Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38693685

RESUMEN

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Asunto(s)
Compuestos de Cadmio , Dopamina , Técnicas Electroquímicas , Nanoestructuras , Neurotransmisores , Sulfuros , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Dopamina/análisis , Dopamina/sangre , Nanoestructuras/química , Neurotransmisores/análisis , Neurotransmisores/sangre , Humanos , Sulfuros/química , Procesos Fotoquímicos , Saliva/química , Teoría Funcional de la Densidad , Técnicas Biosensibles/métodos , Semiconductores , Microelectrodos
2.
Small ; 20(26): e2310926, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38239093

RESUMEN

Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.

3.
Small ; 20(14): e2306406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990371

RESUMEN

Interface engineering attracted tremendous attention owing to its remarkable ability to impede dendrite growth and side reactions in aqueous zinc-ion batteries. Artificial interface layers composed of crystalline materials have been extensively employed to stabilize the Zn anode. However, the diffusion kinetics of Zn2+ in highly crystalline materials are hindered by steric effects from the lattice, thereby limiting the high-rate performance of the cell. Here, defect-rich HfO2-x polycrystals derived from metal-organic frameworks (MOFs) (D-HfO2-x) are developed to enhance the Zn deposition behavior. The discrepancy of dielectric constants between metallic Zn and HfO2 enables the building of an electrostatic shielding layer for uniform Zn deposition. More importantly, the oxygen vacancies in D-HfO2-x provide abundant active sites for Zn2+ adsorption, accelerating the kinetics of Zn2+ migration, which contributes to the preferential exposure of the Zn (002) plane during plating. Consequently, the D-HfO2-x-modified Zn anode delivers ultrastable durability of over 5000 h at 1 mA cm-2 and a low voltage hysteresis of 30 mV. The constructed defective coating provides a guarantee for the stable operation of Zn anodes, and the innovative approach of defective engineering also offers new ideas for the protection of other energy storage devices.

4.
Adv Mater ; 35(48): e2305573, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734330

RESUMEN

Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FEFDCA ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M3+ co-chemistry. NiMn UT-LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni-O and Mn-O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn-OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates.

5.
Chemosphere ; 340: 139736, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544526

RESUMEN

Intramolecular-tailored graphite carbon nitride (g-C3N4) has great potential to greatly optimize the photo-response performance and carrier separation ability, but exquisite molecular structure engineering is still challenging. Firstly, a series of oxygen and terminal methyl moiety co-modified g-C3N4 (CNNx) has been systematically prepared by using N-Hydroxysuccinimide (HOSu) as a novel copolymerized precursor and urea. The density functional theory (DFT) calculations demonstrated that the presence of oxygen can lower the binding energy for the C-C bond to make the terminal modification easier. The terminal methyl and Oxygen not only caused abundant alveolar defects to break the periodic symmetry but also acted as an electron-accepting platform to tune the local charge redistribution within g-C3N4 molecular. The synthesized CNNx (CNN25) achieved ultra-high photocatalytic activity and chemical stability under visible light toward antibiotic degradation (99% tetracycline, 92% doxycycline, 65% ofloxacin and 74% sulfathiazole degradation within 30 min) and hydrogen production (an apparent quantum efficiency of 2.10% at 400 nm). CNN25 also maintains good efficiency in surface water and groundwater. Moreover, the TC solution treated with CNN25 had hardly any harm to the growth of E. coli. We believe our findings will provide a facile and green strategy for the preparation of non-metallic modified g-C3N4.


Asunto(s)
Grafito , Grafito/química , Escherichia coli , Antibacterianos , Luz , Hidrógeno , Catálisis
6.
Small Methods ; 7(11): e2300714, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541666

RESUMEN

Porous carbon is the most promising cathode material for Zn-ion hybrid capacitors (ZIHCs), but is limited by insufficient active adsorption sites and slow ion diffusion kinetics during charge storage. Herein, a pore construction-pore expansion strategy for synthesizing multi-channel hollow carbon nanofibers (MCHCNF) is proposed, in which the sacrificial template-induced multi-channel structure eliminates the diffusion barrier for enhancing ion diffusion kinetics, and the generated ultrahigh surface area and high-density defective structures effectively increase the quantity of active sites for charge storage. Additionally, a graphene-like shell structure formed on the carbon nanofiber surface facilitates fast electron transport, and the highly matchable pore size of MCHCNF with electrolyte-ions favors the accommodation of charge carriers. These advantages lead to the optimized ZIHCs exhibit high capacity (191.4 mAh g-1 ), high energy (133.1 Wh kg-1 ), along with outstanding cycling stability (93.0% capacity retention over 15000 cycles). Systematic ex situ characterizations reveal that the dual-adsorption of anions and cations synergistically ensures the outstanding electrochemical performance, highlighting the importance of the highly-developed porous structure of MCHCNF. This work not only provides a promising strategy for improving the capacitive capability of porous materials but also sheds light on charge storage mechanisms and rational design for advanced energy storage devices.

7.
Small ; 19(28): e2300076, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029708

RESUMEN

Polysulfides huttling and interfacial instability of Lithium-anode are the main technical issues hindering commercialization of high-energy-density lithium-sulfur batteries. Simply addressing the problem of polysulfide shuttling or lithium dendrite growth can result in safety hazards or short lifespan. To synchronously tackle the aforementioned issues, the authors have designed an asymmetric cellulose gel electrolyte, a defective and ionized UiO66/black phosphorus heterostructure coating layer (Di-UiO66/BP) and a cationic cellulose gelelectrolyte (QACA). Defective and ionized engineered UiO66 particles significantly enhances performance of UiO66/BP layer in anchoring free polysulfides, promoting smooth and effective polysulfide conversion and expediting the redox kinetics of sulfur cathode, therefore suppressing polysulfide shuttling. QACA electrolyte with numerous cationic groups can interact with anions via electrostatic adsorption, thus enhancing lithium-ion transference number and contributing to formation of stable solid electrolyte interface to suppress lithium dendrite growth. Owing to the superior performance of QACA/Di-UiO66/BP, the final cells exhibit outstanding electrochemical performance, presenting high sulfur utilization (1420.1 mAh g-1 at 0.1 C), high-rate capacity (665.4 mAh g-1 at 4 C) and long cycle lifespan. This work proposes a strategy of designing asymmetric electrolytes to simultaneously address the challenges in both S-cathode and Li-anode, which contributes to advanced Li-S batteries and their practical application.

8.
Small Methods ; 7(1): e2201248, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549891

RESUMEN

Sonodynamic therapy (SDT) with non-invasiveness and high tissue-penetrating ability has attracted widespread interest in treating deep-seated tumors or infections. To enhance the treatment efficacy of SDT, the development of high-efficiency and stable sonosensitizers are still needed. Herein, a defective homojunction porphyrin-based metal-organic framework (MOF) with greatly enhanced sonocatalytic ability is easily prepared and used for SDT of osteomyelitis infected by methicillin-resistant Staphylococcus aureus (MRSA). Acetic acid and benzoic acid are chosen as modulators during the hydrothermal synthesis of porphyrin-based MOF. It is found that the crystal structure of MOF shifts from PCN-222 to PCN-224 as the amount of acetic acid increases. Interestingly, the defective PCN (D-PCN) contains a two-phase homojunction structure of PCN-222/PCN-224. The sonocatalytic reactive oxygen species production presents a volcano-type trend with increased acetic acid, among which D-PCN-2 with more content of PCN-224 has the best sonocatalytic antibacterial ability. The reduced band gap introduced a defect, and type-II homojunction structures of D-PCN-2 improve the separation of the ultrasound-triggered electron hole, which significantly enhances the SDT effect. Through a mixed linker approach, this work develops a new defect-induced homojunction MOF with great performance for SDT of MRSA-infected osteomyelitis.


Asunto(s)
Estructuras Metalorgánicas , Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Porfirinas , Humanos , Estructuras Metalorgánicas/farmacología , Ácido Acético
9.
Res Sq ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38196652

RESUMEN

Objective: Regular physical activity (PA) promotes mental and physical health. Nevertheless, inactivity is a worldwide pandemic, and methods to augment exercise benefits are required. The constrained disorder principle (CDP) characterizes biological systems based on their inherent variability. We aimed to investigate the association between intra-individual variability in PA and disability among non-athlete adults. Methods: In this retrospective analysis of the longitudinal SHARE survey, we included non-disabled adults aged >50 with at least six visits over 14 years. Self-reported PA frequency was documented bi- to triennially. Low PA intensity was defined as vigorous PA frequency less than once a week. Stable PA was described as an unchanged PA intensity in all consecutive middle observations. The primary outcome was defined as a physical limitation in everyday activities at the end of the survey. Secondary outcomes were cognitive functions, including short-term memory, long-term memory, and verbal fluency. Results: The study included 2,049 non-disabled adults with a mean age of 53 and 49.1 % women. In the initially high PA intensity group, variability in PA was associated with increased physical disability prevalence (23.3% vs. 33.2%, stablevs. unstablePA; P<0.01; adjusted P<0.01). In the initially low PA intensity group, variability was associated with a reduced physical disability (45.6% vs. 33.3%, stablevs. unstable PA; P=0.02; adjusted P=0.03). There were no statistically significant differences in cognitive parameters between the groups. Among individuals with the same low PA intensity at the beginning and end of follow-up, variability was associated with reduced physical disability (56.9% vs. 36.5%, stablevs. unstablePA; P=0.02; adjusted P=0.04) and improved short-term memory (score change: -0.28 vs. +0.29, stablevs. unstable PA; P=0.05). Conclusion: Incorporating variability into PA regimens of inactive adults may enhance their physical and cognitive benefits.

10.
Front Aging ; 3: 1044038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589143

RESUMEN

Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA