Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.703
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39231011

RESUMEN

The supercapacitor-diode (CAPode) is a device that integrates the functionality of an ionic diode with that of a conventional supercapacitor. The unique combination of energy storage and rectification properties in CAPodes is relevant for iontronics, alternate current rectifiers, logic operations, grid stabilization, and even biomedical applications. Here, we propose a novel aqueous-phase supercapattery-diode with excellent energy storage [total specific capacity (CT) = 162 C g-1, energy density = 34 W h kg-1 at 1.0 A g-1] as well as rectifying properties [rectification ratio I (RRI) of 23, and rectification ratio II (RRII) of 0.98]; the unidirectional energy storage is achieved by the utilization of an ion-selective redox reaction of battery-type layered double hydroxide (LDH) nanosheets serving as the electroactive material as well as asymmetric device configuration of supercapattery-diode in the KOH electrolyte. This work expands the types of CAPodes and importantly exemplifies the significance of integrating battery-type LDH and their redox chemistry, allowing a simultaneous increase in charge storage and rectification properties.

2.
Sci Rep ; 14(1): 21107, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256554

RESUMEN

Different wavelengths emitted from light-emitting diodes (LEDs) are known as an influential factor in proliferation and differentiation of various cell types. Since human umbilical cord matrix-derived mesenchymal cells (hUCMs) are ideal tools for human regenerative medicine clinical trials and stem cell researches, in the present study we investigated the neurogenesis effects of single and intermittent green and red LED irradiation on hUCM cells. Exposure of hUCMs to single and intermittent green (530 nm, 1.59 J/cm2) and red (630 nm, 0.318 J/cm2) lights significantly increased the expression of specific genes including nestin, ß-tubulin III and Olig2. Additionally, immunocytochemical analysis confirmed the expression of specific neural-related proteins including nestin, ß-tubulin III, Olig2 and GFAP. Also, alternating exposure of hUCM cells to green and red lights increased the expression of some neural markers more than either light alone. Further research are required to develop the application of LED irradiation as a useful tool for therapeutic purposes including neural repair and regeneration.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Neurogénesis , Cordón Umbilical , Humanos , Células Madre Mesenquimatosas/efectos de la radiación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular/efectos de la radiación , Cordón Umbilical/citología , Neurogénesis/efectos de la radiación , Luz , Nestina/metabolismo , Nestina/genética , Células Cultivadas , Neuronas/efectos de la radiación , Neuronas/metabolismo , Neuronas/citología , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética
3.
Talanta ; 281: 126754, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241646

RESUMEN

Confocal Raman microscopy is a powerful technique for identifying materials and molecular species; however, the signal from Raman scattering is extremely weak. Typically, handheld Raman instruments are cost-effective but less sensitive, while high-end scientific-grade Raman instruments are highly sensitive but extremely expensive. This limits the widespread use of Raman technique in our daily life. To bridge this gap, we explored and developed a cost-effective yet highly sensitive confocal Raman microscopy system. The key components of the system include an excitation laser based on readily available laser diode, a lens-grating-lens type spectrometer with high throughput and image quality, and a sensitive detector based on a linear charge-coupled device (CCD) that can be cooled down to -30 °C. The developed compact Raman instrument can provide high-quality Raman spectra with good spectral resolution. The 3rd order 1450 cm-1 peak of Si (111) wafer shows a signal-to-noise ratio (SNR) better than 10:1, demonstrating high sensitivity comparable to high-end scientific-grade Raman instruments. We also tested a wide range of different samples (organic molecules, minerals and polymers) to demonstrate its universal application capability.

4.
Small ; : e2404605, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248680

RESUMEN

Artificial ion diodes, inspired by biological ion channels, have made significant contributions to the fields of physics, chemistry, and biology. However, constructing asymmetric sub-nanofluidic membranes that simultaneously meet the requirements of easy fabrication, high ion transport efficiency, and tunable ion transport remains a challenge. Here, a direct and flexible in situ staged host-guest self-assembly strategy is employed to fabricate ion diode membranes capable of achieving zonal regulation. Coupling the interfacial polymerization process with a host-guest assembly strategy, it is possible to easily manipulate the type, order, thickness, and charge density of each module by introducing two oppositely charged modules in stages. This method enables the tuning of ion transport behavior over a wide range salinity, as well as responsive to varying pH levels. To verify the potential of controllable diode membranes for application, two ion diode membranes with different ion selectivity and high charge density are coupled in a reverse electrodialysis device. This resulted in an output power density of 63.7 W m-2 at 50-fold NaCl concentration gradient, which is 12 times higher than commercial standards. This approach shows potential for expanding the variety of materials that are appropriate for microelectronic power generation devices, desalination, and biosensing.

5.
Photodiagnosis Photodyn Ther ; : 104325, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245305

RESUMEN

BACKGROUND: Acne is a chronic inflammatory skin disease. Photodynamic therapy (PDT) is a highly effective and safe drug-device combination treatment, typically using red and blue light. However, direct comparisons of aminolevulinic acid (ALA)-based PDT using these two light sources are lacking. Therefore, we compared the efficacy and adverse effects of ALA-based 450 nm blue laser-mediated PDT (BL-PDT) and 630 ± 10 nm red light-emitting diode-mediated PDT (RL-PDT) in the treatment of moderate-to-severe acne vulgaris, including analyses of different lesion types. METHODS: Sixteen patients with moderate-to-severe acne vulgaris were recruited. All patients underwent BL-PDT on the left side of the face and RL-PDT on the right side. Treatments were administered thrice at 2-week intervals, and follow-up continued for 2 weeks after the final treatment. The average rates of improvement in inflammatory and non-inflammatory acne lesions, IGA (Investigator's Global Assessment) scales, and IGA success rates were calculated. In addition, adverse effects during and after each treatment were recorded. RESULTS: At the 2-week follow-up after the final treatment, the average rates of improvement in total acne, inflammatory, and non-inflammatory lesions were 48.0%, 63.0%, and 30.0% in the BL-PDT group and 42.2%, 58.1%, and 27.5% in the RL-PDT group, respectively. The IGA scores for the two groups decreased by 1.8 and 1.7 points, respectively, and the IGA success rate was 53.3% in both groups. There were no significant differences between the BL-PDT and RL-PDT groups in any measure of effectiveness. However, the BL-PDT group exhibited more severe adverse effects, especially pain and hyperpigmentation. CONCLUSIONS: BL-PDT and RL-PDT have similar efficacies in moderate-to-severe acne vulgaris and are particularly effective for inflammatory acne lesions. RL-PDT benefits from milder adverse effects than those of BL-PDT.

6.
Phys Imaging Radiat Oncol ; 31: 100622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39220115

RESUMEN

Background and purpose: In sliding-window intensity-modulated radiotherapy, increased plan modulation often leads to increased plan complexities and dose uncertainties. Dose calculation and/or measurement checks are usually adopted for pre-treatment verification. This study aims to evaluate the relationship among plan complexities, calculated doses and measured doses. Materials and methods: A total of 53 plan complexity metrics (PCMs) were selected, emphasizing small field characteristics and leaf speed/acceleration. Doses were retrieved from two beam-matched treatment devices. The intended dose was computed employing the Anisotropic Analytical Algorithm and validated through Monte Carlo (MC) and Collapsed Cone Convolution (CCC) algorithms. To measure the delivered dose, 3D diode arrays of various geometries, encompassing helical, cross, and oblique cross shapes, were utilized. Their interrelation was assessed via Spearman correlation analysis and principal component linear regression (PCR). Results: The correlation coefficients between calculation-based (CQA) and measurement-based verification quality assurance (MQA) were below 0.53. Most PCMs showed higher correlation rpcm-QA with CQA (max: 0.84) than MQA (max: 0.65). The proportion of rpcm-QA  ≥ 0.5 was the largest in the pelvis compared to head-and-neck and chest-and-abdomen, and the highest rpcm-QA occurred at 1 %/1mm. Some modulation indices for the MLC speed and acceleration were significantly correlated with CQA and MQA. PCR's determination coefficients (R2 ) indicated PCMs had higher accuracy in predicting CQA (max: 0.75) than MQA (max: 0.42). Conclusions: CQA and MQA demonstrated a weak correlation. Compared to MQA, CQA exhibited a stronger correlation with PCMs. Certain PCMs related to MLC movement effectively indicated variations in both quality assurances.

7.
Heliyon ; 10(16): e35771, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220991

RESUMEN

The primary objective of this study is to investigate the effects of the Fractional Order Kepler Optimization Algorithm (FO-KOA) on photovoltaic (PV) module feature identification in solar systems. Leveraging the strengths of the original KOA, FO-KOA introduces fractional order elements and a Local Escaping Approach (LEA) to enhance search efficiency and prevent premature convergence. The FO element provides effective information and past expertise sharing amongst the participants to avoid premature converging. Additionally, LEA is incorporated to boost the search procedure by evading local optimization. The single-diode-model (SDM) and Double-diode-model (DDM) are two different equivalent circuits that are used for obtaining the unidentified parameters of the PV. Applied to KC-200, Ultra-Power-85, and SP-70 PV modules, FO-KOA is compared to the original KOA technique and contemporary algorithms. Simulation results demonstrate FO-KOA's remarkable average improvement rates, showcasing its significant advantages and robustness over earlier reported methods. The proposed FO-KOA demonstrates exceptional performance, outperforming existing algorithms by 94.42 %-99.73 % in optimizing PV cell parameter extraction, particularly for the KC200GT module, showcasing consistent superiority and robustness. Also, the proposed FO-KOA is validated of on SDM and DDM for the well-known RTC France PV cell.

8.
J Photochem Photobiol B ; 259: 113021, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39222549

RESUMEN

Alzheimer's disease, a prevalent neurodegenerative condition primarily affecting older adults, remains incurable. Its principle pathological hallmark is the accelerated accumulation of amyloid ß (Aß) protein. This study investigates the potential of photobiomodulation using near infrared light to counteract Aß1-42-induced synaptic degeneration and neurotoxicity. We focused on the effect of 808 nm near-infrared laser diode (LD) on Aß1-42 cytotoxicity in primary cultured cortical neurons. We assessed cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, observing substantial benefits from LD irradiation with a power of 10 mW and a dose of 30 J. Cells exposed to Aß1-42 exhibited morphological changes indicative of synaptic damage and a significant decrease in the number of postsynaptic density protein-95 (PSD-95) contacts, which were significantly improved with near-infrared LD therapy. Furthermore, this therapy reduced Aß and phosphorylated tau (P-tau) protein accumulation. Additionally, near-infrared LD irradiation substantially lessened the Aß1-42-induced rise in glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) in astrocytes and microglia. Remarkably, near-infrared LD irradiation effectively inhibited phosphorylation of key proteins involved in Aß1-42-induced necroptosis, namely Receptor-interacting protein kinase-3 (RIP3) and Mixed Lineage Kinase domain-Like protein (MLKL). Our findings suggest that near-infrared LD treatment significantly reduces neurodegeneration by reducing glial overactivation and neuronal necroptosis triggered by Aß1-42. Thus, near-infrared LD treatment emerges as a promising approach for slowing or treating Alzheimer's disease, offering new avenues in its management.

9.
Lasers Med Sci ; 39(1): 231, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223344

RESUMEN

To evaluate the efficacy of yellow light-emitting diode (LED) irradiation at 590 nm, alone or in combination with anti-inflammatory active substances against ultraviolet (UV)-induced inflammation in keratinocytes. HaCaT keratinocytes were pretreated with LED yellow light (590 nm) alone or in combination with an antiinflammatory active substance such as glycerophosphoinositol choline (GC), extract of grains of paradise (Aframomum melegueta Schum, AM), or a bisabolol and ginger root extract mixture (Bb-GE) before UVB irradiation. Following each treatment, we measured the levels of inflammatory mediators secreted by keratinocytes. HaCaT keratinocytes treated with UVB (300 mJ cm-²) and then cultured for 24 h exhibited significantly upregulated expression of proinflammatory factors, including interleukin (IL)-1α, prostaglandin E2 (PGE2), and IL-8. After pretreatment with 590 nm LED, UVB-induced inflammatory responses were significantly inhibited. Co-pretreatment with 590 nm LED irradiation and GC further inhibited the expression of IL-1α and IL-8. IL-8 expression was inhibited by co-pretreatment with 590 nm LED irradiation and AM, whereas PGE2 expression was inhibited by co-pretreatment with 590 nm LED irradiation and Bb-GE. Co-treatment with 590 nm LED irradiation and various active substances modulated UVB-induced inflammation in keratinocytes, suggesting the potential application of this approach to prevent damage caused by voluntary sun exposure in daily life.


Asunto(s)
Inflamación , Interleucina-8 , Queratinocitos , Rayos Ultravioleta , Humanos , Queratinocitos/efectos de la radiación , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Rayos Ultravioleta/efectos adversos , Interleucina-8/metabolismo , Dinoprostona/metabolismo , Interleucina-1alfa/metabolismo , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Láseres de Semiconductores/uso terapéutico , Antiinflamatorios/farmacología , Sesquiterpenos Monocíclicos/farmacología , Células HaCaT
10.
Physiother Res Int ; 29(4): e2129, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39223951

RESUMEN

OBJECTIVE: Vulvovaginal Candidiasis (VVC) is a prevalent genital infection in women of reproductive age and requires effective non-drug therapies. Therefore, this study aimed to investigate the effect of blue light emitting diode (LED) therapy as an alternative treatment for recurrent VVC due to its proven antimicrobial properties. The safety and non-invasiveness of LED therapy make it a promising option for sensitive tissue applications. MATERIALS AND METHODS: This randomized controlled trial recruited 60 women with culture-confirmed VVC. Participants were randomly allocated to two groups. Group A (control group) received standard antifungal treatment with Gynoconazol 0.8% vaginal cream for three consecutive nights (n = 30). Group B (study group) received the same antifungal treatment plus two 60-min sessions of blue LED therapy directed at the vagina and vulva, with the sessions separated by two days (n = 30). Candida count (via CHROMagar™ Candida) and vaginal pH (via AD110-AD111 m) were assessed at baseline and one week after initiating treatment. RESULTS: Post-treatment, group (B) demonstrated a significantly greater reduction in Candida count compared to group (A) (mean difference (MD) 8.267; 95% Confidence Interval (CI) 6.723-9.811; p = 0.0001). However, there was no statistically significant difference in vaginal pH between the groups (MD -0.03; 95% CI -0.244-0.178; p = 0.749). CONCLUSION: Blue LED therapy effectively reduces Candida count in women with recurrent VVC without adversely affecting the vaginal pH, highlighting its safety and efficacy as a treatment modality.


Asunto(s)
Candidiasis Vulvovaginal , Humanos , Femenino , Candidiasis Vulvovaginal/terapia , Candidiasis Vulvovaginal/tratamiento farmacológico , Adulto , Fototerapia/métodos , Antifúngicos/uso terapéutico , Recurrencia , Adulto Joven , Método Simple Ciego , Resultado del Tratamiento , Luz Azul
11.
Lasers Med Sci ; 39(1): 206, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090348

RESUMEN

To assess and compare the anti-microbial efficacy of 445 nm and 970 nm diode laser on mixed species biofilm of Aggregatibacter actinomycetemcomitans [A.a] and Porphyromonas gingivalis [P.g] cultured on machined pure titanium discs. A total of 65 machined pure titanium discs with no surface modifications with a 10-mm diameter and a 2-mm height were sterilized by autoclaving at 121 °C for 15 min and incubated with the commercially available bacterial strains ATCC(American Type Culture Collection- P.g 33277 and A.a 29522)mixture of Aggregatibacter actinomycetemcomitans(A.a) and Porphyromonas gingivalis(P.g).After a 2-week incubation period with the mixture of bacteria to develop a mixed species biofilm, the discs were divided into three groups: (1) no treatment (control), (2) 445 nm laser (test), (3) 970 nm laser (test). For each laser wavelength (445 and 970 nm), the discs were exposed to 1.0 W and 2.0 W in continuous wave mode for the times points of 15, 30, and 60 s. The antimicrobial efficacy was assessed by qPCR. A significant reduction in the levels of both species of bacteria was observed between control and the laser intervention groups. A higher efficacy for the 445 nm diode laser against Porphyromonas gingivalis and a similar efficacy against Aggregatibacter actinomycetemcomitans was observed as compared to the 970 nm group. 445 nm wavelength represents a potential and effective laser wavelength which can be used for the management of peri-implant infection. The present study findings also need to be further validated through clinical interventional trials.


Asunto(s)
Aggregatibacter actinomycetemcomitans , Biopelículas , Láseres de Semiconductores , Porphyromonas gingivalis , Titanio , Biopelículas/efectos de la radiación , Biopelículas/efectos de los fármacos , Porphyromonas gingivalis/fisiología , Láseres de Semiconductores/uso terapéutico , Titanio/química , Humanos , Técnicas In Vitro
12.
Chempluschem ; : e202400438, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116088

RESUMEN

Herein, a deep blue emitter (PI-TPB-CN) with a synergistic effect of hybridized local and charge transfer excited state (HLCT) and aggregation-induced emission (AIE) properties is successfully designed and synthesized to improve the performance of deep blue organic light-emitting diodes (OLEDs). It is constructed using a 1,2,4,5-tetraphenylbenzene (TPB) as an π-conjugated AIE core being asymmetrically functionalized with a phenanthro[9,10-d]imidazole (PI) as a weak donor (D) and a benzonitrile (CN) as an acceptor (A), thereby formulating D-π-A type fluorophore. Its HCLT and AIE properties verified by theoretical calculations, solvatochromic effects, and transient photoluminescence decay experiments, bring about a strong blue emission (452 nm) with a high photoluminescence quantum yield of 74% in the thin film. PI-TPB-CN is successfully employed as a blue emitter in OLEDs. Non-doped OLED with the structure of ITO/HATCN (6 nm)/NPB (30 nm)/TCTA (10 nm)/PI-TPB-CN (30 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm) demonstrates excellent electroluminescence (EL) performance with blue emission (451 nm) and maximum external quantum efficiency (EQEmax) of 7.38%. The device with a thinner layer of PI-TPB-CN (20 nm) and TPBi (30 nm) exhibits a deeper blue emission (444 nm) with CIE coordinates of (0.16, 0.09), a low turn-on voltage of 3.0 V, and EQEmax of 6.45%.

13.
Quintessence Int ; 0(0): 0, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162208

RESUMEN

OBJECTIVES: Diode laser represent a practical clinical strategy for treating gingival hyperpigmentation. However, its effectiveness remains controversial. We conducted a meta-analysis evaluating the quantitative effects of diode laser therapy on gingival hyperpigmentation. METHOD AND MATERIALS: Pubmed, Embase, Web Of Science, and Cochrane Library were systematically searched for the use of diode laser in gingival hyperpigmentation. The primary outcomes assessed were the Dummett-Gupta Oral Pigmentation Index (DOPI), Visual Analog Scale (VAS) pain scores, and the Wound Healing Index (WHI) for overall evaluation. I2 index was calculated to identify heterogeneity and sensitivity analyses sources of heterogeneity. Funnel plots and Egger's test were utilized to evaluate publication bias. RESULTS: Thirteen randomized controlled trials (RCTs) involving a total of 233 participants were included in this study. The analysis demonstrated that diode laser had a significant effect on DOPI (standard mean difference [SMD] = -0.245, 95% CI = -0.415 to -0.040, P =.019) and VAS (SMD = -0.089, 95% CI = -1.332 to -0.285, P =.002), with no significant effect on WHI (SMD = -0.224, 95% CI = -1.100 to 0.653, P =.617). Despite the significant heterogeneity in VAS and WHI indicated by the I2 index statistic, the sensitivity analyses' results demonstrated the main findings' reliability. While no significant publication bias was detected for DOPI and WHI, the VAS results exhibited notable publication bias. CONCLUSION: The study demonstrated that diode laser prolongs gingival repigmentation time and reduces pain compared to other treatments. However, the efficacy in wound healing did not significantly promote.

14.
Lasers Med Sci ; 39(1): 219, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39147852

RESUMEN

PURPOSE: This bibliometric and scientometric analysis aimed to delve into the forefront roles of lasers in endodontics from 1990 to 2024. METHODS: A comprehensive electronic search was conducted using "Clarivate Analytics Web of Science, All Databases" to retrieve the most-cited articles pertaining to the topic. These articles were then ranked in descending order according to their citation counts and the top 100 were selected for further analysis. Parameters including citation density, publication year, journal, journal impact factor (IF), country, institution, author, study design, study field, evidence level, laser type, and keywords were meticulously analyzed. RESULTS: The mean and standard deviations of total citation and citation density were 106.47 ± 65.76 and 7.61 ± 5.13, respectively. Positive and negative correlations were found between the number of citations and citation density and age of publication. While the mean number of citations was significantly higher in the period 2001-2010 compared to the other periods (P < 0.05), values were similar between the periods 1990-2000 and 2011-2014 (P > 0.05). Articles were mainly published in the Journal of Endodontics. The most productive country, institutions, and author were the United States, the University of Showa, and Koukichi Matsumoto. Diode and Er: YAG lasers were commonly investigated. Ex vivo studies were mainly performed followed by in vitro ones. The main study field was "antimicrobial effect". Among keywords, "photodynamic therapy" was used more frequently. CONCLUSION: Lasers are predominantly utilized to leverage their antimicrobial efficacy. Advancements in technology will lead to improvements in the properties of lasers, thereby enhancing the disinfection of the root canal system.


Asunto(s)
Bibliometría , Endodoncia , Endodoncia/métodos , Humanos , Factor de Impacto de la Revista , Terapia por Láser/métodos , Terapia por Láser/instrumentación , Rayos Láser
15.
Adv Mater ; : e2408777, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101296

RESUMEN

Organic-inorganic hybrid manganese(II) halides (OIMnHs) have garnered tremendous interest across a wide array of research fields owing to their outstanding optical properties, abundant structural diversity, low-cost solution processibility, and low toxicity, which make them extremely suitable for use as a new class of luminescent materials for various optoelectronic applications. Over the past years, a plethora of OIMnHs with different structural dimensionalities and multifunctionalities such as efficient photoluminescence (PL), radioluminescence, circularly polarized luminescence, and mechanoluminescence have been newly created by judicious screening of the organic cations and inorganic Mn(II) polyhedra. Specifically, through precise molecular and structural engineering, a series of OIMnHs with near-unity PL quantum yields, high anti-thermal quenching properties, and excellent stability in harsh conditions have been devised and explored for applications in light-emitting diodes (LEDs), X-ray scintillators, multimodal anti-counterfeiting, and fluorescent sensing. In this review, the latest advancements in the development of OIMnHs as efficient light-emitting materials are summarized, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for LEDs and X-ray detection and imaging. Current challenges and future efforts to unlock the potentials of these promising materials are also envisioned.

16.
Sci Rep ; 14(1): 17961, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095662

RESUMEN

The deep ultraviolet (DUV) micro-light emitting diode (µLED) has serious electron leakage and low hole injection efficiency. Meanwhile, with the decrease in the size of the LED chip, the plasma-assisted dry etching process will cause damage to the side wall of the mesa, which will form a carrier leakage channel and produce non-radiative recombination. All of these will reduce the photoelectric performance of µLED. To this end, this study introduces polarized bulk charges into the hole supply layer (p-HSL) and the electron supply layer (n-ESL) respectively (dual-polarized structure) of the DUV µLED at an emission wavelength of 279 nm to enhance the binding of carriers and increase the injection efficiency of carriers. This is because the polarization-induced bulk charge can shield the polarized sheet charge on the interface and reduce the polarization electric field. The reduced polarization electric field in p-HSL can increase the effective barrier height of the conduction band in the p-type region and reduce the effective barrier height of the valence band. The decrease in the polarized electric field of n-HSL can reduce the thermal velocity of electrons, thereby enhancing the electron injection efficiency, reducing the Shockley-Read-Hall (SRH) recombination, and increasing the effective barrier height of the valence band. The study results indicate that the electron concentration and hole concentration of a µLED with dual polarization were increased by 77.93% and 93.6%, respectively. The optical power and maximum external quantum efficiency of µLED reached 31.04 W/cm2 and 2.91% respectively, and the efficiency droop is only 2.06% at 120 A/cm2. These results provide a new approach to solving the problem of insufficient carrier injection and SRH recombination in high-performance DUV µLEDs.

17.
Lasers Med Sci ; 39(1): 212, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120679

RESUMEN

The aim of the study was to measure the degree of dentine surface roughness caused by five distinct lasers used to treat dentine hypersensitivity, as well as to evaluate the subsequent bacterial colonization on these irradiated surfaces. Sixty human maxillary premolar teeth without caries or restoration which were extracted for periodontal reasons were used in this study. Five different types of lasers were applied to the root dentin surface. Tested samples were divided into six groups of 10 samples each; control, diode (810 nm), diode (980 nm), Nd: YAG, Er: YAG, and Er, Cr: YSGG laser groups. The arithmetic mean of the surface roughness values (Ra) and the average roughness over a measurement area (Sa) were measured pre- and post-application using any of the laser types. Swab samples were then collected from the dentin surface. Following a 24-hour incubation period at 37 °C, the colony forming units were counted using a stereoscope. The results demonstrated a statistically significant difference in the surface roughness values pre- and post-application (Ra and Sa, respectively) in the Er, Cr: YSGG laser group (p = 0.037,p = 0.007). No significant difference was observed in the other groups (p > 0.05). There was no statistically significant difference in the number of bacterial colonies observed between the test and control groups. Diode and Nd: YAG lasers showed either a decrease or no change in surface roughness; however, the hard tissue lasers (Er: YAG, Er, Cr: YSGG) showed an increase. The Er: YAG and Nd: YAG laser groups exhibited decreased bacterial adhesion compared to the other groups.


Asunto(s)
Adhesión Bacteriana , Sensibilidad de la Dentina , Dentina , Láseres de Semiconductores , Láseres de Estado Sólido , Propiedades de Superficie , Humanos , Láseres de Estado Sólido/uso terapéutico , Dentina/microbiología , Dentina/efectos de la radiación , Propiedades de Superficie/efectos de la radiación , Sensibilidad de la Dentina/radioterapia , Sensibilidad de la Dentina/microbiología , Sensibilidad de la Dentina/terapia , Láseres de Semiconductores/uso terapéutico , Adhesión Bacteriana/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Terapia por Luz de Baja Intensidad/instrumentación , Técnicas In Vitro , Diente Premolar/microbiología , Diente Premolar/efectos de la radiación , Diente Premolar/cirugía
18.
Materials (Basel) ; 17(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124340

RESUMEN

The measurement of the electronic bandgap and exciton binding energy in quasi-one-dimensional materials such as carbon nanotubes is challenging due to many-body effects and strong electron-electron interactions. Unlike bulk semiconductors, where the electronic bandgap is well known, the optical resonance in low-dimensional semiconductors is dominated by excitons, making their electronic bandgap more difficult to measure. In this work, we measure the electronic bandgap of networks of polymer-wrapped semiconducting single-walled carbon nanotubes (s-SWCNTs) using non-ideal p-n diodes. We show that our s-SWCNT networks have a short minority carrier lifetime due to the presence of interface trap states, making the diodes non-ideal. We use the generation and recombination leakage currents from these non-ideal diodes to measure the electronic bandgap and excitonic levels of different polymer-wrapped s-SWCNTs with varying diameters: arc discharge (~1.55 nm), (7,5) (0.83 nm), and (6,5) (0.76 nm). Our values are consistent with theoretical predictions, providing insight into the fundamental properties of networks of s-SWCNTs. The techniques outlined here demonstrate a robust strategy that can be applied to measuring the electronic bandgaps and exciton binding energies of a broad variety of nanoscale and quantum-confined semiconductors, including the most modern nanoscale transistors that rely on nanowire geometries.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39126158

RESUMEN

AIM: Photopharmacology is a new technique for modulating biological phenomena through the photoconversion of substances in a specific target region at precise times. Caged compounds are thought to be compatible with photopharmacology as uncaged ligands are released and function in a light irradiation-dependent manner. Here, we investigated whether a microscale light-emitting diode (MicroLED) probe is applicable for the photoconversion of caged-glutamate (caged-Glu) in vivo. METHODS: A needle-shaped MicroLED probe was fabricated and inserted into the mouse hippocampal dentate gyrus (DG) with a cannula for drug injection and a recording electrode for measuring the local field potential (LFP). Artificial cerebrospinal fluid (ACSF) or caged-Glu was infused into the DG and illuminated with light from a MicroLED probe. RESULTS: In the caged-Glu-injected DG, the LFP changed in the 10-20 Hz frequency ranges after light illumination, whereas there was no change in the ACSF control condition. CONCLUSION: The MicroLED probe is applicable for photopharmacological experiments to modulate LFP with caged-Glu in vivo.

20.
Antibiotics (Basel) ; 13(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39200012

RESUMEN

The problem of antimicrobial resistance (AMR) is not limited to the medical field but is also becoming prevalent on a global scale in the environmental field. Environmental water pollution caused by the discharge of wastewater into aquatic environments has caused concern in the context of the sustainable development of modern society. However, there have been few studies focused on the treatment of hospital wastewater, and the potential consequences of this remain unknown. This study evaluated the efficacy of the inactivation of antimicrobial-resistant bacteria (AMRB) and antimicrobial resistance genes (AMRGs) in model wastewater treatment plant (WWTP) wastewater and hospital effluent based on direct ultraviolet (UV) light irradiation provided by a conventional mercury lamp with a peak wavelength of 254 nm and an ultraviolet light-emitting diode (UV-LED) with a peak emission of 280 nm under test conditions in which the irradiance of both was adjusted to the same intensity. The overall results indicated that both UV- and UV-LED-mediated disinfection effectively inactivated the AMRB in both wastewater types (>99.9% after 1-3 min of UV and 3 min of UV-LED treatment). Additionally, AMRGs were also removed (0.2-1.4 log10 for UV 254 nm and 0.1-1.3 log10 for UV 280 nm), and notably, there was no statistically significant decrease (p < 0.05) in the AMRGs between the UV and UV-LED treatments. The results of this study highlight the importance of utilizing a local inactivation treatment directly for wastewater generated by a hospital prior to its flow into a WWTP as sewage. Although additional disinfection treatment at the WWTP is likely necessary to remove the entire quantity of AMRB and AMRGs, the present study contributes to a significant reduction in the loads of WWTP and urgent prevention of the spread of infectious diseases, thus alleviating the potential threat to the environment and human health risks associated with AMR problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA