Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.378
Filtrar
1.
Bioinformation ; 20(7): 728-730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309553

RESUMEN

Adolescent girls face myriad challenges impacting their mental health and well-being, necessitating empowerment through self-defense education. In contexts of prevalent gender-based violence, such education becomes imperative, particularly in countries like India. However, the influence of demographic factors on knowledge levels regarding self-defense techniques among adolescent girls remains uncertain. This study employed a one-group pre-test - post-test design to evaluate the impact of a video-assisted self-defense teaching program on adolescent girls in rural Gujarat, India. A sample of 100 girls from Mahesana district schools participated, with data collected via structured questionnaires administered pre and post-intervention. The intervention significantly enhanced participants' knowledge levels, with a remarkable increase in mean post-test scores compared to pre-test scores. Specifically, prior to the intervention, 45% of participants exhibited low knowledge levels, which improved to 19.5% post-intervention. Notably, 80.5% demonstrated excellent knowledge post-intervention. The study underscores the efficacy of a video-assisted self-defense teaching program in augmenting knowledge levels among adolescent girls in rural Gujarat. Despite demographic diversity, the intervention yielded consistent improvements, emphasizing its universal applicability.

2.
Heliyon ; 10(18): e37545, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309893

RESUMEN

Organisms encounter reactive oxidants through intrinsic metabolism and environmental exposure to toxicants. Reactive oxygen and nitrogen species (ROS, RNS) are generally considered detrimental because they induce oxidative stress. In order to combat oxidative stress, a potential modulator of cellular defense nuclear factor erythroid 2-related factor 2 (Nrf2) and its endogenous inhibitor Kelch-like ECH-associated protein 1 (Keap1) operate as a common, genetically preserved intrinsic defense system. There has been a significant increase in the amount of harmful metalloids and metals that individuals are exposed to through their food, water, and air, primarily due to human activities. Many studies have looked at the connection between the emergence of different ailments in humans and ecological exposure to metalloids, i.e., arsenic (As) and metals viz., chromium (Cr), mercury (Hg), cadmium (Cd), cobalt (Co), and lead (Pb). It is known that they can produce ROS in several organs by both direct and indirect means. Studies suggest that Nrf2 signaling is a crucial mechanism in maintaining antioxidant balance and can have two roles, depending on the particular biological setting. From one perspective, Nrf2 is an essential defense mechanism against metal-induced toxicity. Still, it may also operate as a catalyst for metal-induced carcinogenesis in situations involving protracted exposure and persistent activation. Therefore, this review aims to provide an overview of the antioxidant defense mechanism of Nrf2-Keap1 signaling and the interrelation between Nrf2 signaling and the toxic elements.

3.
ACS Nano ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315858

RESUMEN

Influenza virus (IV) infection currently poses a serious and continuing threat to the global public health. Developing effective prevention strategies is important to defend against infection and spread of IV. Here, we developed a triple-protective nanoshield against IV infection in the lungs, formed by self-assembling DSPE-PEG amphiphilic polymers encapsulating the flu-preventive antiviral drug Arbidol internally. The preventive effect of the nanoshield against virus infection includes increasing the viscosity in the surrounding environment to physically defend against viral entry, forming a hydrated layer to block the interaction between viruses and cells, and inhibiting virus replication. Our finding suggested that a single inhalation of the nanoshield provides effective protection against IV infection for at least 8 h. Thus, this nanoshield may be a potential pandemic protection agent against IV, especially in viral environments, where no prophylactic or therapeutic measures are available.

4.
Front Plant Sci ; 15: 1453930, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315373

RESUMEN

Currently transient expression is one of the preferred plant-based technologies for recombinant protein manufacturing, particularly in respect to pharmaceutically relevant products. Modern hybrid transient expression systems combine the features of Agrobacterium tumefaciens and viral vectors. However, host plant reaction to Agrobacterium-mediated delivery of gene of interest can negatively affect foreign protein accumulation. In this study, we investigated whether the modulation of plant immune response through knockdown of the Nb-SABP2 and Nb-COI1 N. benthamiana genes could improve recombinant protein yield. In plants, the SABP2 and COI1 proteins are involved in the salicylic acid and jasmonic acid metabolism, respectively. We exemplified the utility of this approach with the green fluorescence (GFP) and ß nerve growth factor (ßNGF) proteins: compared to the tobacco mosaic virus (TMV)-based vector the Nb-SABP2 and Nb-COI1-suppressed plants provided an increased recombinant protein accumulation. We also show that this strategy is extendable to the expression systems utilizing potato virus X (PVX) as the vector backbone: the enhanced amounts of ßNGF were detected in the Nb-SABP2 and Nb-COI1-depleted leaves co-infiltrated with the PVX-ßNGF. These findings suggest that modulating host plant reaction to agrodelivery of expression vectors could be useful for improving transient foreign protein production in N. benthamiana.

5.
Plant Cell Rep ; 43(10): 238, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316270

RESUMEN

KEY MESSAGE: Boron is essential for plants, but excess can induce toxicity. Boron (B) is a vital micronutrient for plants, but excess B can induce toxicity symptoms and reduce crop yields. B bioavailability depends on soil properties, including clay type, pH, and organic matter content. Symptoms of B toxicity include reduced shoot and root growth, leaf chlorosis and necrosis, impaired photosynthesis, and disrupted pollen development. This review paper examines the current knowledge on B toxicity mechanisms, tolerance strategies, and management approaches in plants. This review covers (1) factors affecting B bioavailability; (2) toxicity symptoms in plants; (3) uptake, transport, and detoxification mechanisms; and (4) strategies. To mitigate toxicity, plants reduce B uptake, activate efflux transporters, compartmentalize B, and enhance antioxidant systems. On the basis of this review, future research should focus on identifying novel tolerance mechanisms, exploring genetic strategies for improved B management, and developing innovative agronomic interventions. These insights will facilitate the breeding and management of crops for enhanced productivity under B toxicity stress.


Asunto(s)
Boro , Boro/toxicidad , Boro/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo , Productos Agrícolas/efectos de los fármacos , Estrés Fisiológico , Suelo/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transporte Biológico , Habilidades de Afrontamiento
6.
Insect Sci ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317948

RESUMEN

The rise of biological invasions threatens biodiversity and food security, with the vespid family, including Vespa soror, being of particular concern. Our study focused on the alarm pheromone components of V. soror. By using gas chromatography-mass spectrometry (GC-MS) chemical analyses, electroantennograms, and field bioassays, we identified 5 compounds-2-pentanol, 3-methyl-1-butanol, 2-heptanol, 2-nonanol (2-N), and isopentyl acetate (IPA)-in hornet sting venom that elicited defensive behavior from hornets. IPA and 2-N also serve as alarm pheromone components in multiple honey bee species that are important prey for V. soror. This shared chemical signaling may allow cross-detection by each species on the other's alarm cues. While it should be advantageous for bees to detect V. soror alarm pheromone, the benefits to V. soror of using IPA and 2-N are unclear. V. soror may manipulate bee behavior, potentially distracting defenders, because they mark victim bee colonies by rubbing their abdomens, which contain their sting glands, at bee hive entrances. Our findings pose new evolutionary questions about the role of manipulation in the arms races.

7.
Mol Plant ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39318096

RESUMEN

Most coexisting insect species exhibit stunted growth compared to the single species on plants. This phenomenon reflects an interspecific antagonism that draws extensive attention while the underlying mechanisms remain largely unknown. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common pests in cotton fields. We identified a secretory protein, ASP1, from the oral secretion of mirids, which was found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional corepressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, thereby promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having little impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, thereby invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.

8.
Microbiol Spectr ; : e0066324, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320111

RESUMEN

Streptomyces, a multifaceted genus of soil-dwelling bacteria belonging to the phylum Actinomycetota, features intricate phage-host interactions shaped by its complex life cycle and the synthesis of a diverse array of specialized metabolites. Here, we describe the isolation and characterization of four novel Streptomyces phages infecting a variety of different host species. While phage Kamino, isolated on Streptomyces kasugaensis, is predicted to be temperate and encodes a serine integrase in its genome, phages Geonosis (isolated on Streptomyces griseus) and Abafar and Scarif, isolated on Streptomyces albidoflavus, are virulent phages. Phages Kamino and Geonosis were shown to amplify well in liquid culture leading to a pronounced culture collapse already at low titers. Determination of the host range by testing >40 different Streptomyces species identified phages Kamino, Abafar, and Scarif as broad host-range phages. Overall, the phages described in this study expand the publicly available portfolio of phages infecting Streptomyces and will be instrumental in advancing the mechanistic understanding of the intricate antiviral strategies employed by these multicellular bacteria.IMPORTANCEThe actinobacterial genus Streptomyces is characterized by multicellular, filamentous growth and the synthesis of a diverse range of bioactive molecules. These characteristics also play a role in shaping their interactions with the most abundant predator in the environment, bacteriophages-viruses infecting bacteria. In this study, we characterize four new phages infecting Streptomyces. Out of those, three phages feature a broad host range infecting up to 15 different species. The isolated phages were characterized with respect to plaque and virion morphology, host range, and amplification in liquid culture. In summary, the phages reported in this study contribute to the broader collection of publicly available phages infecting Streptomyces, playing a crucial role in advancing our mechanistic understanding of phage-host interactions of these multicellular bacteria.

9.
Exp Appl Acarol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320533

RESUMEN

Raoiella indica Hirst has rapidly and widely spread throughout the New World since 2004, primarily infesting coconut palms and interacting with the predator Amblyseius largoensis (Muma). Although A. largoensis feeds on R. indica at all stages of development, it cannot naturally reduce its population to levels that do not impact the host plant. Raoiella indica possesses dorsal setae that secrete exudates during all post-embryonic developmental stages, and females have a behavior that deliberately deposits droplets on the freshly laid egg, possibly as a defense strategy against predation in vulnerable stages. In this context, we analyzed whether the presence or absence of droplets in R. indica eggs affects predation using A. largoensis as a biological model. Thus, we evaluated whether some biological and behavioral characteristics of A. largoensis could be affected by the consumption of R. indica egg masses washed or unwashed with water. Also, we performed a chemical analysis of the droplets exuded by R. indica and provided a description of the oviposition behavior of R. indica. The predator showed a higher consumption rate and preference for washed eggs. The results suggest that the exudate droplets have defensive functions, which are incorporated by the female onto the egg during oviposition and subsequently during a patrolling behavior, as they lose their effect after being washed with water. Although the droplets do not prevent the predator from feeding, they reduce the number of R. indica eggs consumed without affecting the growth of A. largoensis.

10.
Antioxidants (Basel) ; 13(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39334714

RESUMEN

This study explores the impact of exogenous salicylic acid (SA) alongside conventional treatment by farmers providing positive (Mancozeb 80 % WP) and negative (water) controls on rice plants (Oryza sativa L.), focusing on antioxidant enzyme activities, phytohormone levels, disease resistance, and yield components under greenhouse and field conditions. In greenhouse assays, SA application significantly enhanced the activities of peroxidase (POX), polyphenol oxidase (PPO), catalase (CAT), and superoxide dismutase (SOD) within 12-24 h post-inoculation (hpi) with Magnaporthe oryzae. Additionally, SA-treated plants showed higher levels of endogenous SA and indole-3-acetic acid (IAA) within 24 hpi compared to the controls. In terms of disease resistance, SA-treated plants exhibited a reduced severity of rice blast under greenhouse conditions, with a significant decrease in disease symptoms compared to negative control treatment. The field study was extended over three consecutive crop seasons during 2021-2023, further examining the efficacy of SA in regular agricultural practice settings. The SA treatment consistently led to a reduction in rice blast disease severity across all three seasons. Yield-related parameters such as plant height, the number of tillers and panicles per hill, grains per panicle, and 1000-grain weight all showed improvements under SA treatment compared to both positive and negative control treatments. Specifically, SA-treated plants yielded higher grain outputs in all three crop seasons, underscoring the potential of SA as a growth enhancer and as a protective agent against rice blast disease under both controlled and field conditions. These findings state the broad-spectrum benefits of SA application in rice cultivation, highlighting its role not only in bolstering plant defense mechanisms and growth under greenhouse conditions but also in enhancing yield and disease resistance in field settings across multiple crop cycles. This research presents valuable insights into the practical applications of SA in improving rice plant resilience and productivity, offering a promising approach for sustainable agriculture practices.

11.
Antioxidants (Basel) ; 13(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39334761

RESUMEN

The ovary is a major determinant of female reproductive health. Ovarian functions are mainly related to the primordial follicle pool, which is gradually lost with aging. Ovarian aging and reproductive dysfunctions share oxidative stress as a common underlying mechanism. ROS signaling is essential for normal ovarian processes, yet it can contribute to various ovarian disorders when disrupted. Therefore, balance in the redox system is crucial for proper ovarian functions. In the present study, by focusing on mRNAs and ncRNAs described in the ovary and taking into account only validated ncRNA interactions, we built an ovarian antioxidant ceRNA network, named OvAnOx ceRNA, composed of 5 mRNAs (SOD1, SOD2, CAT, PRDX3, GR), 10 miRNAs and 5 lncRNAs (XIST, FGD5-AS1, MALAT1, NEAT1, SNHG1). Our bioinformatic analysis indicated that the components of OvAnOx ceRNA not only contribute to antioxidant defense but are also involved in other ovarian functions. Indeed, antioxidant enzymes encoded by mRNAs of OvAnOx ceRNA operate within a regulatory network that impacts ovarian reserve, follicular dynamics, and oocyte maturation in normal and pathological conditions. The OvAnOx ceRNA network represents a promising tool to unravel the complex dialog between redox potential and ovarian signaling pathways involved in reproductive health, aging, and diseases.

12.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337264

RESUMEN

With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.


Asunto(s)
Cationes Bivalentes , Interacciones Huésped-Patógeno , Humanos , Cationes Bivalentes/metabolismo , Animales , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Tuberculosis/inmunología , Calcio/metabolismo
13.
Viruses ; 16(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39339916

RESUMEN

(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (SQSTM1/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection. (3) Results: The knockout of p62 resulted in an increased release of HCMV progeny. Mass spectrometry revealed an interaction of p62 with cellular proteins required for nucleocytoplasmic transport. Phosphoproteomics further revealed that p62 is hyperphosphorylated at position S272 in HCMV-infected cells. Phosphorylated p62 showed enhanced nuclear retention, which is concordant with enhanced interaction with viral proteins relevant for genome replication and nuclear capsid egress. This modification led to reduced HCMV progeny release compared to a non-phosphorylated version of p62. (4) Conclusions: p62 is a restriction factor for HCMV replication. The activity of the receptor appears to be regulated by phosphorylation at position S272, leading to enhanced nuclear localization, viral protein degradation and impaired progeny production.


Asunto(s)
Autofagia , Infecciones por Citomegalovirus , Citomegalovirus , Proteína Sequestosoma-1 , Replicación Viral , Humanos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Citomegalovirus/fisiología , Citomegalovirus/genética , Fosforilación , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/metabolismo , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteínas Virales/genética
14.
Microbiome ; 12(1): 185, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342390

RESUMEN

BACKGROUND: Soil nutrient status and soil-borne diseases are pivotal factors impacting modern intensive agricultural production. The interplay among plants, soil microbiome, and nutrient regimes in agroecosystems is essential for developing effective disease management. However, the influence of nutrient availability on soil-borne disease suppression and associated plant-microbe interactions remains to be fully explored. T his study aims to elucidate the mechanistic understanding of nutrient impacts on disease suppression, using phosphorous as a target nutrient. RESULTS: A 6-year field trial involving monocropping of tomatoes with varied fertilizer manipulations demonstrated that phosphorus availability is a key factor driving the control of bacterial wilt disease caused by Ralstonia solanacearum. Subsequent greenhouse experiments were then conducted to delve into the underlying mechanisms of this phenomenon by varying phosphorus availability for tomatoes challenged with the pathogen. Results showed that the alleviation of phosphorus stress promoted the disease-suppressive capacity of the rhizosphere microbiome, but not that of the bulk soil microbiome. This appears to be an extension of the plant trade-off between investment in disease defense mechanisms versus phosphorus acquisition. Adequate phosphorus levels were associated with elevated secretion of root metabolites such as L-tryptophan, methoxyindoleacetic acid, O-phosphorylethanolamine, or mangiferin, increasing the relative density of microbial biocontrol populations such as Chryseobacterium in the rhizosphere. On the other hand, phosphorus deficiency triggered an alternate defense strategy, via root metabolites like blumenol A or quercetin to form symbiosis with arbuscular mycorrhizal fungi, which facilitated phosphorus acquisition as well. CONCLUSION: Overall, our study shows how phosphorus availability can influence the disease suppression capability of the soil microbiome through plant-microbial interactions. These findings highlight the importance of optimizing nutrient regimes to enhance disease suppression, facilitating targeted crop management and boosting agricultural productivity. Video Abstract.


Asunto(s)
Microbiota , Fósforo , Enfermedades de las Plantas , Ralstonia solanacearum , Microbiología del Suelo , Solanum lycopersicum , Fósforo/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología , Microbiota/fisiología , Rizosfera , Suelo/química , Fertilizantes , Raíces de Plantas/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Interacciones Microbiota-Huesped/fisiología
15.
BMC Biol ; 22(1): 219, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343898

RESUMEN

BACKGROUND: Small RNA (sRNAs)- mediated RNA silencing is emerging as a key player in host-microbe interactions. However, its role in fungus-plant interactions relevant to biocontrol of plant diseases is yet to be explored. This study aimed to investigate Dicer (DCL)-mediated endogenous and cross-kingdom gene expression regulation in the biocontrol fungus Clonostachys rosea and wheat roots during interactions. RESULTS: C. rosea Δdcl2 strain exhibited significantly higher root colonization than the WT, whereas no significant differences were observed for Δdcl1 strains. Dual RNA-seq revealed the upregulation of CAZymes, membrane transporters, and effector coding genes in C. rosea, whereas wheat roots responded with the upregulation of stress-related genes and the downregulation of growth-related genes. The expression of many of these genes was downregulated in wheat during the interaction with DCL deletion strains, underscoring the influence of fungal DCL genes on wheat defense response. sRNA sequencing identified 18 wheat miRNAs responsive to C. rosea, and three were predicted to target the C. rosea polyketide synthase gene pks29. Two of these miRNAs (mir_17532_x1 and mir_12061_x13) were observed to enter C. rosea from wheat roots with fluorescence analyses and to downregulate the expression of pks29, showing plausible cross-kingdom RNA silencing of the C. rosea gene by wheat miRNAs. CONCLUSIONS: We provide insights into the mechanisms underlying the interaction between biocontrol fungi and plant roots. Moreover, the study sheds light on the role of sRNA-mediated gene expression regulation in C. rosea-wheat interactions and provides preliminary evidence of cross-kingdom RNA silencing between plants and biocontrol fungi.


Asunto(s)
Hypocreales , Interferencia de ARN , Triticum , Triticum/microbiología , Triticum/genética , Hypocreales/genética , Hypocreales/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Regulación Fúngica de la Expresión Génica , Raíces de Plantas/microbiología , MicroARNs/genética , MicroARNs/metabolismo
16.
J Pers Med ; 14(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39338219

RESUMEN

BACKGROUND: Bilateral cleft lip palate is a severe congenital birth defect of the mouth and face. Immunity factors modulate immune response, inflammation, and healing; therefore, they are vital in the assessment of the immunological status of the patient. The aim of this study is to assess the distribution of Gal-10, CD-163, IL-4, IL-6, IL-10, HBD-2, HBD-3, and HBD-4 in tissue of the bilateral cleft lip palate in primary dentition children. METHODS: Five patients underwent cheiloplasty surgery, where five tissue samples of lip were obtained. Immunohistochemical staining, semi-quantitative evaluation, and non-parametric statistical analysis were used. RESULTS: A statistically significant increase in HBD-2, HBD-3, and HBD-4 was found in skin and mucosal epithelium, hair follicles, and blood vessels. A notable increase was also noted in IL-4, IL-6, and IL-10 in the mucosal epithelium and CD163 in blood vessels. The connective tissue of patients presented with a statistically significant decrease in Gal-10, IL-10, and HBD-3. Spearman's rank correlation revealed multiple significant positive and negative correlations between the factors. CONCLUSIONS: Upregulation of CD163 points to increased angiogenesis but the increase in IL-4 and IL-10 as well as the decrease in Gal-10 points to suppression of excessive inflammatory damage. Decreased connective tissue healing and excessive scarring are suggested by the decrease in HBD-3 and IL-10 and the increase in IL-6.

17.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39338351

RESUMEN

Human coronaviruses are a continuous threat to the human population and have limited antiviral treatments, and the recent COVID-19 pandemic sparked interest in finding new antiviral strategies, such as natural products, to combat emerging coronaviruses. Rapid efforts in the scientific community to identify effective antiviral agents for coronaviruses remain a focus to minimize mortalities and global setbacks. In this study, an essential oil derived from Myrtus communis L. (MEO) is effective against HCoV-229E and HCoV-OC43 virus infections in comparison to two FDA-approved drugs, Remdesivir and Nirmatrelvir. Gas-chromatography and mass spectrometry were used to identify the chemical composition of MEO. Slight antioxidant activity was observed in MEO, indicating a role in oxidative stress. A dose-response curve measuring the EC50 indicates a high potency against HCoV-229E and HCoV-OC43 virus infections on Huh7.5 cells with low cytotoxicity using a PrestoBlue cell viability assay. Our findings demonstrate that MEO exhibits potent antiviral activity against HCoV-229E and HCoV-OC43 on Huh7.5 cells within a low-cytotoxicity range, but not on SARS-CoV-2. Artificial bacterial chromosome plasmids that expressed SARS-CoV-2 used for replicon-to determine viral replication and viral assembly/egress on HEK293T/17 cells-and virus-like particles on Huh7.5-AT cells-to determine viral entry and assembly/egress-showed no antiviral activity with MEO in comparison to Remdesivir. This study reveals the potential effectiveness of MEO as an alternative natural remedy to treat human coronaviruses and a potential antiviral agent for future coronavirus infections.

18.
Plants (Basel) ; 13(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39339524

RESUMEN

Movement proteins (MPs) encoded by plant viruses are essential for cell-to-cell transport of viral genomes through plasmodesmata. The genome of hibiscus green spot virus contains a module of two MP genes termed 'binary movement block' (BMB), encoding the proteins BMB1 and BMB2. Here, BMB1 is shown to induce a defense response in Nicotiana benthamiana plants that inhibits BMB-dependent virus transport. This response is characterized by the accumulation of reactive oxygen species, callose deposition in the cell wall, and upregulation of 9-LOX expression. However, the BMB1-induced response is inhibited by coexpression with BMB2. Furthermore, BMB1 is found to localize to subnuclear structures, in particular to Cajal bodies, in addition to the cytoplasm. As shown in experiments with a BMB1 mutant, the localization of BMB1 to nuclear substructures enhances BMB-dependent virus transport. Thus, the virus transport mediated by BMB proteins is modulated by (i) a BMB1-induced defense response that inhibits transport, (ii) suppression of the BMB1-induced response by BMB2, and (iii) the nuclear localization of BMB1 that promotes virus transport. Collectively, the data presented demonstrate multiple levels of interactions between viral pathogens and their plant hosts during virus cell-to-cell transport.

19.
J Neuroendocrinol ; : e13447, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253818

RESUMEN

Innate behaviors ensure animal survival and reproductive success. Defending their territory, escaping from predators or mating with a sexual partner, are fundamental behaviors determining the ecological fitness of individuals. Remarkably, all these behaviors share a common neural substrate, as they are under the control of the ventromedial hypothalamus (VMH). Decades of research have contributed to understanding the exquisite diversity of functional ensembles underlying the wide array of functions that the VMH carries out. These functional ensembles are usually distributed throughout the dorsoventral and mediolateral axes of this nucleus. However, increasing evidence is bringing to attention the functional diversity of the VMH across its anteroposterior axis. In this review, we will overview our current understanding of how different ensembles within the VMH control a wide array of animal behaviors, emphasizing the newly discovered roles for its anterior subdivision in the context of conspecific self-defense.

20.
mBio ; : e0011124, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287445

RESUMEN

Bacteria and their viral predators (phages) are constantly evolving to subvert one another. Many bacterial immune systems that inhibit phages are encoded on mobile genetic elements that can be horizontally transmitted to diverse bacteria. Despite the pervasive appearance of immune systems in bacteria, it is not often known if these immune systems function against phages that the host encounters in nature. Additionally, there are limited examples demonstrating how these phages counter-adapt to such immune systems. Here, we identify clinical isolates of the global pathogen Vibrio cholerae harboring a novel genetic element encoding the bacterial immune system DarTG and reveal the immune system's impact on the co-circulating lytic phage ICP1. We show that DarTG inhibits ICP1 genome replication, thus preventing ICP1 plaquing. We further characterize the conflict between DarTG-mediated defense and ICP1 by identifying an ICP1-encoded protein that counters DarTG and allows ICP1 progeny production. Finally, we identify this protein, AdfB, as a functional antitoxin that abrogates the toxin DarT likely through direct interactions. Following the detection of the DarTG system in clinical V. cholerae isolates, we observed a rise in ICP1 isolates with the functional antitoxin. These data highlight the use of surveillance of V. cholerae and its lytic phages to understand the co-evolutionary arms race between bacteria and their phages in nature.IMPORTANCEThe global bacterial pathogen Vibrio cholerae causes an estimated 1 to 4 million cases of cholera each year. Thus, studying the factors that influence its persistence as a pathogen is of great importance. One such influence is the lytic phage ICP1, as once infected by ICP1, V. cholerae is destroyed. To date, we have observed that the phage ICP1 shapes V. cholerae evolution through the flux of anti-phage bacterial immune systems. Here, we probe clinical V. cholerae isolates for novel anti-phage immune systems that can inhibit ICP1 and discover the toxin-antitoxin system DarTG as a potent inhibitor. Our results underscore the importance of V. cholerae and ICP1 surveillance to elaborate novel means by which V. cholerae can persist in both the human host and aquatic reservoir in the face of ICP1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA