Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056907

RESUMEN

As one of the most widely used spread spectrum techniques, the frequency-hopping spread spectrum (FHSS) has been widely adopted in both civilian and military secure communications. In this technique, the carrier frequency of the signal hops pseudo-randomly over a large range, compared to the baseband. To capture an FHSS signal, conventional non-cooperative receivers without knowledge of the carrier have to operate at a high sampling rate covering the entire FHSS hopping range, according to the Nyquist sampling theorem. In this paper, we propose an adaptive compressed method for joint carrier and direction of arrival (DOA) estimations of FHSS signals, enabling subsequent non-cooperative processing. The compressed measurement kernels (i.e., non-zero entries in the sensing matrix) have been adaptively designed based on the posterior knowledge of the signal and task-specific information optimization. Moreover, a deep neural network has been designed to ensure the efficiency of the measurement kernel design process. Finally, the signal carrier and DOA are estimated based on the measurement data. Through simulations, the performance of the adaptively designed measurement kernels is proved to be improved over the random measurement kernels. In addition, the proposed method is shown to outperform the compressed methods in the literature.

2.
Sensors (Basel) ; 24(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38894243

RESUMEN

Increasing airspace safety is an important challenge, both for unmanned aerial vehicles (UAVs) as well as manned aircraft. Future developments of collision avoidance systems are supposed to utilize information from multiple sensing systems. A compact sensing system could employ a multi-mode multi-port antenna (M 3PA). Their ability to radiate multiple orthogonal patterns simultaneously makes them suitable for communication applications as well as bearing and ranging applications. Furthermore, they can be designed to flexibly originate near-omnidirectional and/or directional radiation patterns. This option of flexibility with respect to the radiation characteristic is desired for antennas integrated in collision avoidance systems. Based on the aforementioned properties, M 3PAs represent a compelling option for aircraft transponders. In this paper, direction-of-arrival (DoA) estimation using an M 3PA designed for aerial applications is put to the test. First, a DoA estimation scheme suitable to be employed with M 3PAs is introduced. Next, the validity of the proposed method is confirmed through numerical simulations. Lastly, practical experiments are conducted in an antenna measurement chamber to verify the numerical results.

3.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931736

RESUMEN

In array signal processing, the mutual coupling among physical sensors can inevitably affect the estimation of the direction of arrival (DOA). Despite the fact that multiple-input and multiple-output (MIMO) radar can provide greater degrees of freedom (DOFs), the influence of mutual coupling is largely overlooked in many current MIMO radar designs. To tackle this issue, we propose the utilization of a generalized nested array (GNA) in transmitter array and we introduce an expansion factor into the nested array in the receiver array. Thereby, a novel GNA-MIMO radar is put forward. The proposed MIMO radar offers O(N4) consecutive DOFs with N sensors and avoids the adverse effects of high mutual coupling caused by closely located sensors. Furthermore, we derive the closed-form expressions for the position of physical sensors and the attainable consecutive DOFs of the proposed MIMO radar. Through simulation experiments, we demonstrate the superior accuracy of the proposed MIMO configuration in DOA estimation and angle resolution under the condition of mutual coupling effect.

4.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38610548

RESUMEN

For direction-of-arrival (DOA) estimation problems in a sparse domain, sparse Bayesian learning (SBL) is highly favored by researchers owing to its excellent estimation performance. However, traditional SBL-based methods always assign Gaussian priors to parameters to be solved, leading to moderate sparse signal recovery (SSR) effects. The reason is Gaussian priors play a similar role to l2 regularization in sparsity constraint. Therefore, numerous methods are developed by adopting hierarchical priors that are used to perform better than Gaussian priors. However, these methods are in straitened circumstances when multiple measurement vector (MMV) data are adopted. On this basis, a block-sparse SBL method (named BSBL) is developed to handle DOA estimation problems in MMV models. The novelty of BSBL is the combination of hierarchical priors and block-sparse model originating from MMV data. Therefore, on the one hand, BSBL transfers the MMV model to a block-sparse model by vectorization so that Bayesian learning is directly performed, regardless of the prior independent assumption of different measurement vectors and the inconvenience caused by the solution of matrix form. On the other hand, BSBL inherited the advantage of hierarchical priors for better SSR ability. Despite the benefit, BSBL still has the disadvantage of relatively large computation complexity caused by high dimensional matrix operations. In view of this, two operations are implemented for low complexity. One is reducing the matrix dimension of BSBL by approximation, generating a method named BSBL-APPR, and the other is embedding the generalized approximate message passing (GAMB) technique into BSBL so as to decompose matrix operations into vector or scale operations, named BSBL-GAMP. Moreover, BSBL is able to suppress temporal correlation and handle wideband sources easily. Extensive simulation results are presented to prove the superiority of BSBL over other state-of-the-art algorithms.

5.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38339525

RESUMEN

Sparse arrays are widely employed in array signal processing due to their obvious advantages in array element distribution and uniform degrees of freedom (uDOFs). In this paper, a generalized augmented multi-subarray nested array (GAMSNA-I) and its variant, GAMSNA-II are proposed, with the objective of increasing uDOFs and reducing mutual coupling. Based on two subarrays of the prototype nested array (NA), GAMSNA-I is constructed by reconfiguring the dense uniform linear array (ULA) and forward-shifting the sparse ULA. GAMSNA-II is obtained by sparsifying the dense part of GAMSNA-I, ensuring constant uDOFs while further reducing mutual coupling. Subsequently, the closed-form expression for the uDOFs of GAMSNA-I with an arbitrary number of sensors is derived, and the proof is provided that the uDOFs of GAMSNA-II remain unchanged relative to that of GAMSNA-I. Compared to some existing array configurations, both GAMSNA-I and GAMSNA-II exhibit improved uDOFs, with GAMSNA-II achieving lower mutual coupling. Simulation results show the superior performance of the proposed GAMSNA-I and GAMSNA-II.

6.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400394

RESUMEN

Monitoring object displacement is critical for structural health monitoring (SHM). Radio frequency identification (RFID) sensors can be used for this purpose. Using more sensors enhances displacement estimation accuracy, especially when it is realized through the use of machine learning (ML) algorithms for predicting the direction of arrival of the associated signals. Our research shows that ML algorithms, in conjunction with adequate RFID passive sensor data, can precisely evaluate azimuth angles. However, increasing the number of sensors can lead to gaps in the data, which typical numerical methods such as interpolation and imputation may not fully resolve. To overcome this challenge, we propose enhancing the sensitivity of 3D-printed passive RFID sensor arrays using a novel photoluminescence-based RF signal enhancement technique. This can boost received RF signal levels by 2 dB to 8 dB, depending on the propagation mode (near-field or far-field). Hence, it effectively mitigates the issue of missing data without necessitating changes in transmit power levels or the number of sensors. This approach, which enables remote shaping of radiation patterns via light, can herald new prospects in the development of smart antennas for various applications apart from SHM, such as biomedicine and aerospace.

7.
Sensors (Basel) ; 23(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005507

RESUMEN

Nowadays, sparse arrays have been a hotspot for research in the direction of arrival (DOA). In order to achieve a big value for degrees of freedom (DOFs) using spatial smoothing methods, researchers try to use multiple uniform linear arrays (ULAs) to construct sparse arrays. But, with the number of subarrays increasing, the complexity also increases. Hence, in this paper, a design method, named as the cross-coarray consecutive-connected (4C) criterion, and the sparse array using Q ULAs (SA-UQ) are proposed. We first analyze the virtual sensor distribution of SA-U2 and extend the conclusions to SA-UQ, which is the 4C criterion. Then, we give an algorithm to solve the displacement between subarrays under the given Q ULAs. At last, we consider a special case, SA-U3. Through the analysis of DOFs, SA-UQ can find underdetermined signals. Moreover, SA-U3 can obtain DOFs close to other sparse arrays using three ULAs. The simulation experiments prove the performance of SA-UQ.

8.
Bioinspir Biomim ; 18(5)2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37413997

RESUMEN

Bioinspired methods for sound source localization offer opportunities for resource reduction as well as concurrent performance improvement in contrast to conventional techniques. Usually, sound source localization requires a large number of microphones arranged in irregular geometries, and thus has high resource requirements in terms of space and data processing. Motivated by biology and using digital signal processing methods, an approach that adapts the coupled hearing system of the flyOrmia ochraceawith a minimally distant two-microphone array is presented. Despite its physiology, the fly is able to overcome physical limitations in localizing low-frequency sound sources. By exploiting the filtering effect of the coupling system, the direction-of-arrival of the sound is determined with two microphones at an intermediate distance of 0.06 m. For conventional beamforming algorithms, these physical limitations would result in degraded localization performance. In this work, the bioinspired coupling system is analyzed and subsequently parameterized direction-sensitive for different directions of incidence of the sound. For the parameterization, an optimization method is presented which can be adopted for excitation with plane as well as spherical sound wave propagation. Finally, the method was assessed using simulated and measured data. For 90% of the simulated scenarios, the correct direction of incidence could be determined with an accuracy of less than 1∘despite the use of a minimal distant two-microphone array. The experiments with measured data also resulted in a correct determination of the direction of incidence, which qualifies the bioinspired method for practical use in digital hardware systems.


Asunto(s)
Acústica , Localización de Sonidos , Sonido , Audición , Procesamiento de Señales Asistido por Computador
9.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420897

RESUMEN

The direction-of-arrival (DoA) estimation algorithms have a fundamental role in target bearing estimation by sensor array systems. Recently, compressive sensing (CS)-based sparse reconstruction techniques have been investigated for DoA estimation due to their superior performance relative to the conventional DoA estimation methods, for a limited number of measurement snapshots. In many underwater deployment scenarios, the acoustic sensor arrays must perform DoA estimation in the presence of several practical problems such as unknown source number, faulty sensors, low values of the received signal-to-noise ratio (SNR), and access to a limited number of measurement snapshots. In the literature, CS-based DoA estimation has been investigated for the individual occurrence of some of these errors but the estimation under joint occurrence of these errors has not been studied. This work investigates the CS-based robust DoA estimation to account for the joint impact of faulty sensors and low SNR conditions experienced by a uniform linear array of underwater acoustic sensors. Most importantly, the proposed CS-based DoA estimation technique does not require a priori knowledge of the source order, which is replaced in the modified stopping criterion of the reconstruction algorithm by taking into account the faulty sensors and the received SNR. Using Monte Carlo techniques, the DoA estimation performance of the proposed method is comprehensively evaluated in relation to other techniques.


Asunto(s)
Acústica , Compresión de Datos , Algoritmos , Conocimiento , Método de Montecarlo
10.
Entropy (Basel) ; 25(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372304

RESUMEN

Direction of arrival (DOA) estimation is an important research topic in array signal processing and widely applied in practical engineering. However, when signal sources are highly correlated or coherent, conventional subspace-based DOA estimation algorithms will perform poorly due to the rank deficiency in the received data covariance matrix. Moreover, conventional DOA estimation algorithms are usually developed under Gaussian-distributed background noise, which will deteriorate significantly in impulsive noise environments. In this paper, a novel method is presented to estimate the DOA of coherent signals in impulsive noise environments. A novel correntropy-based generalized covariance (CEGC) operator is defined and proof of boundedness is given to ensure the effectiveness of the proposed method in impulsive noise environments. Furthermore, an improved Toeplitz approximation method combined CEGC operator is proposed to estimate the DOA of coherent sources. Compared to other existing algorithms, the proposed method can avoid array aperture loss and perform more effectively, even in cases of intense impulsive noise and low snapshot numbers. Finally, comprehensive Monte-Carlo simulations are performed to verify the superiority of the proposed method under various impulsive noise conditions.

11.
Sensors (Basel) ; 23(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299788

RESUMEN

In modern applications such as robotics, autonomous vehicles, and speaker localization, the computational power for sound source localization applications can be limited when other functionalities get more complex. In such application fields, there is a need to maintain high localization accuracy for several sound sources while reducing computational complexity. The array manifold interpolation (AMI) method applied with the Multiple Signal Classification (MUSIC) algorithm enables sound source localization of multiple sources with high accuracy. However, the computational complexity has so far been relatively high. This paper presents a modified AMI for uniform circular array (UCA) that offers reduced computational complexity compared to the original AMI. The complexity reduction is based on the proposed UCA-specific focusing matrix which eliminates the calculation of the Bessel function. The simulation comparison is done with the existing methods of iMUSIC, the Weighted Squared Test of Orthogonality of Projected Subspaces (WS-TOPS), and the original AMI. The experiment result under different scenarios shows that the proposed algorithm outperforms the original AMI method in terms of estimation accuracy and up to a 30% reduction in computation time. An advantage offered by this proposed method is the ability to implement wideband array processing on low-end microprocessors.


Asunto(s)
Acústica , Localización de Sonidos , Sonido , Simulación por Computador , Algoritmos
12.
Sensors (Basel) ; 23(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299940

RESUMEN

Sparse arrays are of deep concern due to their ability to identify more sources than the number of sensors, among which the hole-free difference co-array (DCA) with large degrees of freedom (DOFs) is a topic worth discussing. In this paper, we propose a novel hole-free nested array with three sub-uniform line arrays (NA-TS). The one-dimensional (1D) and two-dimensional (2D) representations demonstrate the detailed configuration of NA-TS, which indicates that both nested array (NA) and improved nested array (INA) are special cases of NA-TS. We subsequently derive the closed-form expressions for the optimal configuration and the available number of DOFs, concluding that the DOFs of NA-TS is a function of the number of sensors and the number of the third sub-ULA. The NA-TS possesses more DOFs than several previously proposed hole-free nested arrays. Finally, the superior direction of arrival (DOA) estimation performance based on the NA-TS is supported by numerical examples.

13.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050568

RESUMEN

To estimate the direction of arrival (DOA) of a linear frequency modulation (LFM) signal in a low signal-to-noise ratio (SNR) hydroacoustic environment by a small aperture array, a novel deconvolved beamforming method based on fractional Fourier domain delay-and-sum beamforming (FrFB) was proposed. Fractional Fourier transform (FrFT) was used to convert the received signal into the fractional Fourier domain, and delay-and-sum beamforming was subsequently performed. Noise resistance was acquired by focusing the energy of the LFM signal distributed in the time-frequency domain. Then, according to the convolution structure of the FrFB complex output, the influence of the fractional Fourier domain complex beam pattern was removed by deconvolution, and the target spatial distribution was restored. Therefore, an improved spatial resolution of DOA estimation was obtained without increasing the array aperture. The simulation and experimental results show that, with a small aperture array at low SNR, the proposed method possesses higher spatial resolution than FrFB and frequency-domain deconvolved conventional beamforming.

14.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904753

RESUMEN

Multiple-input multiple-output (MIMO) radars enable better estimation accuracy with improved resolution in contrast to traditional radar systems; thus, this field has attracted attention in recent years from researchers, funding agencies, and practitioners. The objective of this work is to estimate the direction of arrival of targets for co-located MIMO radars by proposing a novel approach called flower pollination. This approach is simple in concept, easy to implement and has the capability of solving complex optimization problems. The received data from the far field located targets are initially passed through the matched filter to enhance the signal-to-noise ratio, and then the fitness function is optimized by incorporating the concept of virtual or extended array manifold vectors of the system. The proposed approach outperforms other algorithms mentioned in the literature by utilizing statistical tools for fitness, root mean square error, cumulative distribution function, histograms, and box plots.

15.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36991761

RESUMEN

This study proposes a high-efficiency method using a co-prime circular microphone array (CPCMA) for the bearing fault diagnosis, and discusses the acoustic characteristics of three fault-type signals at different rotation speeds. Due to the close positions of various bearing components, radiation sounds are seriously mixed, and it is challenging to separate the fault features. Direction-of-arrival (DOA) estimation can be used to suppress noise and directionally enhance sound sources of interest; however, classical array configurations usually require a large number of microphones to achieve high accuracy. To address this, a CPCMA is introduced to raise the array's degrees of freedom in order to reduce the dependence on the microphone numbers and computation complexity. The estimation of signal parameters via rotational invariance techniques (ESPRIT) applied to a CPCMA can quickly figure out the DOA estimation without any prior knowledge. By using the techniques above, a sound source motion-tracking diagnosis method is proposed according to the movement characteristics of impact sound sources for each fault type. Additionally, more precise frequency spectra are obtained, which are used in combination to determine the fault types and locations.

16.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772781

RESUMEN

To address practical challenges in establishing and maintaining robust wireless connectivity such as multi-path effects, low latency, size reduction, and high data rate, we have deployed the digital beamformer, as a spatial filter, by using the hybrid antenna array at an operating frequency of 10 GHz. The proposed digital beamformer utilizes a combination of the two well-established beamforming techniques of minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV). In this case, the MVDR beamforming method updates weight vectors on the FPGA board, while the LCMV beamforming technique performs nullsteering in directions of interference signals in the real environment. The most well-established machine learning technique of support vector machine (SVM) for the Direction of Arrival (DoA) estimation is limited to problems with linearly-separable datasets. To overcome the aforementioned constraint, the quadratic surface support vector machine (QS-SVM) classifier with a small regularizer has been used in the proposed beamformer for the DoA estimation in addition to the two beamforming techniques of LCMV and MVDR. In this work, we have assumed that five hybrid array antennas and three sources are available, at which one of the sources transmits the signal of interest. The QS-SVM-based beamformer has been deployed on the FPGA board for spatially filtering two signals from undesired directions and passing only one of the signals from the desired direction. The simulation results have verified the strong performance of the QS-SVM-based beamformer in suppressing interference signals, which are accompanied by placing deep nulls with powers less than -10 dB in directions of interference signals, and transferring the desired signal. Furthermore, we have verified that the performance of the QS-SVM-based beamformer yields other advantages including average latency time in the order of milliseconds, performance efficiency of more than 90%, and throughput of nearly 100%.

17.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36679700

RESUMEN

To address the weakness that the difference co-array (DCA) only enhances the degrees of freedom (DOFs) to a limited extent, a new configuration called the generalized nested array via difference-sum co-array (GNA-DSCA) is proposed for direction of arrival (DOA) estimation. We consider both the temporal and spatial information of the array output to construct the DSCA model, based on which the DCA and sum co-array (SCA) of the GNA are systematically analyzed. The closed-form expression of the DOFs for the GNA-DSCA is derived under the determined dilation factors. The optimal results show that the GNA-DSCA has a more flexible configuration and more DOFs than the GNA-DCA. Moreover, the larger dilation factors yield significantly wider virtual aperture, which indicates that it is more attractive than the reported DSCA-based sparse arrays. Finally, a hole-filling strategy based on atomic norm minimization (ANM) is utilized to overcome the degradation of the estimation performance due to the non-uniform virtual array, thus achieving accurate DOA estimation. The simulation results verify the superiority of the proposed configuration in terms of virtual array properties and estimation performance.


Asunto(s)
Menopausia , Simulación por Computador
18.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36560199

RESUMEN

To address the problems of low accuracy and low robustness of the conventional algorithm in estimating the direction of arrival (DOA) of coherent signals against a composite background of strong interference and non-uniform noise, in this paper, a coherent signal DOA estimation algorithm based on fixed projection blocking is proposed in conjunction with a multi-input multi-output (MIMO) radar. The covariance matrix of the received signal is first decomposed by eigenvalues, and a fixed projection matrix orthogonal to the interference guidance vector is constructed as the interference blocking matrix. Then, the received array signal is pre-processed to re-form the covariance matrix, and this matrix is rendered decoherent through a Toeplitz reconstruction. Finally, the reconstructed covariance matrix is estimated by DOA using the propagation operator algorithm to reduce the complexity. The simulation verifies that the proposed algorithm has a better robustness and higher accuracy than conventional algorithms for the DOA estimation of coherent signals in composite backgrounds.

19.
Sensors (Basel) ; 22(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36236677

RESUMEN

This paper presents an experimental validation of deep learning-based direction-of-arrival (DoA) estimation by using realistic data collected via universal software radio peripheral (USRP). Deep neural network (DNN) and convolutional neural network (CNN) structures are designed to estimate the DoA. Two types of data are used for training networks. One is the data synthesized by the signal model, and the other is the data collected by USRP. Here, the signal model considers both mutual coupling and multipath signals. Experimental results show that the estimation performance is most accurate when training DNN and CNN with the collected data. Furthermore, the estimation tends to be poor in the indoor environment, which suffers from the strong non-line-of-sight (NLoS) signals.

20.
Artículo en Inglés | MEDLINE | ID: mdl-36159631

RESUMEN

Current hearing aids are limited with respect to speech-specific optimization for spatial sound sources to perform speech enhancement. In this study, we therefore propose an approach for spatial detection of speech based on sound source localization and blind optimization of speech enhancement for binaural hearing aids. We have combined an estimator for the direction of arrival (DOA), featuring high spatial resolution but no specialization to speech, with a measure of speech quality with low spatial resolution obtained after directional filtering. The DOA estimator provides spatial sound source probability in the frontal horizontal plane. The measure of speech quality is based on phoneme representations obtained from a deep neural network, which is part of a hybrid automatic speech recognition (ASR) system. Three ASR-based speech quality measures (ASQM) are explored: entropy, mean temporal distance (M-Measure), matched phoneme (MaP) filtering. We tested the approach in four acoustic scenes with one speaker and either a localized or a diffuse noise source at various signal-to-noise ratios (SNR) in anechoic or reverberant conditions. The effects of incorrect spatial filtering and noise were analyzed. We show that two of the three ASQMs (M-Measure, MaP filtering) are suited to reliably identify the speech target in different conditions. The system is not adapted to the environment and does not require a-priori information about the acoustic scene or a reference signal to estimate the quality of the enhanced speech signal. Nevertheless, our approach performs well in all acoustic scenes tested and varying SNRs and reliably detects incorrect spatial filtering angles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA