Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.154
Filtrar
1.
Methods Mol Biol ; 2834: 373-391, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39312175

RESUMEN

Developmental toxicity is key human health endpoint, especially relevant for safeguarding maternal and child well-being. It is an object of increasing attention from international regulatory bodies such as the US EPA (US Environmental Protection Agency) and ECHA (European CHemicals Agency). In this challenging scenario, non-test methods employing explainable artificial intelligence based techniques can provide a significant help to derive transparent predictive models whose results can be easily interpreted to assess the developmental toxicity of new chemicals at very early stages. To accomplish this task, we have developed web platforms such as TIRESIA and TISBE.Based on a benchmark dataset, TIRESIA employs an explainable artificial intelligence approach combined with SHAP analysis to unveil the molecular features responsible for calculating the developmental toxicity. Descending from TIRESIA, TISBE employs a larger dataset, an explainable artificial intelligence framework based on a fragment-based fingerprint encoding, a consensus classifier, and a new double top-down applicability domain. We report here some practical examples for getting started with TIRESIA and TISBE.


Asunto(s)
Inteligencia Artificial , Humanos , Internet , Animales , Pruebas de Toxicidad/métodos , Programas Informáticos
2.
Ecotoxicol Environ Saf ; 285: 117045, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305776

RESUMEN

The increasing concern over the environmental presence of ß-N-Methylamino-L-alanine (BMAA), a toxin primarily produced by cyanobacteria and diatoms, has stimulated numerous studies to evaluate the risk for exposed populations, mainly aquatic organisms and humans. This study focuses on the toxicity of environmental concentrations of BMAA and its isomers, l-2,4 diaminobutyric acid dihydrochloride (DAB) and N-(2-aminoethyl) glycine (AEG) on zebrafish embryo development (ng.L-1). Presence of BMAA in various environments, including aquatic sources, air, and desert crusts, has raised concerns due to its potential link to neurodegenerative diseases such as the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). Despite its known toxicity at high concentrations, there is limited information on the effects of environmental concentrations of BMAA and its isomers. These isomers are often found in association with BMAA and have been detected in seafood intended for human consumption, indicating potential risks from bioaccumulation and biomagnification. Zebrafish embryos have been chosen as a model due to their relevance for embryonic development and toxicity studies. The study employed fish embryo acute toxicity tests and behavioural analyses to specifically assess the sublethal effects of BMAA, DAB, and AEG. The results demonstrated larval mortality rates between 0 % and 3.75 %, while morphological defects were detected across all tested concentrations for each molecule. Behavioural analyses showed alterations in swimming behaviour. Unexpectedly, the changes in morphology and locomotion of the zebrafish larvae were detected more frequently at the lowest concentrations tested, suggesting potential non-monotonic dose responses. Overall, this research underscores the environmental risks associated with BMAA and its isomers, highlighting the importance of continuous monitoring and understanding of their sublethal effects on aquatic organisms and potential implications for human health. Further studies are warranted to elucidate the mechanisms of toxicity, evaluate long-term effects, and assess the risks associated with chronic exposure to these toxins.

3.
Front Toxicol ; 6: 1380485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39285929

RESUMEN

Due to the growing safety and environmental concerns associated with biocides, phenolic-soy branched chain fatty acids (phenolic-soy BCFAs) are synthesized as new bio-based antimicrobial agents. Safety evaluation is essential before the wide adoption of these new antimicrobial products. This study was initiated to evaluate the safety of four phenolic-soy BCFAs (with phenol, thymol, carvacrol, or creosote branches). Methyl-branched iso-oleic acid, phenol, and creosote were included in the study as controls. In silico toxicity simulation tools predicted that the phenolic BCFAs had much higher toxicities to aquatic organisms than free phenolics did, while the opposite was predicted for rats. The developmental toxicity of four phenolic-soy BCFAs was assessed using an in vivo chicken embryonic assay. Results showed that creosote-soy BCFA had much lower mortality rates than creosote at the same dosages. Additionally, creosote-soy BCFA and methyl-branched iso-oleic acid induced minimal estrogenic activity in the concentration range of 10 nM - 1 µM. Carvacrol-soy BCFA treatments significantly increased (p < 0.05) oxidative stress levels with higher thiobarbituric acid reactive substances in the livers of chicken embryos. Altogether, the phenolic-soy BCFAs, especially creosote-soy BCFA, reported in this study are potentially promising and safer bio-based antimicrobial products.

4.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110046, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307513

RESUMEN

Thimerosal (THI) is an organic mercury compound that is widely used in drugs, vaccines and antibacterial products. Its extensive production and use have resulted in significant environmental contamination, posing a considerable threat to aquatic life. However, the knowledge of the toxicity of THI to aquatic organisms is still insufficient. In this study, we conducted a 5-day THI exposure experiment using zebrafish, from 0 to 5 days post fertilization (dpf). The possible adverse effects of THI on the early-life stages of zebrafish were explored by investigating variations in their physiological parameters, behavioral traits, and neurotransmitter levels. The results showed THI exhibited significant developmental toxicity to aquatic organisms. Exposure to THI significantly induced serious malformation (at 50 µg/L), accelerated hatching, and elevated heart rate (at 5 and 50 µg/L). The behavioral traits of zebrafish larvae had an increased first and then decreased relationship with increasing concentration of THI, which induced hyperactivity at 0.5 µg/L but opposite at 50 µg/L. Furthermore, exposure to 50 µg/L THI significantly raised levels of 5-HT, 5-HIAA, DA, DOPAC and ACH in zebrafish larvae. In addition, several significant correlations between behavioral traits and the neurotransmitter contents were detected, which seemed to reveal an important mechanism of the neurobehavioral toxicity of THI to fish.

5.
Reprod Toxicol ; 130: 108717, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276807

RESUMEN

Nowadays, changes in human lifestyle have increased dyslipidemia, reinforcing the necessity of using lipid-lowering drugs, such as statins, to control the lipid profile. Among the statins, rosuvastatin has shown greater efficacy in controlling dyslipidemia. Previous studies have shown adverse effects in adult men and pre-pubertal rodents after exposure to statins, such as reduced testosterone levels and delayed puberty. This study aimed to evaluate the reproductive parameters and fertility of male mice exposed to rosuvastatin from pre-puberty to sexual maturity by simulating human chronic exposure to rosuvastatin from pre-puberty to adulthood. This is the first study to evaluate male reproduction and developmental outcomes after prolonged rosuvastatin exposure since pre-puberty, mimicking the human exposure to relevant doses of the drug. Then, we hypothesize that prolonged exposure to rosuvastatin since pre-puberty may impair reproductive parameters in males and generate paternally mediated developmental toxicity. Male mice were divided into three experimental groups that received a 0.9 % saline solution, 1.5 or 5.5 mg/kg/day of rosuvastatin, by intragastric oral gavage, from postnatal day (PND) 23 to PND 80. Puberty onset was delayed and sperm quality was reduced in both rosuvastatin-treated groups. Furthermore, testicular interstitial tissue showed increased vascularization in a dose-dependent manner. After mating with non-treated females, the post-implantation loss rate increased in both rosuvastatin-exposed groups. There was an increase in the percentage of fetuses with opened eyelids in the offspring of males exposed to 1.5 mg/kg/day of the statin and a decrease in the craniocaudal distance of male offspring from males exposed to the higher dose. In summary, our hypothesis that rosuvastatin exposure would cause male reproductive toxicity and developmental impairment in the offspring of male mice was confirmed. This study raises concerns about the reproductive health of men who take this medication from infancy until adulthood in prolonged treatment.

6.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273255

RESUMEN

With the growing dependence on lithium-ion batteries, there is an urgent need to understand the potential developmental toxicity of LiPF6, a key component of these batteries. Although lithium's toxicity is well-established, the biological toxicity of LiPF6 has been minimally explored. This study leverages the zebrafish model to investigate the developmental impact of LiPF6 exposure. We observed morphological abnormalities, reduced spontaneous movement, and decreased hatching and swim bladder inflation rates in zebrafish embryos, effects that intensified with higher LiPF6 concentrations. Whole-mount in situ hybridization demonstrated that the specific expression of the swim bladder outer mesothelium marker anxa5b was suppressed in the swim bladder region under LiPF6 exposure. Transcriptomic analysis disclosed an upregulation of apoptosis-related gene sets. Acridine orange staining further supported significant induction of apoptosis. These findings underscore the environmental and health risks of LiPF6 exposure and highlight the necessity for improved waste management strategies for lithium-ion batteries.


Asunto(s)
Apoptosis , Litio , Pez Cebra , Animales , Apoptosis/efectos de los fármacos , Litio/toxicidad , Suministros de Energía Eléctrica/efectos adversos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Electrólitos/metabolismo , Fosfatos
7.
Toxicol Appl Pharmacol ; 492: 117108, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322068

RESUMEN

The worm Development and Activity Test (wDAT) measures C. elegans developmental milestone acquisition timing and stage-specific spontaneous locomotor activity (SLA). Previously, the wDAT identified developmental delays and SLA level changes in C. elegans with mammalian developmental toxicants arsenic, lead, and mercury. 5-fluorouracil (5FU), cyclophosphamide (CP), hydroxyurea (HU), and ribavirin (RV) are teratogens that also induce growth retardation in developing mammals. In at least some studies on each of these chemicals, fetal weight reductions were seen at mammalian exposures below those that had teratogenic effects, suggesting that screening for developmental delay in a small alternative whole-animal model could act as a general toxicity endpoint to identify chemicals for further testing for more specific adverse developmental outcomes. Consistent with mammalian developmental effects, 5FU, HU, and RV were associated with developmental delays with the wDAT. Exposures associated with developmental delay induced hypoactivity with 5FU and HU, but slight hyperactivity with RV. CP is a prodrug that requires bioactivation by cytochrome P450s for both therapeutic and toxic effects. CP tests as a false negative in several in vitro assays, and it was also a false negative with the wDAT. These results suggest that the wDAT has the potential to identify some developmental toxicants, and that a positive wDAT result with an unknown may warrant further testing in mammals. Further assessment with larger panels of positive and negative controls will help qualify the applicability and utility of this C. elegans wDAT assay within toxicity test batteries or weight of evidence approaches for developmental toxicity assessment.

8.
Chemosphere ; 365: 143361, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303789

RESUMEN

Significant progress has been made in developing fluorine-free firefighting foams (F3) as alternatives to perfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFF) to help eliminate the health and environmental concerns linked to PFAS exposure. However, developing viable F3 options hinges on a thorough assessment of potential risks alongside the technical performance evaluations. This study showcases the capability of a zebrafish-based platform to discern the developmental and behavioral toxicities associated with exposure to one AFFF and two F3 formulations. To facilitate direct exposure to the chemicals, embryos were enzymatically dechorionated and then exposed to the diluted formulations (6-120 hours post fertilization (hpf)) at concentrations folding from 0.1% of the manufacturer-recommended working concentrations. The exposure regimen also included daily automated media changes (50%) and mortality assessments (24 and 120 hpf). At 120 hpf, a comprehensive assessment encompassing overall development, prevalence of morphological defects, and behavioral responses to acute stressors (visual, acoustic, and peripheral irritant) was conducted. Exposure to both F3s significantly increased larval mortalities to percentages exceeding 90%, whereas AFFF exposures did not cause any significant effect. Overall development, marked by total larval length, was significantly impacted following exposures to all foams. Behavioral responses to acute stressors were also significantly altered following exposures to both F3s, whereas the AFFF did not alter behavior at the concentrations tested. Our findings demonstrate toxicities associated with tested F3 formulations that encompass several endpoints and highlight the utility of the proposed platform in evaluating the developmental toxicities of current and future foam formulations.

9.
Res Sq ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39281859

RESUMEN

Developmental toxicity (DevTox) tests evaluate the adverse effects of chemical exposures on an organism's development. While large animal tests are currently heavily relied on, the development of new approach methodologies (NAMs) is encouraging industries and regulatory agencies to evaluate these novel assays. Several practical advantages have made C. elegansa useful model for rapid toxicity testing and studying developmental biology. Although the potential to study DevTox is promising, current low-resolution and labor-intensive methodologies prohibit the use of C. elegans for sub-lethal DevTox studies at high throughputs. With the recent availability of a large-scale microfluidic device, vivoChip, we can now rapidly collect 3D high-resolution images of ~ 1,000 C. elegans from 24 different populations. In this paper, we demonstrate DevTox studies using a 2.5D U-Net architecture (vivoBodySeg) that can precisely segment C. elegans in images obtained from vivoChip devices, achieving an average Dice score of 97.80. The fully automated platform can analyze 36 GB data from each device to phenotype multiple body parameters within 35 min on a desktop PC at speeds ~ 140x faster than the manual analysis. Highly reproducible DevTox parameters (4-8% CV) and additional autofluorescence-based phenotypes allow us to assess the toxicity of chemicals with high statistical power.

10.
Part Fibre Toxicol ; 21(1): 36, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261835

RESUMEN

Microplastics (MPs), a brand-new class of worldwide environmental pollutant, have received a lot of attention. MPs are consumed by both humans and animals through water, food chain and other ways, which may cause potential health risks. However, the effects of MPs on embryonic development, especially placental function, and its related mechanisms still need to be further studied. We investigated the impact on fetal development and placental physiological function of pregnant mice by consecutive gavages of MPs at 0, 25, 50, 100 mg/kg body weight during gestational days (GDs 0-14). The results showed that continuous exposure to high concentrations of MP significantly reduced daily weight gain and impaired reproductive performance of pregnant mice. In addition, MPs could significantly induce oxidative stress and placental dysfunction in pregnant mice. On the other hand, MPs exposure significantly decreased placental barrier function and induced placental inflammation. Specifically, MPs treatment significantly reduced the expression of tight junction proteins in placentas, accompanied by inflammatory cell infiltration and increased mRNA levels of pro-inflammatory cytokines and chemokines in placentas. Finally, we found that MPs induced placental apoptosis and endoplasmic reticulum (ER) stress through the GRP78/IRE1α/JNK axis, leading to placental dysfunction and decreased reproductive performance in pregnant mice. We revealed for the first time that the effects of MPs on placental dysfunction in pregnant animals. Blocking the targets of MPs mediated ER stress will provide potential therapeutic ideas for the toxic effects of MPs on maternal pregnancy.


Asunto(s)
Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Microplásticos , Placenta , Animales , Femenino , Embarazo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Microplásticos/toxicidad , Ratones , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Retardo del Crecimiento Fetal/inducido químicamente , Ratones Endogámicos ICR
11.
Environ Res ; 262(Pt 2): 119916, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233032

RESUMEN

Bixafen (BIX), a member of the succinate dehydrogenase inhibitor (SDHI) class of fungicides, has seen a surge in interest due to its expanding market presence and positive development outlook. However, there is a growing concern about its potential harm to aquatic life, largely due to its resistance to breaking down in the environment. In this study, we thoroughly examined the toxicological impact of BIX on zebrafish as a model organism. Our results revealed that BIX significantly hindered the development of zebrafish embryos, leading to increased mortality, hatching failures, and oxidative stress. Additionally, we observed cardiovascular abnormalities, including dilated cardiac chambers, reduced heart rate, sluggish blood circulation, and impaired vascular function. Notably, BIX also altered the expression of key genes involved in cardiovascular development, such as myl7, vmhc, nkx2.5, tbx5, and flt1. In summary, BIX was found to induce developmental and cardiovascular toxicity in zebrafish, underscoring the risks associated with SDHI pesticides and emphasizing the need for a reassessment of their impact on human health. These findings are crucial for the responsible use of BIX.

12.
Ecotoxicol Environ Saf ; 283: 116980, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39226632

RESUMEN

OBJECTIVE: Acetaminophen (APAP), an antipyretic and analgesic commonly used during pregnancy, has been recognized as a novel environmental contaminant. Preliminary evidence suggests that prenatal acetaminophen exposure (PAcE) could adversely affect offspring's gonadal and neurologic development, but there is no systematic investigation on the characteristics of APAP's fetal developmental toxicity. METHODS: Pregnant mice were treated with 100 or 400 mg/kg∙d APAP in the second-trimester, or 400 mg/kg∙d APAP in the second- or third-trimester, or different courses (single or multiple) of APAP, based on clinical regimen. The effects of PAcE on pregnancy outcomes, maternal/fetal blood phenotypes, and multi-organ morphological and functional development of fetal mice were analyzed. RESULTS: PAcE increased the incidence of adverse pregnancy outcomes and altered blood phenotypes including aminotransferases, lipids, and sex hormones in dams and fetuses. The expression of key functional genes in fetal organs indicated that PAcE inhibited hippocampal synaptic development, sex hormone synthesis, and osteogenic and chondrogenic development, but enhanced hepatic lipid synthesis and uptake, renal inflammatory hyperplasia, and adrenal steroid hormone synthesis. PAcE also induced marked pathological alterations in the fetal hippocampus, bone, kidney, and cartilage. The sensitivity rankings of fetal organs to PAcE might be hippocampus/bone > kidney > cartilage > liver > gonad > adrenal gland. Notably, PAcE-induced multi-organ developmental toxicity was more considerable under high-dose, second-trimester, and multi-course exposure and in male fetuses. CONCLUSION: This study confirmed PAcE-induced alterations in multi-organ development and function in fetal mice and elucidated its characteristics, which deepens the comprehensive understanding of APAP's developmental toxicity.


Asunto(s)
Acetaminofén , Animales , Acetaminofén/toxicidad , Femenino , Embarazo , Ratones , Masculino , Desarrollo Fetal/efectos de los fármacos , Analgésicos no Narcóticos/toxicidad , Exposición Materna , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Feto/efectos de los fármacos , Resultado del Embarazo
13.
Yakugaku Zasshi ; 144(9): 857-863, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39218652

RESUMEN

Less than 10% of the candidate drug compounds are associated with male reproductive toxicity. Genetic and/or epigenetic information on sperm may be crucial for fetal development. Therefore, developmental toxicity, such as paternally transmitted birth defects, is possible if genetic abnormalities in the male germ line persist and accumulate in the sperm during spermatogenesis. First, this study provides an overview of chemical and male reproductive toxicity, which may lead to developmental toxicity from the perspective of male reproduction. Second, we demonstrate methods for evaluating male reproductive toxicity to anticipate male-mediated developmental toxicity. We developed a novel staining technique for evaluating sperm quality, as well as a noninvasive imaging analysis of male reproductive toxicity. The former is a mammalian male germ cell-specific staining method using reactive blue 2 dye (RB2), as previously confirmed in human sperm, and a method for detecting the early-stage DNA fragmentation in a single nucleus from mouse spermatozoa using single-cell pulsed-field gel electrophoresis. The latter is a new, ready-to-use, and compact magnetic resonance imaging (MRI) platform utilizing a high-field permanent magnet to evaluate male reproductive toxicity. The histopathological analysis supported the suitability of the MRI platform. The present study, for the first time, revealed a rapid, noninvasive evaluation of male reproductive toxicity in vivo using compact MRI. These novel toxicity assessments can help predict male-mediated developmental toxicity, contributing to accelerated drug discovery and drug repositioning.


Asunto(s)
Imagen por Resonancia Magnética , Reproducción , Espermatogénesis , Espermatozoides , Masculino , Animales , Espermatozoides/efectos de los fármacos , Humanos , Ratones , Reproducción/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Pruebas de Toxicidad/métodos , Fragmentación del ADN , Coloración y Etiquetado/métodos
14.
Front Toxicol ; 6: 1425537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104825

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24-120 h post fertilization, and additional temporal transcriptomics at several timepoints (48-96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24-96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.

15.
Environ Toxicol Chem ; 43(10): 2176-2188, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39092783

RESUMEN

Aromatic sensitizers and related substances (SRCs), which are crucial in the paper industry for facilitating color-forming and color-developing chemical reactions, inadvertently contaminate effluents during paper recycling. Owing to their structural resemblance to endocrine-disrupting aromatic organic compounds, concerns have arisen about potential adverse effects on aquatic organisms. We focused on SRC effects via the aryl hydrocarbon receptor (AHR), employing molecular docking simulations and zebrafish (Danio rerio) embryo exposure assessments. Molecular docking revealed heightened binding affinities between certain SRCs in the paper recycling effluents and zebrafish Ahr2 and human AHR, which are pivotal components in the SRC toxicity mechanism. Fertilized zebrafish eggs were exposed to SRCs for up to 96 h post fertilization; among these substances, benzyl 2-naphthyl ether (BNE) caused morphological abnormalities, such as pericardial edema and shortened body length, at relatively low concentrations (1 µM) during embryogenesis. Gene expression of cytochrome P450 1A (cyp1a) and ahr2 was also significantly increased by BNE. Co-exposure to the AHR antagonist CH-223191 only partially mitigated BNE's phenotypic effects, despite the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin being relatively well restored by CH-223191, indicating BNE's AHR-independent toxic mechanisms. Furthermore, some SRCs, including BNE, exhibited in silico binding affinity to the estrogen receptor and upregulation of cyp19a1b gene expression. Therefore, additional insights into the toxicity of SRCs and their mechanisms are essential. The present results provide important information on SRCs and other papermaking chemicals that could help minimize the environmental impact of the paper industry. Environ Toxicol Chem 2024;43:2176-2188. © 2024 SETAC.


Asunto(s)
Embrión no Mamífero , Simulación del Acoplamiento Molecular , Receptores de Hidrocarburo de Aril , Contaminantes Químicos del Agua , Pez Cebra , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/química , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Reciclaje , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/química
16.
Crit Rev Toxicol ; 54(9): 619-633, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39093553

RESUMEN

Embryofetal development (EFD) studies are performed to characterize risk of drugs in pregnant women and on embryofetal development. In line with the ICH S5(R3) guideline, these studies are generally conducted in one rodent and one non-rodent species, commonly rats and rabbits. However, the added value of conducting EFD studies in two species to risk assessment is debatable. In this study, rat and rabbit EFD studies were evaluated to analyze the added value of a second species. Information on rat and rabbit EFD studies conducted for human pharmaceuticals submitted for marketing authorization to the European Medicines Agency between 2004 and 2022 was collected from the database of the Dutch Medicines Evaluation Board, along with EFD studies conducted for known human teratogens. In total, 369 compounds were included in the database. For 55.6% of the compounds similar effects were observed in rat and rabbit EFD studies. Discordance was observed for 44.6% of compounds. Discordance could often be explained based on occurrence of maternal toxicity or the compound's mechanism of action. For other compounds, discordance was considered of limited clinical relevance due to high exposure margins or less concerning EFD toxicity. For 6.2%, discordance could not be explained and was considered clinically relevant. Furthermore, for specific therapeutic classes, concordance between rat and rabbit could vary. In conclusion, in many cases the added value of conducting EFD studies in two species is limited. These data could help identify scenarios in which (additional) EFD studies could be waived or create a weight-of-evidence model to determine the need for (additional) EFD studies.


Asunto(s)
Desarrollo Embrionario , Teratógenos , Animales , Conejos , Ratas , Embarazo , Femenino , Desarrollo Embrionario/efectos de los fármacos , Teratógenos/toxicidad , Medición de Riesgo , Humanos , Pruebas de Toxicidad , Desarrollo Fetal/efectos de los fármacos , Especificidad de la Especie
17.
Mar Pollut Bull ; 207: 116819, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182410

RESUMEN

Toxicity of water accommodated fractions (WAF) from the oil spilled on the Brazilian coast at different stages of weathering were investigated using Danio rerio. Weathering stages included emulsified oil that reached the coast (OM) and oil collected 50 days later deposited on beach sand (OS) or adhered to shore rocks (OR). Parent and alkylated naphthalenes decreased whereas phenanthrenes increased from less weathered WAF-OM to more weathered WAF-OS and WAF-OR. More weathered WAF-OS and WAF-OR were more potent inducers of zebrafish developmental delay, suggesting that parent and alkylated phenanthrenes are involved. However, less weathered WAF-OM was a more potent inducer of failure in swim-bladder inflation than more weathered WAF-OS and WAF-OR, suggesting that parent and alkylated naphthalenes are involved. Decreases in heart rates and increased heart and skeletal deformities were observed in exposed larvae. Lowest observed effect concentrations for different developmental toxicity endpoints are within environmentally relevant polycyclic aromatic hydrocarbon concentrations.


Asunto(s)
Contaminación por Petróleo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Brasil , Contaminantes Químicos del Agua/toxicidad , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Fenantrenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Naftalenos/toxicidad , Monitoreo del Ambiente , Petróleo/toxicidad
18.
Environ Sci Technol ; 58(39): 17259-17269, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208335

RESUMEN

Bisphenol A (BPA) is a commonly used plastic additive. Since BPA has been banned in maternal and infant food containers in many countries, BPA substitutes have been widely introduced to replace it. By systematically assessing the potential developmental toxicity of BPA substitutes, we observed that the 41-150 nM in vivo BPC exposure (around the reported concentration detected in infant urine: 6-186 nM) induced cardiac defects in zebrafish. Mechanistically, BPC disrupted m6A homeostasis by downregulation of the key m6A methyltransferase, Mettl3, thereby causing the m6A reader, Igf2bp2b, to fail in recognizing and stabilizing the inefficiently m6A-modified acox1 and tnnt2d mRNA. Then, downregulation of Acox1 (a regulator in cardiac fatty acid metabolism) and Tnnt2d (a component of cardiac troponin for muscle contraction) led to cardiac defects. Indeed, the dual cardiac functional axes regulated by the same m6A reader in response to BPC provided new insight into the regulatory mechanisms of epitranscriptomics and cardiac development. Collectively, our study not only presented evidence showing that the internal exposure levels of BPC in humans could lead to cardiac developmental defects but also demonstrated the underlying mechanism of BPC-mediated defects by disrupting the Mettl3-m6A-Igf2bp2b-Acox1/Tnnt2d pathways, which provided potential molecular markers associated with BPC exposure.


Asunto(s)
Homeostasis , Pez Cebra , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Corazón/efectos de los fármacos
19.
Reprod Toxicol ; 129: 108676, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39094807

RESUMEN

In the present study, the effects of levamlodipine benzenesulfonate on the development of fertile Sprague-Dawley (SD) rats, their embryos, and littermates were assessed using an embryo-fetal developmental toxicity test. Maternal body weight reduction was observed at a dose of 20 mg/kg, but it recovered after treatment cessation. The 20 mg/kg dose group showed a skewed sex ratio in fetal rats, with a higher proportion of males. While some effects on fetal sternum development were observed at 20 mg/kg, no skeletal malformations were observed. No significant gross morphological abnormalities were detected in the dams (mothers), no significant embryotoxicity or foetotoxicity in fetal rats and no significant effects on fetal length and weight development at doses of 5 and 10 mg/kg. Genotoxicity was evaluated using a combination of the Ames test, the Chinese hamster ovary (CHO) cell chromosome aberration assay, and the ICR mouse bone marrow micronucleus test. The Ames test results indicated substantial bacteriostatic effects at doses of 500 and 5000 mg/dish, with no mutagenicity observed at doses of 0.5, 5, and 50 mg/dish. No significant effect on the aberration rate of CHO cell chromosomes was found at doses of 2.8, 5.6, and 11.2 mg/mL. In the ICR mouse micronucleus test, no micronucleus-inducing effect was observed at doses of 3.125, 6.25, and 12.5 mg/kg in each treatment group. In conclusion, under the conditions of this experiment, the no-observed-adverse-effect level (NOAEL) for developmental toxicity of levamlodipine benzenesulfonate in fertile SD rats, their embryos, and littermates was established to be 10 mg/kg/day. Levamlodipine benzenesulfonate did not exhibit significant genotoxicity.


Asunto(s)
Aberraciones Cromosómicas , Cricetulus , Pruebas de Mutagenicidad , Ratas Sprague-Dawley , Animales , Femenino , Masculino , Células CHO , Ratas , Cricetinae , Ratones , Embarazo , Aberraciones Cromosómicas/inducido químicamente , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Fetal/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Razón de Masculinidad , Peso Corporal/efectos de los fármacos , Mutágenos/toxicidad
20.
Reprod Toxicol ; 129: 108686, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128486

RESUMEN

The aim of embryo-fetal developmental toxicity assessments for pharmaceuticals is to inform potential risk of adverse pregnancy outcome, which has traditionally relied on studies in pregnant animals. Recent updates to international safety guidelines (ICH S5R3) have incorporated information on how to use weight of evidence and alternative assays to reduce animal use while still informing risk of fetal harm. Uptake of these alternative approaches has been slow due to limitations in understanding how alternative assays translate to in vivo effects and then relevance to human exposure. To understand the predictivity of new approach methodologies for developmental toxicity (DevTox NAMs), we used two pharmaceutical examples (glasdegib and lorlatinib) to illustrate the value of DevTox NAMs to complement weight of evidence (WoE) assessments while considering the relationship of concentration-effect levels in NAMs to in vivo studies. The in vitro results generated in a battery of assays (mEST, rWEC, zebrafish, and human based stem cells) confirmed the WoE based on literature and further confirmed by preliminary embryo-fetal development data. The data generated for these two compounds supports integrating DevTox NAMs into the developmental toxicity assessment for advanced cancer indications.


Asunto(s)
Desarrollo Embrionario , Pruebas de Toxicidad , Pez Cebra , Animales , Humanos , Pruebas de Toxicidad/métodos , Desarrollo Embrionario/efectos de los fármacos , Teratógenos/toxicidad , Femenino , Pirazoles/toxicidad , Embarazo , Desarrollo Fetal/efectos de los fármacos , Alternativas a las Pruebas en Animales , Línea Celular , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA