Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Br J Pharmacol ; 181(20): 4028-4049, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38936407

RESUMEN

BACKGROUND AND PURPOSE: Inhibitors of histone deacetylases (iHDACs) are promising drugs for neurodegenerative diseases. We have evaluated the therapeutic potential of the new iHDAC LASSBio-1911 in Aß oligomer (AßO) toxicity models and astrocytes, key players in neuroinflammation and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: Astrocyte phenotype and synapse density were evaluated by flow cytometry, Western blotting, immunofluorescence and qPCR, in vitro and in mice. Cognitive function was evaluated by behavioural assays using a mouse model of intracerebroventricular infusion of AßO. KEY RESULTS: LASSBio-1911 modulates reactivity and synaptogenic potential of cultured astrocytes and improves synaptic markers in cultured neurons and in mice. It prevents AßO-triggered astrocytic reactivity in mice and enhances the neuroprotective potential of astrocytes. LASSBio-1911 improves behavioural performance and rescues synaptic and memory function in AßO-infused mice. CONCLUSION AND IMPLICATIONS: These results contribute to unveiling the mechanisms underlying astrocyte role in AD and provide the rationale for using astrocytes as targets to new drugs for AD.


Asunto(s)
Péptidos beta-Amiloides , Astrocitos , Disfunción Cognitiva , Inhibidores de Histona Desacetilasas , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Masculino , Ratones Endogámicos C57BL , Células Cultivadas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación
2.
Nutrition ; 125: 112465, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38823252

RESUMEN

OBJECTIVES: It is unclear whether parental consumption of non-nutritive sweetener (NNS) can affect subsequent generations. The aim of this study was to determine whether chronic parental consumption of sucralose and stevia in mice affects body weight gain and liver and intestinal expression of histone deacetylase 3 (Hdac3) in these animals and in the subsequent first filial (F1) and second filial (F2) generations. METHODS: Male and female mice (n = 47) were divided into three groups to receive water alone or supplemented with sucralose (0.1 mg/mL) or stevia (0.1 mg/mL) for 16 wk (parental [F0] generation). F0 mice were bred to produce the F1 generation; then, F1 mice were bred to produce the F2 generation. F1 and F2 animals did not receive NNSs. After euthanasia, hepatic and intestinal expression of Hdac3 was determined by quantitative reverse transcription polymerase chain reaction. RESULTS: Body weight gain did not differ between the three groups in the F0 generation, but it was greater in the F1 sucralose and stevia groups than in the control group. Consumption of both NNSs in the F0 generation was associated with lower Hdac3 expression in the liver and higher in the intestine. Hepatic Hdac3 expression was normalized to the control values in the F1 and F2 animals of the sucralose and stevia groups. Intestinal expression was still higher in the F1 generations of the sucralose and stevia groups but was partially normalized in the F2 generation of these groups, compared with control. CONCLUSIONS: NNS consumption differentially affects hepatic and intestinal Hdac3 expression. Changes in hepatic expression are not transmitted to the F1 and F2 generations whereas those in intestinal expression are enhanced in the F1 and attenuated in the F2 generations.


Asunto(s)
Histona Desacetilasas , Hígado , Stevia , Sacarosa , Edulcorantes , Animales , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Masculino , Sacarosa/análogos & derivados , Sacarosa/farmacología , Femenino , Ratones , Hígado/efectos de los fármacos , Hígado/metabolismo , Edulcorantes/farmacología , Aumento de Peso/efectos de los fármacos , Edulcorantes no Nutritivos/farmacología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Peso Corporal/efectos de los fármacos
3.
Can J Microbiol ; 70(7): 252-261, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855942

RESUMEN

Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1ß, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1ß, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.


Asunto(s)
Citocinas , Reposicionamiento de Medicamentos , Inhibidores de Histona Desacetilasas , Inmunidad Innata , Infecciones por Mycobacterium no Tuberculosas , Inmunidad Innata/efectos de los fármacos , Humanos , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Inhibidores de Histona Desacetilasas/farmacología , Citocinas/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Micobacterias no Tuberculosas/efectos de los fármacos , Micobacterias no Tuberculosas/inmunología , Mycobacterium/inmunología , Mycobacterium/efectos de los fármacos
4.
Front Pharmacol ; 15: 1381168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720770

RESUMEN

Epigenetic modifications, characterized by changes in gene expression without altering the DNA sequence, play a crucial role in the development and progression of cancer by significantly influencing gene activity and cellular function. This insight has led to the development of a novel class of therapeutic agents, known as epigenetic drugs. These drugs, including histone deacetylase inhibitors, histone acetyltransferase inhibitors, histone methyltransferase inhibitors, and DNA methyltransferase inhibitors, aim to modulate gene expression to curb cancer growth by uniquely altering the epigenetic landscape of cancer cells. Ongoing research and clinical trials are rigorously evaluating the efficacy of these drugs, particularly their ability to improve therapeutic outcomes when used in combination with other treatments. Such combination therapies may more effectively target cancer and potentially overcome the challenge of drug resistance, a significant hurdle in cancer therapy. Additionally, the importance of nutrition, inflammation control, and circadian rhythm regulation in modulating drug responses has been increasingly recognized, highlighting their role as critical modifiers of the epigenetic landscape and thereby influencing the effectiveness of pharmacological interventions and patient outcomes. Epigenetic drugs represent a paradigm shift in cancer treatment, offering targeted therapies that promise a more precise approach to treating a wide spectrum of tumors, potentially with fewer side effects compared to traditional chemotherapy. This progress marks a step towards more personalized and precise interventions, leveraging the unique epigenetic profiles of individual tumors to optimize treatment strategies.

5.
Curr Neurovasc Res ; 20(5): 586-598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288841

RESUMEN

BACKGROUND: Major depression has a complex and multifactorial etiology constituted by the interaction between genetic and environmental factors in its development. OBJECTIVE: The aim of this study was to evaluate the effects of sodium butyrate (SD) on epigenetic enzyme alterations in rats subjected to animal models of depression induced by maternal deprivation (MD) or chronic mild stress (CMS). METHODS: To induce MD, male Wistar rats were deprived of maternal care during the first 10 days of life. To induce CMS, rats were subjected to the CMS for 40 days. Adult rats were then treated with daily injections of SD for 7 days. Animals were subjected to the forced swimming test (FST), and then, histone deacetylase (HDAC), histone acetyltransferase (HAT), and DNA methyltransferase (DNMT) activities were evaluated in the brain. RESULTS: MD and CMS increased immobility time in FST and increased HDAC and DNMT activity in the animal brains. SD reversed increased immobility induced by both animal models and the alterations in HDAC and DNMT activities. There was a positive correlation between enzyme activities and immobility time for both models. HDAC and DNMT activities also presented a positive correlation between themselves. CONCLUSION: These results suggest that epigenetics can play an important role in major depression pathophysiology triggered by early or late life stress and its treatment.


Asunto(s)
Antidepresivos , Encéfalo , Ácido Butírico , Epigénesis Genética , Privación Materna , Ratas Wistar , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/tratamiento farmacológico , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ratas , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Depresión/tratamiento farmacológico , Histona Acetiltransferasas/metabolismo , Natación/psicología
6.
Mol Cell Proteomics ; 23(3): 100722, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272115

RESUMEN

Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Células Endoteliales/metabolismo , Espectrometría de Masas en Tándem , Matriz Extracelular/metabolismo , Glioma/metabolismo , Epigénesis Genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Microambiente Tumoral , Proteínas de la Membrana/metabolismo , Proteínas ADAM/metabolismo
7.
Insect Biochem Mol Biol ; 162: 104027, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832798

RESUMEN

The midgut of Zabrotes subfasciatus (Coleoptera) and other insects may have regions lacking a peritrophic membrane (matrix, PM) and covered with a jelly-like material known as peritrophic gel. This work was undertaken to test the hypothesis that the peritrophic gel is a vertebrate-like mucus. By histochemistry we identified mucins along the whole midgut, which contrasts with the known occurrence of PM only at the posterior midgut. We also analyzed the expression of the genes coding for mucus-forming mucins (Mf-mucins), peritrophins, chitin synthases and chitin deacetylases along the midgut and carcass (insect without midgut) by RNA-seq. Mf-mucins were identified as proteins with high O-glycosylation and multiple tandem repeats of Pro/Thr/Ser residues. Peritrophins were separated into PM proteins, cuticular proteins analogous to peritrophins (CPAPs) and ubiquitous-chitin-binding domain-(CBD)-containing proteins (UCBPs). PM proteins have at least 3, CPAP one or 3, and UCBPs have a varied number of CBDs. PM proteins are more expressed at midgut, CPAP at the carcass, and UCBP at both. The results showed that most PM proteins are mainly expressed at the posterior midgut, together with midgut chitin synthase and chitin deacetylase, and in agreement with the presence of PM only at the posterior midgut by visual inspection. The excretion of most midgut chitinase is avoided, suggesting that the shortened PM is functional. Mf-mucins are expressed along the whole midgut, probably forming the extracellular mucus layer observed by histochemistry. Thus, the lack of PM at anterior and middle midgut causes the exposure of a mucus, which may correspond to the previously described peritrophic gel. The putative functional interplay of mucus and PM is discussed. The major role of mucus is proposed to be tissue protection and of PM to enhancing digestive efficiency by allowing enzyme recycling.


Asunto(s)
Escarabajos , Animales , Escarabajos/metabolismo , Proteínas de la Membrana/metabolismo , Mucinas/genética , Transcriptoma , Insectos/metabolismo , Quitina/metabolismo , Proteínas de Insectos/metabolismo , Larva/genética
8.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756598

RESUMEN

Motor neuron (MN) loss is the primary pathological hallmark of amyotrophic lateral sclerosis (ALS). Histone deacetylase 4 (HDAC4) is one of several factors involved in nerve-muscle communication during MN loss, hindering muscle reinnervation, as shown in humans and in animal models of ALS, and may explain the differential progression observed in patients with ALS - rapid versus slow progression. In this work, we inhibited HDAC4 activity through the administration of a pan-histone deacetylase inhibitor, sodium butyrate, in an in vivo model of chronic spinal MN death induced by AMPA-mediated excitotoxicity. We infused AMPA into the spinal cord at low and high doses, which mimic the rapid and slow progression observed in humans, respectively. We found that muscle HDAC4 expression was increased by high-dose infusion of AMPA. Treatment of animals with sodium butyrate further decreased expression of muscle HDAC4, although non-significantly, and did not prevent the paralysis or the MN loss induced by AMPA infusion. These results inform on the role of muscle HDAC4 in MN degeneration in vivo and provide insights for the search for more suitable therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Animales , Esclerosis Amiotrófica Lateral/patología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Neuronas Motoras/patología , Médula Espinal/patología
9.
Neuromolecular Med ; 25(4): 573-585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37740824

RESUMEN

Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 µM) and D283 (IC50 = 334 µM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Calidad de Vida , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular , Neoplasias Cerebelosas/tratamiento farmacológico , Receptores ErbB/metabolismo , Receptores ErbB/farmacología , Receptores ErbB/uso terapéutico , Línea Celular Tumoral
10.
Front Oncol ; 13: 1177590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182145

RESUMEN

Angioimmunoblastic T-cell lymphoma (AITL) is the second most frequent subtype of mature T-cell lymphoma (MTCL) in the Western world. It derives from the monoclonal proliferation of T-follicular helper (TFH) cells and is characterized by an exacerbated inflammatory response and immune dysregulation, with predisposition to autoimmunity phenomena and recurrent infections. Its genesis is based on a multistep integrative model, where age-related and initiator mutations involve epigenetic regulatory genes, such as TET-2 and DNMT3A. Subsequently, driver-mutations, such as RhoA G17V and IDH-2 R172K/S promote the expansion of clonal TFH-cells ("second-hit"), that finally begin to secrete cytokines and chemokines, such as IL-6, IL-21, CXCL-13 and VEGF, modulating a network of complex relationships between TFH-cells and a defective tumor microenvironment (TME), characterized by expansion of follicular dendritic cells (FDC), vessels and EBV-positive immunoblasts. This unique pathogenesis leads to peculiar clinical manifestations, generating the so-called "immunodysplastic syndrome", typical of AITL. Its differential diagnosis is broad, involving viral infections, collagenosis and adverse drug reactions, which led many authors to use the term "many-faced lymphoma" when referring to AITL. Although great advances in its biological knowledge have been obtained in the last two decades, its treatment is still an unmet medical need, with highly reserved clinical outcomes. Outside the setting of clinical trials, AITL patients are still treated with multidrug therapy based on anthracyclines (CHOP-like), followed by up-front consolidation with autologous stem cell transplantation (ASCT). In this setting, the estimated 5-year overall survival (OS) is around 30-40%. New drugs, such as hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDAi), have been used for relapsed/refractory (R/R) disease with promising results. Such agents have their use based on a biological rationale, have significant potential to improve the outcomes of patients with AITL and may represent a paradigm shift in the therapeutic approach to this lymphoma in the near future.

11.
J Endocrinol Invest ; 46(11): 2353-2365, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37052871

RESUMEN

BACKGROUND: Anaplastic thyroid cancer (ATC) represents a rare lethal human malignancy with poor prognosis. Multimodality treatment, including radiotherapy, is recommended to improve local control and survival. Valproic acid (VA) is a clinically available histone deacetylase inhibitor with a well-documented side effect profile. In this study, we aim to investigate the combined effect of VA with photon irradiation in vitro. METHODS: Anaplastic thyroid cancer cells (8505c) were used to investigate the radiosensitizing effect of VA. RESULTS: VA sensitized cells to photon irradiation. VA increased radiation-induced apoptosis and radiation-induced DNA damage measured by γH2AX foci induction. Furthermore, VA prolonged γH2AX foci disappearance over time in irradiated cells and decreased the radiation-induced levels of mRNA of key DNA damage repair proteins of the homologous recombination (HR) and the nonhomologous end joining (NHEJ) pathways. CONCLUSIONS: VA at a clinically safe dose enhance the radiosensitivity of 8505c cells through an increase in radiation-induced apoptosis and a disruption in the molecular mechanism of HR and NHEJ DNA damage repair pathways.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Ácido Valproico/farmacología , Histonas/metabolismo , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/genética , Línea Celular Tumoral , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/radioterapia , Daño del ADN
12.
Cells ; 12(7)2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048093

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease characterized by progressive and irreversible lung scarring associated with persistent activation of fibroblasts. Epigenetics could integrate diverse microenvironmental signals, such as stiffness, to direct persistent fibroblast activation. Histone modifications by deacetylases (HDAC) may play an essential role in the gene expression changes involved in the pathological remodeling of the lung. Particularly, HDAC3 is crucial for maintaining chromatin and regulating gene expression, but little is known about its role in IPF. In the study, control and IPF-derived fibroblasts were used to determine the influence of HDAC3 on chromatin remodeling and gene expression associated with IPF signature. Additionally, the cells were grown on hydrogels to mimic the stiffness of a fibrotic lung. Our results showed a decreased HDAC3 in the nucleus of IPF fibroblasts, which correlates with changes in nucleus size and heterochromatin loss. The inhibition of HDAC3 with a pharmacological inhibitor causes hyperacetylation of H3K9 and provokes an increased expression of Col1A1, ACTA2, and p21. Comparable results were found in hydrogels, where matrix stiffness promotes the loss of nuclear HDAC3 and increases the profibrotic signature. Finally, latrunculin b was used to confirm that changes by stiffness depend on the mechanotransduction signals. Together, these results suggest that HDAC3 could be a link between epigenetic mechanisms and the fibrotic microenvironment.


Asunto(s)
Ensamble y Desensamble de Cromatina , Fibrosis Pulmonar Idiopática , Humanos , Mecanotransducción Celular , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Fibroblastos/metabolismo
13.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36656997

RESUMEN

Studying the evolutionary history of gene families is a challenging and exciting task with a wide range of implications. In addition to exploring fundamental questions about the origin and evolution of genes, disentangling their evolution is also critical to those who do functional/structural studies to allow a deeper and more precise interpretation of their results in an evolutionary context. The sirtuin gene family is a group of genes that are involved in a variety of biological functions mostly related to aging. Their duplicative history is an open question, as well as the definition of the repertoire of sirtuin genes among vertebrates. Our results show a well-resolved phylogeny that represents an improvement in our understanding of the duplicative history of the sirtuin gene family. We identified a new sirtuin gene family member (SIRT3.2) that was apparently lost in the last common ancestor of amniotes but retained in all other groups of jawed vertebrates. According to our experimental analyses, elephant shark SIRT3.2 protein is located in mitochondria, the overexpression of which leads to an increase in cellular levels of ATP. Moreover, in vitro analysis demonstrated that it has deacetylase activity being modulated in a similar way to mammalian SIRT3. Our results indicate that there are at least eight sirtuin paralogs among vertebrates and that all of them can be traced back to the last common ancestor of the group that existed between 676 and 615 millions of years ago.


Asunto(s)
Sirtuina 3 , Sirtuinas , Animales , Sirtuinas/genética , Sirtuina 3/genética , Evolución Molecular , Vertebrados/genética , Filogenia , Mamíferos
14.
Nutr Neurosci ; 26(1): 72-84, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36625764

RESUMEN

Although the pathogenesis of Parkinson's Disease (PD) is not completely understood, there is a consensus that it can be caused by multifactorial mechanisms involving genetic susceptibility, epigenetic modifications induced by toxins and mitochondrial dysfunction. In the past 20 years, great efforts have been made in order to clarify molecular mechanisms that are risk factors for this disease, as well as to identify bioactive agents for prevention and slowing down of its progression. Nutraceutical products have received substantial interest due to their nutritional, safe and therapeutic effects on several chronic diseases. The aim of this review was to gather the main evidence of the epigenetic mechanisms involved in the neuroprotective effects of phenolic compounds currently under investigation for the treatment of toxin-induced PD. These studies confirm that the neuroprotective actions of polyphenols involve complex epigenetic modulations, demonstrating that the intake of these natural compounds can be a promising, low-cost, pharmacogenomic strategy against the development of PD.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/prevención & control , Polifenoles/farmacología , Nutrigenómica , Epigénesis Genética , Predisposición Genética a la Enfermedad
15.
Neuromolecular Med ; 25(1): 64-74, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35716340

RESUMEN

Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Niño , Adolescente , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Cerebelo , Inhibidores de Histona Desacetilasas/uso terapéutico , Clorhidrato de Fingolimod/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
16.
Mem. Inst. Oswaldo Cruz ; 118: e230143, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1529018

RESUMEN

BACKGROUND Tuberculosis (TB) is a major public health problem, which has been aggravated by the alarming growth of drug-resistant tuberculosis. Therefore, the development of a safer and more effective treatment is needed. OBJECTIVES The aim of this work was repositioning and evaluate histone deacetylases (HDAC) inhibitors- based drugs with potential antimycobacterial activity. METHODS Using an in silico pharmacological repositioning strategy, three molecules that bind to the catalytic site of histone deacetylase were selected. Pneumocytes type II and macrophages were infected with Mycobacterium tuberculosis and treated with pre-selected HDAC inhibitors (HDACi). Subsequently, the ability of each of these molecules to directly promote the elimination of M. tuberculosis was evaluated by colony-forming unit (CFU)/mL. We assessed the expression of antimicrobial peptides and respiratory burst using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) FINDINGS Aminoacetanilide (ACE), N-Boc-1,2-phenylenediamine (N-BOC), 1,3-Diphenylurea (DFU), reduce bacillary loads in macrophages and increase the production of β-defensin-2, LL-37, superoxide dismutase (SOD) 3 and inducible nitric oxide synthase (iNOS). While only the use of ACE in type II pneumocytes decreases the bacterial load through increasing LL-37 expression. Furthermore, the use of ACE and rifampicin inhibited the survival of intracellular multi-drug resistance M. tuberculosis. MAIN CONCLUSIONS Our data support the usefulness of in silico approaches for drug repositioning to provide a potential adjunctive therapy for TB.

17.
J Genet Eng Biotechnol ; 20(1): 169, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542226

RESUMEN

BACKGROUND: Arylacetamide deacetylase (AADAC) is a lipolytic enzyme involved in xenobiotic metabolism. The characterization in terms of activity and substrate preference has been limited to a few mammalian species. The potential role and catalytic activities of AADAC from other organisms are still poorly understood. Therefore, in this work, the physicochemical properties, proteomic analysis, and protein-protein interactions from Gnathostomata organisms were investigated. RESULTS: The analysis were performed with 142 orthologue sequences with ~ 48-100% identity with human AADAC. The catalytic motif HGG[A/G] tetrapeptide block was conserved through all AADAC orthologues. Four variations were found in the consensus pentapeptide GXSXG sequence (GDSAG, GESAG, GDSSG, and GSSSG), and a novel motif YXLXP was found. The prediction of N-glycosylation sites projected 4, 1, 6, and 4 different patterns for amphibians, birds, mammals, and reptiles, respectively. The transmembrane regions of AADAC orthologues were not conserved among groups, and variations in the number and orientation of the active site and C-terminal carboxyl were observed among the sequences studied. The protein-protein interaction of AADAC orthologues were related to cancer, lipid, and xenobiotic metabolism genes. CONCLUSION: The findings from this computational analysis offer new insight into one of the main enzymes involved in xenobiotic metabolism from mammals, reptiles, amphibians, and birds and its potential use in medical and veterinarian biotechnological approaches.

18.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297372

RESUMEN

Histone deacetylases (HDAC) are epigenetic enzymes responsible for repressing gene expression through the deacetylation of histone lysine residues. Therefore, inhibition of HDACs has become an interesting approach for the treatment of several diseases, including cancer, hematology, neurodegenerative, immune diseases, bacterial infections, and more. Resveratrol (RVT) has pleiotropic effects, including pan-inhibition of HDAC isoforms; however, its ability to interfere with membranes requires additional optimization to eliminate nonspecific and off-target effects. Thus, to explore RVT as a scaffold, we designed a series of novel HDAC-1 and -2 inhibitors containing the 2-aminobenzamide subunit. Using molecular modeling, all compounds, except unsaturated compounds (4) and (7), exhibited a similar mode of interaction at the active sites of HDAC 1 and 2. The docking score values obtained from the study ranged from -12.780 to -10.967 Kcal/mol. All compounds were synthesized, with overall yields ranging from 33% to 67.3%. In an initial screening, compounds (4), (5), (7), and (20)-(26), showed enzymatic inhibitory effects ranging from 1 to 96% and 6 to 93% against HDAC-1 and HDAC-2, respectively. Compound (5), the most promising HDAC inhibitor in this series, was selected for IC50 assays, resulting in IC50 values of 0.44 µM and 0.37 µM against HDAC-1 and HDAC-2, respectively. In a panel of selectivity against HDACs 3-11, compound (5) presented selectivity towards Class I, mainly HDAC-1, 2, and 3. All compounds exhibited suitable physicochemical and ADMET properties as determined using in silico simulations. In conclusion, the optimization of the RVT structure allows the design of selective HDAC inhibitors, mainly targeting HDAC-1 and HDAC-2 isoforms.

19.
Expert Opin Drug Discov ; 17(11): 1279-1293, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302760

RESUMEN

INTRODUCTION: Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the ß-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED: Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION: The comprehension of the mechanisms involved in the ß-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.


Asunto(s)
Hemoglobina Fetal , Globinas beta , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina Fetal/farmacología , Globinas beta/farmacología , Factores de Transcripción , Transducción de Señal
20.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956762

RESUMEN

The marine environment is highly diverse, each living creature fighting to establish and proliferate. Among marine organisms, cyanobacteria are astounding secondary metabolite producers representing a wonderful source of biologically active molecules aimed to communicate, defend from predators, or compete. Studies on these molecules' origins and activities have been systematic, although much is still to be discovered. Their broad chemical diversity results from integrating peptide and polyketide synthetases and synthases, along with cascades of biosynthetic transformations resulting in new chemical structures. Cyanobacteria are glycolipid, macrolide, peptide, and polyketide producers, and to date, hundreds of these molecules have been isolated and tested. Many of these compounds have demonstrated important bioactivities such as cytotoxicity, antineoplastic, and antiproliferative activity with potential pharmacological uses. Some are currently under clinical investigation. Additionally, conventional chemotherapeutic treatments include drugs with a well-known range of side effects, making anticancer drug research from new sources, such as marine cyanobacteria, necessary. This review is focused on the anticancer bioactivities of metabolites produced by marine cyanobacteria, emphasizing the identification of each variant of the metabolite family, their chemical structures, and the mechanisms of action underlying their biological and pharmacological activities.


Asunto(s)
Antineoplásicos , Productos Biológicos , Cianobacterias , Antineoplásicos/química , Organismos Acuáticos/química , Productos Biológicos/química , Cianobacterias/química , Plomo/metabolismo , Macrólidos/metabolismo , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA