B that contains well-described reproductive manipulators of insects and encodes a pair of cytoplasmic incompatibility factor (cif) genes, as well as multiple homologues of the WO-mediated killing (wmk) gene. A phylogenetic comparison with wmk homologues of wMel of Drosophila melanogaster identified 18 wmk copies in wSur, including one that is closely related to the wMel male-killing homologue. However, further analysis of this particular wmk gene revealed an eight-nucleotide deletion leading to a stop-codon and subsequent reading frame shift midsequence, probably rendering it nonfunctional. Concordantly, utilizing a Wolbachia-deprived O. surinamensis population and controlled mating pairs of wSur-infected and noninfected partners, we found no experimental evidence for male-killing. However, a significant ~50% reduction of hatching rates in hybrid crosses of uninfected females with infected males indicates that wSur is causing cytoplasmic incompatibility. Thus, Wolbachia also represents an important determinant of host fitness in Coleoptera.


Asunto(s)
Escarabajos , Wolbachia , Animales , Masculino , Femenino , Wolbachia/genética , Escarabajos/genética , Escarabajos/microbiología , Drosophila melanogaster/genética , Filogenia , Citoplasma/genética , Citoplasma/microbiología , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA