Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cerebellum ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874737

RESUMEN

Autoimmune cerebellar ataxia (ACA) is a condition characterized by progressive ataxia resulting from an immune-mediated attack on cerebellar structures. The presence of anti-Tr/DNER antibodies, strongly associated with Hodgkin lymphoma, has been identified in ACA. However, cases with no underlying malignancy are rare. We report the case of a 49-year-old woman presenting with progressive ataxia, slurred speech, and dizziness over three months. The patient exhibited significant cerebellar symptoms, including dysarthria and limb ataxia, without signs of other systemic illnesses. Comprehensive investigations, including imaging, lumbar puncture, and autoantibody testing, were performed. The cerebrospinal fluid (CSF) sample revealed positivity for Tr/DNER antibodies, leading to a diagnosis of autoimmune cerebellar ataxia. The patient underwent nine sessions of plasmapheresis, followed by six doses of intravenous immunoglobulin (IVIG), resulting in significant clinical improvement. Despite extensive cancer screening, no underlying malignancy was detected, suggesting a non-tumor origin of anti-Tr/DNER antibodies. The patient's gait improved, ataxia resolved, and cerebellar tests normalized following treatment. The patient was further managed with rituximab treatment every six months. This case represents a presentation of anti-Tr/DNER-associated autoimmune cerebellar ataxia without malignancy. The successful treatment with plasmapheresis and IVIG suggests that these interventions may be effective in managing autoimmune cerebellar ataxia associated with anti-Tr/DNER antibodies. Further research is needed to understand the underlying mechanisms of this condition and to determine the optimal treatment strategies.

2.
BMC Res Notes ; 16(1): 108, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337280

RESUMEN

OBJECTIVE: A mammalian Delta-Notch signaling component, Notch1, has been suggested for its expression during the normal sperm development although its conditional deletion caused no apparent abnormalities. Since we established our original transgenic mouse system that enabled labeling of past and ongoing Notch1 signaling at a cellular level, we tried to validate that observation in vivo. Our transgenic mouse system used Cre/loxP system to induce tandem dsRed expression upon Notch1 signaling. RESULTS: To our surprise, we were unable to observe tandem dsRed expression in the seminiferous tubules where the sperms developed. In addition, tandem dsRed expression was lacking in the somatic cells of the next generation in our transgenic mouse system, suggesting that sperms received no Notch1 signaling during their development. To validate this result, we conducted re-analysis of four single-cell RNA-seq datasets from mouse and human testes and showed that Notch1 expression was little in the sperm cell lineage. Collectively, our results posed a question into the involvement of Notch1 in the normal sperm development although this observation may help the interpretation of the previous result that Notch1 conditional deletion caused no apparent abnormalities in murine spermatogenesis.


Asunto(s)
Receptor Notch1 , Testículo , Animales , Humanos , Masculino , Ratones , Ratones Transgénicos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Semen , Espermatozoides , Testículo/metabolismo
3.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37009986

RESUMEN

Neural proliferation zones mediate brain growth and employ Delta/Notch signaling and HES/Her transcription factors to balance neural stem cell (NSC) maintenance with the generation of progenitors and neurons. We investigated Notch-dependency and function of her genes in the thalamic proliferation zone of zebrafish larvae. Nine Notch-dependent genes, her2, her4.1-4.5, her12, her15.1-15.2, and two Notch-independent genes, her6 and her9, are differentially expressed and define distinct NSC and progenitor populations. her6 prominently executes patterning information to maintain NSCs and the zona limitans intrathalamica Shh signaling activity. Surprisingly, simultaneous deletion of nine Notch-dependent her genes does not affect NSCs or progenitor formation, and her4 overexpression only caused reduction of ascl1b progenitors. Combined genetic manipulations of Notch-dependent and -independent her genes suggest that her6 in the thalamic proliferation zone prominently maintains NSCs and inhibits NSC-to-progenitor lineage transitions. The her gene network is characterized by redundant gene functions, with Notch-independent her genes better substituting for loss of Notch-dependent her genes than vice versa. Together, her gene regulatory feedback loops and cross-regulation contribute to the observed robustness of NSC maintenance.


Asunto(s)
Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre , Pez Cebra , Receptores Notch/genética , Receptores Notch/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Madre/citología , Células Madre/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Familia de Multigenes , Animales
4.
BMC Res Notes ; 16(1): 54, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069662

RESUMEN

OBJECTIVE: A Delta-Notch signaling component, Notch1, is involved in the normal development and multiple disorders of the kidney. Although the increase in Notch1 signaling is crucial to these pathogeneses, the basal signaling level in 'healthy' mature kidneys is still unclear. To address this question, we used an artificial Notch1 receptor fused with Gal4/UAS components in addition to the Cre/loxP system and fluorescent proteins in mice. This transgenic reporter mouse system enabled labeling of past and ongoing Notch1 signaling with tdsRed or Cre recombinase, respectively. RESULTS: We confirmed that our transgenic reporter mouse system mimicked the previously reported Notch1 signaling pattern. Using this successful system, we infrequently observed cells with ongoing Notch1 signaling only in Bowman's capsule and tubules. We consider that Notch1 activation in several lines of disease model mice was pathologically significant itself.


Asunto(s)
Salud , Riñón , Receptor Notch1 , Transducción de Señal , Animales , Ratones , Riñón/citología , Riñón/metabolismo , Ligandos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Células Epiteliales/metabolismo , Cápsula Glomerular/citología , Cápsula Glomerular/metabolismo , Sitios de Ligazón Microbiológica , Genes Reporteros , Receptor Notch1/genética , Receptor Notch1/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(34): e2110097119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969789

RESUMEN

While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood-brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type-specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.


Asunto(s)
Proteínas de Drosophila , Metaloproteinasa 1 de la Matriz , Neuroglía , Transmisión Sináptica , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , Neuroglía/metabolismo , Receptores Notch/metabolismo , Transducción de Señal
6.
BMC Res Notes ; 15(1): 172, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562782

RESUMEN

OBJECTIVE: Portal mesenchymal cells induce the epithelial differentiation of the bile ducts in the developing liver via one of the Delta-Notch signaling components, JAGGED1. Although this differential induction is crucial for normal liver physiology as its genetic disorder (Alagille syndrome) causes jaundice, the molecular mechanism behind JAGGED1 expression remains unknown. Here, we searched for upstream regulatory transcription factors of JAGGED1 using an integrated bioinformatics method. RESULTS: According to the DoRothEA database, which integrates multiple lines of evidence on the relationship between transcription factors and their downstream target genes, three transcription factors were predicted to be upstream of JAGGED1: SLUG, SOX2, and EGR1. Among these, SLUG and EGR1 were enriched in ACTA2-expressing portal mesenchymal cells in two previously reported human fetal liver single-cell RNA-seq datasets. JAGGED1-expressing portal mesenchymal cells tended to express SLUG rather than EGR1, supporting that SLUG induced JAGGED1 expression. Together with the higher confidentiality of SLUG (DoRothEA level A) over EGR1 (DoRothEA level D), we concluded that SLUG was one of the most important candidate transcription factors upstream of JAGGED1. These results add mechanistic insights into the developmental biology of how portal mesenchymal cells support biliary development in the liver.


Asunto(s)
Síndrome de Alagille , Proteínas de la Membrana , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Hepatocitos , Humanos , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factores de Transcripción/genética
7.
J R Soc Interface ; 18(175): 20200825, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33561375

RESUMEN

A key challenge in biology is to understand how spatio-temporal patterns and structures arise during the development of an organism. An initial aggregate of spatially uniform cells develops and forms the differentiated structures of a fully developed organism. On the one hand, contact-dependent cell-cell signalling is responsible for generating a large number of complex, self-organized, spatial patterns in the distribution of the signalling molecules. On the other hand, the motility of cells coupled with their polarity can independently lead to collective motion patterns that depend on mechanical parameters influencing tissue deformation, such as cellular elasticity, cell-cell adhesion and active forces generated by actin and myosin dynamics. Although modelling efforts have, thus far, treated cell motility and cell-cell signalling separately, experiments in recent years suggest that these processes could be tightly coupled. Hence, in this paper, we study how the dynamics of cell polarity and migration influence the spatiotemporal patterning of signalling molecules. Such signalling interactions can occur only between cells that are in physical contact, either directly at the junctions of adjacent cells or through cellular protrusional contacts. We present a vertex model which accounts for contact-dependent signalling between adjacent cells and between non-adjacent neighbours through long protrusional contacts that occur along the orientation of cell polarization. We observe a rich variety of spatiotemporal patterns of signalling molecules that is influenced by polarity dynamics of the cells, relative strengths of adjacent and non-adjacent signalling interactions, range of polarized interaction, signalling activation threshold, relative time scales of signalling and polarity orientation, and cell motility. Though our results are developed in the context of Delta-Notch signalling, they are sufficiently general and can be extended to other contact dependent morpho-mechanical dynamics.


Asunto(s)
Polaridad Celular , Transducción de Señal , Adhesión Celular , Comunicación Celular , Movimiento Celular
8.
Elife ; 102021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33587039

RESUMEN

Integrity of rhythmic spatial gene expression patterns in the vertebrate segmentation clock requires local synchronization between neighboring cells by Delta-Notch signaling and its inhibition causes defective segment boundaries. Whether deformation of the oscillating tissue complements local synchronization during patterning and segment formation is not understood. We combine theory and experiment to investigate this question in the zebrafish segmentation clock. We remove a Notch inhibitor, allowing resynchronization, and analyze embryonic segment recovery. We observe unexpected intermingling of normal and defective segments, and capture this with a new model combining coupled oscillators and tissue mechanics. Intermingled segments are explained in the theory by advection of persistent phase vortices of oscillators. Experimentally observed changes in recovery patterns are predicted in the theory by temporal changes in tissue length and cell advection pattern. Thus, segmental pattern recovery occurs at two length and time scales: rapid local synchronization between neighboring cells, and the slower transport of the resulting patterns across the tissue through morphogenesis.


Asunto(s)
Relojes Biológicos , Pez Cebra/embriología , Pez Cebra/fisiología , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
J Math Biol ; 81(4-5): 981-1028, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959067

RESUMEN

In this paper, we introduce a continuation method for the spatially discretized models, while conserving the size and shape of the cells and lattices. This proposed method is realized using the shift operators and nonlocal operators of convolution types. Through this method and using the shift operator, the nonlinear spatially discretized model on the uniform and nonuniform lattices can be systematically converted into a spatially continuous model; this renders both models point-wisely equivalent. Moreover, by the convolution with suitable kernels, we mollify the shift operator and approximate the spatially discretized models using the nonlocal evolution equations, rendering suitable for the application in both experimental and mathematical analyses. We also demonstrate that this approximation is supported by the singular limit analysis, and that the information of the lattice and cells is expressed in the shift and nonlocal operators. The continuous models designed using our method can successfully replicate the patterns corresponding to those of the original spatially discretized models obtained from the numerical simulations. Furthermore, from the observations of the isotropy of the Delta-Notch signaling system in a developing real fly brain, we propose a radially symmetric kernel for averaging the cell shape using our continuation method. We also apply our method for cell division and proliferation to spatially discretized models of the differentiation wave and describe the discrete models on the sphere surface. Finally, we demonstrate an application of our method in the linear stability analysis of the planar cell polarity model.


Asunto(s)
Dinámicas no Lineales
10.
Adv Differ Equ ; 2020(1): 377, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32834816

RESUMEN

In this paper, an improved fractional-order model of boundary formation in the Drosophila large intestine dependent on Delta-Notch pathway is proposed for the first time. The uniqueness, nonnegativity, and boundedness of solutions are studied. In a two cells model, there are two equilibriums (no-expression of Delta and normal expression of Delta). Local asymptotic stability is proved for both cases. Stability analysis shows that the orders of the fractional-order differential equation model can significantly affect the equilibriums in the two cells model. Numerical simulations are presented to illustrate the conclusions. Next, the sensitivity of model parameters is calculated, and the calculation results show that different parameters have different sensitivities. The most and least sensitive parameters in the two cells model and the 60 cells model are verified by numerical simulations. What is more, we compare the fractional-order model with the integer-order model by simulations, and the results show that the orders can significantly affect the dynamic and the phenotypes.

11.
J R Soc Interface ; 16(160): 20190436, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31771454

RESUMEN

Using a stochastic individual-based modelling approach, we examine the role that Delta-Notch signalling plays in the regulation of a robust and reliable somite segmentation clock. We find that not only can Delta-Notch signalling synchronize noisy cycles of gene expression in adjacent cells in the presomitic mesoderm (as is known), but it can also amplify and increase the coherence of these cycles. We examine some of the shortcomings of deterministic approaches to modelling these cycles and demonstrate how intrinsic noise can play an active role in promoting sustained oscillations, giving rise to noise-induced quasi-cycles. Finally, we explore how translational/transcriptional delays can result in the cycles in neighbouring cells oscillating in anti-phase and we study how this effect relates to the propagation of noise-induced stochastic waves.


Asunto(s)
Relojes Biológicos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mesodermo/embriología , Modelos Biológicos , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Somitos/citología , Somitos/embriología
12.
Mol Reprod Dev ; 86(8): 931-934, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31199038

RESUMEN

Sea urchin embryos are excellent for in vivo functional studies because of their transparency and tractability in manipulation. They are also favorites for pharmacological approaches since they develop in an aquatic environment and addition of test substances is straightforward. A concern in many pharmacological tests though is the potential for pleiotropic effects that confound the conclusions drawn from the results. Precise cellular interpretations are often not feasible because the impact of the perturbant is not known. Here we use single-cell mRNA (messenger RNA) sequencing as a metric of cell types in the embryo and to determine the selectivity of two commonly used inhibitors, one each for the Wnt and the Delta-Notch pathways, on these nascent cell types. We identified 11 distinct cell types based on mRNA profiling, and that the cell lineages affected by Wnt and Delta/Notch inhibition were distinct from each other. These data support specificity and distinct effects of these signaling pathways in the embryo and illuminate how these conserved pathways selectively regulate cell lineages at a single cell level. Overall, we conclude that single cell RNA-seq analysis in this embryo is revealing of the cell types present during development, of the changes in the gene regulatory network resulting from inhibition of various signaling pathways, and of the selectivity of these pathways in influencing developmental trajectories.


Asunto(s)
Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , RNA-Seq , Receptores Notch , Erizos de Mar/embriología , Transducción de Señal , Análisis de la Célula Individual , Animales , Embrión no Mamífero/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Erizos de Mar/citología
13.
Dev Biol ; 452(1): 34-42, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075220

RESUMEN

Specification of the primordial germ cells (PGCs) is essential for sexually reproducing animals. Although the mechanisms of PGC specification are diverse between organisms, the RNA binding protein Nanos is consistently required in the germ line in all species tested. How Nanos is selectively expressed in the germ line, however, remains largely elusive. We report that in sea urchin embryos, the early expression of Nanos2 in the PGCs requires the maternal Wnt pathway. During gastrulation, however, Nanos2 expression expands into adjacent somatic mesodermal cells and this secondary Nanos expression instead requires Delta/Notch signaling through the forkhead family member FoxY. Each of these transcriptional regulators were tested by chromatin immunoprecipitation analysis and found to directly interact with a DNA locus upstream of Nanos2. Given the conserved importance of Nanos in germ line specification, and the derived character of the micromeres and small micromeres in the sea urchin, we propose that the ancestral mechanism of Nanos2 expression in echinoderms was by induction in mesodermal cells during gastrulation.


Asunto(s)
Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Unión al ARN/metabolismo , Strongylocentrotus purpuratus/embriología , Transcripción Genética/fisiología , Vía de Señalización Wnt/fisiología , Animales , Células Germinativas/citología , Células Germinativas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Mesodermo/embriología , Receptores Notch/metabolismo , Strongylocentrotus purpuratus/citología
14.
Curr Oncol Rep ; 20(11): 92, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30415318

RESUMEN

The disorders of the central nervous system associated with cancer by remote immune-mediated mechanisms are a heterogeneous group. These disorders encompass the classic paraneoplastic disorders and the recently recognized autoimmune encephalitis associated with antibodies against neuronal cell surface or synaptic proteins that occur with or without cancer association. In the last decade, the new surge of interest in neuronal diseases associated with anti-neuronal antibodies led to the rapid discovery of new forms of disease that have different manifestations and were not previously suspected to be immune mediated. The recognition of these syndromes is important because it may lead to early detection of an underlying malignancy and prompt initiation of treatment, improving chances for a better outcome.


Asunto(s)
Enfermedades del Sistema Nervioso Central/sangre , Encefalitis/sangre , Enfermedad de Hashimoto/sangre , Síndromes Paraneoplásicos del Sistema Nervioso/sangre , Anticuerpos/sangre , Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/terapia , Detección Precoz del Cáncer , Encefalitis/complicaciones , Encefalitis/patología , Encefalitis/terapia , Enfermedad de Hashimoto/complicaciones , Enfermedad de Hashimoto/patología , Enfermedad de Hashimoto/terapia , Humanos , Neuronas/metabolismo , Neuronas/patología , Síndromes Paraneoplásicos del Sistema Nervioso/complicaciones , Síndromes Paraneoplásicos del Sistema Nervioso/patología , Síndromes Paraneoplásicos del Sistema Nervioso/terapia , Sinapsis/metabolismo , Sinapsis/patología
15.
J Comp Neurol ; 526(3): 467-479, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29071714

RESUMEN

The present study has taken advantage of publicly available cell type specific mRNA expression databases in order to identify potential genes participating in the development of retinal AII amacrine cells. We profile two such genes, Delta/Notch-like EGF repeat containing (Dner) and nuclear factor I/A (Nfia), that are each heavily expressed in AII amacrine cells in the mature mouse retina, and which conjointly identify this retinal cell population in its entirety when using antibodies to DNER and NFIA. DNER is present on the plasma membrane, while NFIA is confined to the nucleus, consistent with known functions of each of these two proteins. DNER also identifies some other subsets of retinal ganglion and amacrine cell types, along with horizontal cells, while NFIA identifies a subset of bipolar cells as well as Muller glia and astrocytes. During early postnatal development, NFIA labels astrocytes on the day of birth, AII amacrine cells at postnatal (P) day 5, and Muller glia by P10, when horizontal cells also transiently exhibit NFIA immunofluorescence. DNER, by contrast, is present in ganglion and amacrine cells on P1, also labeling the horizontal cells by P10. Developing AII amacrine cells exhibit accumulating DNER labeling at the dendritic stalk, labeling that becomes progressively conspicuous by P10, as it is in maturity. This developmental time course is consistent with a prospective role for each gene in the differentiation of AII amacrine cells.


Asunto(s)
Células Amacrinas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción NFI/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Recuento de Células , Ratones , Ratones Endogámicos C57BL
16.
Subcell Biochem ; 90: 119-143, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30779008

RESUMEN

This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Animales , Rejuvenecimiento
17.
J Cell Physiol ; 233(2): 1455-1467, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28542953

RESUMEN

During embryonic development, new arteries, and veins form from preexisting vessels in response to specific angiogenic signals. Angiogenic signaling is complex since not all endothelial cells exposed to angiogenic signals respond equally. Some cells will be selected to become tip cells and acquire migration and proliferation capacity necessary for vessel growth while others, the stalk cells become trailer cells that stay connected with pre-existing vessels and act as a linkage to new forming vessels. Additionally, stalk and tip cells have the capacity to interchange their roles. Stalk and tip cellular responses are mediated in part by the interactions of components of the Delta/Notch and Vegf signaling pathways. We have identified in zebrafish, that the transmembrane protein Tmem230a is a novel regulator of angiogenesis by its capacity to regulate the number of the endothelial cells in intersegmental vessels by co-operating with the Delta/Notch signaling pathway. Modulation of Tmem230a expression by itself is sufficient to rescue improper number of endothelial cells induced by aberrant expression or inhibition of the activity of genes associated with the Dll4/Notch pathway in zebrafish. Therefore, Tmem230a may have a modulatory role in vessel-network formation and growth. As the Tmem230 sequence is conserved in human, Tmem230 may represent a promising novel target for drug discovery and for disease therapy and regenerative medicine in promoting or restricting angiogenesis.


Asunto(s)
Proliferación Celular , Células Endoteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Receptores Notch/genética , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Mol Cells ; 40(12): 945-953, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-29276941

RESUMEN

We report the biological functions of a zebrafish homologue of RING-finger protein 152 (rnf152) during embryogenesis. rnf152 was initially identified as a brain-enriched E3 ligase involved in early embryogenesis of zebrafish. Expression of rnf152 was ubiquitous in the brain at 24 hpf but restricted to the eyes, midbrain-hindbrain boundary (MHB), and rhombomeres at 48 hpf. Knockdown of rnf152 in zebrafish embryos caused defects in the eyes, MHB, and rhombomeres (r1-7) at 24 hpf. These defects in rnf152-deficient embryos were analyzed by whole-mount in situ hybridization (WISH) using neuroD, deltaD, notch1a, and notch3 probes. NeuroD expression was abolished in the marginal zone, outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL) of the eyes at 27 hpf. Furthermore, deltaD and notch1a expression was remarkably reduced in the ONL, INL, subpallium, tectum, cerebellum, and rhombomeres (r1-7) at 24 hpf, whereas notch3 expression was reduced in the tectum, cerebellum, and rhombomeres at 24 hpf. Finally, we confirmed that expression of Notch target genes, her4 and ascl1a, also decreased significantly in these areas at 24 hpf. Thus, we propose that Rnf152 is essential for development of the eyes, midbrain and hindbrain, and that Delta-Notch signaling is involved.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión no Mamífero , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra
19.
BMC Syst Biol ; 11(Suppl 4): 80, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28950873

RESUMEN

BACKGROUND: The boundary formation in the Drosophila large intestine is widely studied as an important biological problem. It has been shown that the Delta-Notch signaling pathway plays an essential role in the formation of boundary cells. RESULTS: In this paper, we propose a mathematical model for the Delta-Notch dependent boundary formation in the Drosophila large intestine in order to better interpret related experimental findings of this biological phenomenon. To achieve this, we not only perform stability analysis on the model from a theoretical point of view, but also perform numerical simulations to analyze the model with and without noises, the phenotype change with the change of Delta or Notch expression, and the perturbation influences of binding and inhibition parameters on the boundary formation. CONCLUSIONS: By doing all these work, we can assure that our model can better interpret the biological findings related to the boundary formation in the Drosophila large intestine.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Intestino Grueso/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Receptores Notch/metabolismo , Animales , Regulación de la Expresión Génica , Fenotipo , Transducción de Señal
20.
Dev Growth Differ ; 59(5): 351-368, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28627749

RESUMEN

Cell movement and intercellular signaling occur simultaneously to organize morphogenesis during embryonic development. Cell movement can cause relative positional changes between neighboring cells. When intercellular signals are local such cell mixing may affect signaling, changing the flow of information in developing tissues. Little is known about the effect of cell mixing on intercellular signaling in collective cellular behaviors and methods to quantify its impact are lacking. Here we discuss how to determine the impact of cell mixing on cell signaling drawing an example from vertebrate embryogenesis: the segmentation clock, a collective rhythm of interacting genetic oscillators. We argue that comparing cell mixing and signaling timescales is key to determining the influence of mixing. A signaling timescale can be estimated by combining theoretical models with cell signaling perturbation experiments. A mixing timescale can be obtained by analysis of cell trajectories from live imaging. After comparing cell movement analyses in different experimental settings, we highlight challenges in quantifying cell mixing from embryonic timelapse experiments, especially a reference frame problem due to embryonic motions and shape changes. We propose statistical observables characterizing cell mixing that do not depend on the choice of reference frames. Finally, we consider situations in which both cell mixing and signaling involve multiple timescales, precluding a direct comparison between single characteristic timescales. In such situations, physical models based on observables of cell mixing and signaling can simulate the flow of information in tissues and reveal the impact of observed cell mixing on signaling.


Asunto(s)
Relojes Biológicos/fisiología , Desarrollo Embrionario/fisiología , Modelos Teóricos , Transducción de Señal/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA