Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Neural Netw ; 180: 106705, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255634

RESUMEN

This paper concerns complete synchronization (CS) problem of discrete-time fractional-order BAM neural networks (BAMNNs) with leakage and discrete delays. Firstly, on the basis of Caputo fractional difference theory and nabla l-Laplace transform, two equations about the nabla sum are strictly proved. Secondly, two extended Halanay inequalities that are suitable for discrete-time fractional difference inequations with arbitrary initial time and multiple types of delays are introduced. In addition, through applying Caputo fractional difference theory and combining with inequalities gained from this paper, some sufficient CS criteria of discrete-time fractional-order BAMNNs with leakage and discrete delays are established under adaptive controller. Finally, one numerical simulation is utilized to certify the effectiveness of the obtained theoretical results.

2.
Neural Netw ; 179: 106532, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39096750

RESUMEN

This paper deals with the lag projective synchronization (LPS) problem for a class of discrete-time fractional-order quaternion-valued neural networks(DTFO QVNNs) systems with time delays. Firstly, a DTFOQVNNs system with time delay is constructed. Secondly, linear and adaptive feedback controllers with sign function are designed respectively. Furthermore, through Lyapunov direct method, DTFO inequality technique and Razumikhin theorem, some sufficiency criteria are obtained to ensure that the system in this article can achieve LPS. At last, the significance of the theoretical part of this paper is verified through numerical simulation.


Asunto(s)
Redes Neurales de la Computación , Factores de Tiempo , Simulación por Computador , Algoritmos , Retroalimentación , Dinámicas no Lineales , Modelos Lineales
3.
Biometrics ; 80(3)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136277

RESUMEN

Time-to-event data are often recorded on a discrete scale with multiple, competing risks as potential causes for the event. In this context, application of continuous survival analysis methods with a single risk suffers from biased estimation. Therefore, we propose the multivariate Bernoulli detector for competing risks with discrete times involving a multivariate change point model on the cause-specific baseline hazards. Through the prior on the number of change points and their location, we impose dependence between change points across risks, as well as allowing for data-driven learning of their number. Then, conditionally on these change points, a multivariate Bernoulli prior is used to infer which risks are involved. Focus of posterior inference is cause-specific hazard rates and dependence across risks. Such dependence is often present due to subject-specific changes across time that affect all risks. Full posterior inference is performed through a tailored local-global Markov chain Monte Carlo (MCMC) algorithm, which exploits a data augmentation trick and MCMC updates from nonconjugate Bayesian nonparametric methods. We illustrate our model in simulations and on ICU data, comparing its performance with existing approaches.


Asunto(s)
Algoritmos , Teorema de Bayes , Simulación por Computador , Cadenas de Markov , Método de Montecarlo , Humanos , Análisis de Supervivencia , Modelos Estadísticos , Análisis Multivariante , Biometría/métodos
4.
Biom J ; 66(6): e202400014, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39162087

RESUMEN

Random survival forests (RSF) can be applied to many time-to-event research questions and are particularly useful in situations where the relationship between the independent variables and the event of interest is rather complex. However, in many clinical settings, the occurrence of the event of interest is affected by competing events, which means that a patient can experience an outcome other than the event of interest. Neglecting the competing event (i.e., regarding competing events as censoring) will typically result in biased estimates of the cumulative incidence function (CIF). A popular approach for competing events is Fine and Gray's subdistribution hazard model, which directly estimates the CIF by fitting a single-event model defined on a subdistribution timescale. Here, we integrate concepts from the subdistribution hazard modeling approach into the RSF. We develop several imputation strategies that use weights as in a discrete-time subdistribution hazard model to impute censoring times in cases where a competing event is observed. Our simulations show that the CIF is well estimated if the imputation already takes place outside the forest on the overall dataset. Especially in settings with a low rate of the event of interest or a high censoring rate, competing events must not be neglected, that is, treated as censoring. When applied to a real-world epidemiological dataset on chronic kidney disease, the imputation approach resulted in highly plausible predictor-response relationships and CIF estimates of renal events.


Asunto(s)
Biometría , Humanos , Biometría/métodos , Análisis de Supervivencia , Modelos Estadísticos , Modelos de Riesgos Proporcionales
5.
Heliyon ; 10(14): e34340, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130468

RESUMEN

The filter design of H ∞ for an interconnecting system (IS) with uncertain discrete time switching is examined. Discrete-time N -linear subsystems with coupling states that have time delays, external disturbances and uncertainty are taken into account. Utilising Lyapunov-Krasovskii functional (LKF) and the Linear-Matrix-Inequality (LMI) approach, an appropriate filter is designed for the considered interconnected system. To remove an outside disruption, H ∞ performances (HP) are implemented. Sufficient criteria are developed to assure the Exponentially Mean-Square Stability (EMSS). Then, using MATLAB-LMI toolbox filter parameters were established. Finally, the efficiency of the designed filter is illustrated with mathematical instances.

6.
ISA Trans ; : 1-18, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214755

RESUMEN

Discrete-time optimal control problems are a crucial type of control problems that deal with a dynamic system evolving in discrete time-steps. This paper introduces a new technique for solving linear discrete-time optimal control problems with state delays, applicable to both finite and infinite time horizons. Our method employs a Riccati matrix equation, optimizing control strategies and ensuring system stability through bounded control inputs. We adopt a Bolza problem for the performance index, which guides the classification of control issues. The technique simplifies problems into manageable Riccati matrix equations using the Euler-Lagrange equations and Pontryagin maximum principle, ensuring stability and necessary condition compliance. The paper validates the approach with numerical examples from quantum mechanics and classical physics, demonstrating its practicality and potential for broader application.

7.
Neural Netw ; 180: 106667, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39216294

RESUMEN

This paper addresses the tracking control problem of nonlinear discrete-time multi-agent systems (MASs). First, a local neighborhood error system (LNES) is constructed. Then, a novel tracking algorithm based on asynchronous iterative Q-learning (AIQL) is developed, which can transform the tracking problem into the optimal regulation of LNES. The AIQL-based algorithm has two Q values QiA and QiB for each agent i, where QiA is used for improving the control policy and QiB is used for evaluating the value of the control policy. Moreover, the convergence of LNES is given. It is shown that the LNES converges to 0 and the tracking problem is solved. A neural network-based actor-critic framework is used to implement AIQL. The critic network of AIQL is composed of two neural networks, which are used for approximating QiA and QiB respectively. Finally, simulation results are given to verify the performance of the developed algorithm. It is shown that the AIQL-based tracking algorithm has a lower cost value and faster convergence speed than the IQL-based tracking algorithm.

8.
Entropy (Basel) ; 26(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39202123

RESUMEN

This article addresses the crucial issues of how asymptomatic individuals and population movements influence the spread of epidemics. Specifically, a discrete-time networked Susceptible-Asymptomatic-Infected-Recovered (SAIR) model that integrates population flow is introduced to investigate the dynamics of epidemic transmission among individuals. In contrast to existing data-driven system identification approaches that identify the network structure or system parameters separately, a joint estimation framework is developed in this study. The joint framework incorporates historical measurements and enables the simultaneous estimation of transmission topology and epidemic factors. The use of the joint estimation scheme reduces the estimation error. The stability of equilibria and convergence behaviors of proposed dynamics are then analyzed. Furthermore, the sensitivity of the proposed model to population movements is evaluated in terms of the basic reproduction number. This article also rigorously investigates the effectiveness of non-pharmaceutical interventions via distributively controlling population flow in curbing virus transmission. It is found that the population flow control strategy reduces the number of infections during the epidemic.

9.
Entropy (Basel) ; 26(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39202125

RESUMEN

In this paper, a network comprising wireless devices equipped with buffers transmitting deadline-constrained data packets over a slotted-ALOHA random-access channel is studied. Although communication protocols facilitating retransmissions increase reliability, a packet awaiting transmission from the queue experiences delays. Thus, packets with time constraints might be dropped before being successfully transmitted, while at the same time causing the queue size of the buffer to increase. To understand the trade-off between reliability and delays that might lead to packet drops due to deadline-constrained bursty traffic with retransmissions, the scenario of a wireless network utilizing a slotted-ALOHA random-access channel is investigated. The main focus is to reveal the trade-off between the number of retransmissions and the packet deadline as a function of the arrival rate. Towards this end, analysis of the system is performed by means of discrete-time Markov chains. Two scenarios are studied: (i) the collision channel model (in which a receiver can decode only when a single packet is transmitted), and (ii) the case for which receivers have multi-packet reception capabilities. A performance evaluation for a user with different transmit probabilities and number of retransmissions is conducted. We are able to determine numerically the optimal probability of transmissions and the number of retransmissions, given the packet arrival rate and the packet deadline. Furthermore, we highlight the impact of transmit probability and the number of retransmissions on the average drop rate and throughput.

10.
Neural Netw ; 179: 106530, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39047337

RESUMEN

This research delves into the reachable set estimation (RSE) problem for general switched delayed neural networks (SDNNs) in the discrete-time context. Note that existing relevant research on SDNNs predominantly relies on either time-dependent or state-dependent switching approaches. The time-dependent versions necessitate the stability of each subnetwork beforehand, whereas the state-dependent switching strategies solely depend on the current state, thus disregarding the historical information of the neuron states. For fully harnessing the historical information pertaining to neuron states, a delicate combined switching strategy (CSS) is formulated with the explicit goal of furnishing a relaxed and less conservative design framework tailored for discrete-time SDNNs, where all subnetworks can also be unstable. By resorting to the established time-dependent multiple Lyapunov-Krasovskii functional (TDMLF) technique, the improved criteria are subsequently presented, ensuring that the reachable set encompassing all potential states of SDNNs is confined to an anticipated bounded set. Ultimately, the practicality and superiority of the presented RSE approach are thoroughly validated by two illustrative simulation examples.


Asunto(s)
Redes Neurales de la Computación , Factores de Tiempo , Simulación por Computador , Neuronas/fisiología , Algoritmos , Humanos
11.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066024

RESUMEN

In this paper, a practical discrete-time control method with adaptive image feature prediction for the image-based visual servoing (IBVS) scheme is presented. In the discrete-time IBVS inner-loop/outer-loop control architecture, the time delay caused by image capture and computation is noticed. Considering the dynamic characteristics of a 6-DOF manipulator velocity input system, we propose a linear dynamic model to describe the motion of a robot end effector. Furthermore, for better estimation of image features and smoothing of the robot's velocity input, we propose an adaptive image feature prediction method that employs past image feature data and real robot velocity data to adopt the prediction parameters. The experimental results on a 6-DOF robotic arm demonstrate that the proposed method can ensure system stability and accelerate system convergence.

12.
Entropy (Basel) ; 26(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39056954

RESUMEN

Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many-body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.

13.
BMC Med Res Methodol ; 24(1): 136, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909216

RESUMEN

BACKGROUND: Generating synthetic patient data is crucial for medical research, but common approaches build up on black-box models which do not allow for expert verification or intervention. We propose a highly available method which enables synthetic data generation from real patient records in a privacy preserving and compliant fashion, is interpretable and allows for expert intervention. METHODS: Our approach ties together two established tools in medical informatics, namely OMOP as a data standard for electronic health records and Synthea as a data synthetization method. For this study, data pipelines were built which extract data from OMOP, convert them into time series format, learn temporal rules by 2 statistical algorithms (Markov chain, TARM) and 3 algorithms of causal discovery (DYNOTEARS, J-PCMCI+, LiNGAM) and map the outputs into Synthea graphs. The graphs are evaluated quantitatively by their individual and relative complexity and qualitatively by medical experts. RESULTS: The algorithms were found to learn qualitatively and quantitatively different graph representations. Whereas the Markov chain results in extremely large graphs, TARM, DYNOTEARS, and J-PCMCI+ were found to reduce the data dimension during learning. The MultiGroupDirect LiNGAM algorithm was found to not be applicable to the problem statement at hand. CONCLUSION: Only TARM and DYNOTEARS are practical algorithms for real-world data in this use case. As causal discovery is a method to debias purely statistical relationships, the gradient-based causal discovery algorithm DYNOTEARS was found to be most suitable.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Humanos , Registros Electrónicos de Salud/estadística & datos numéricos , Registros Electrónicos de Salud/normas , Cadenas de Markov , Informática Médica/métodos , Informática Médica/estadística & datos numéricos
14.
ISA Trans ; 151: 41-50, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908964

RESUMEN

This paper investigates the consensus problem for discrete-time leader-following multi-agent systems subject to large time delays. Building upon two assumptions, a novel fully distributed protocol is devised by utilizing a normalized weighting matrix, depending solely on the relative output measurement. It is shown that, for arbitrarily large yet bounded input and communication delays that are constant and exactly known, the consensus problem can be effectively addressed by both the proposed protocol and its truncated version. Assuming further that followers incorporate solely input delays, then the permitted delays can be time-varying and different. The proposed protocols do not rely on global information of the directed communication topology, thus ensuring robustness against alterations in the communication topology. A numerical example is employed to validate the effectiveness of the suggested approach.

15.
Neural Netw ; 178: 106481, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38945117

RESUMEN

Convergence in the presence of multiple equilibrium points is one of the most fundamental dynamical properties of a neural network (NN). Goal of the paper is to investigate convergence for the classic Brain-State-in-a-Box (BSB) NN model and some of its relevant generalizations named Brain-State-in-a-Convex-Body (BSCB). In particular, BSCB is a class of discrete-time NNs obtained by projecting a linear system onto a convex body of Rn. The main result in the paper is that the BSCB is convergent when the matrix of the linear system is symmetric and positive semidefinite or, otherwise, it is symmetric and the step size does not exceed a given bound depending only on the minimum eigenvalue of the matrix. This result generalizes previous results in the literature for BSB and BSCB and it gives a solid foundation for the use of BSCB as a content addressable memory (CAM). The result is proved via Lyapunov method and LaSalle's Invariance Principle for discrete-time systems and by using some fundamental inequalities enjoyed by the projection operator onto convex sets as Bourbaki-Cheney-Goldstein inequality.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Encéfalo/fisiología , Humanos , Algoritmos , Modelos Neurológicos
16.
Heliyon ; 10(9): e29749, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694065

RESUMEN

In addition to the high nonlinearity of liquid dynamics inside a tank, a study was conducted to overcome loading/unloading liquid storage tank control problems. In this study, the author developed a nonlinear control system to conquer both nonlinearity and the significant time delay arising from using a pressure-difference-based level sensor. To this end, this study proposes the implementation of nonlinear state dependent (SDP-PID+) control using the SDP transfer function model as a class of nonlinear descriptions of dynamical systems. By incorporating additional robust (plus) compensators alongside the traditional P-, I-, and D-compensators, the robust SDP-PID controller utilizes the complete state feedback to create a time-varying state variable feedback (SDP-SVF) control law. This approach effectively mitigates the effects of the discrete-time SDP-TF. It introduces the pole placement tuning approach, which renders significant performance using the laboratory test rig TPS8.2.2.4, for automatic liquid level control.

17.
Sensors (Basel) ; 24(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793864

RESUMEN

This paper proposes a dual-loop discrete-time adaptive control (DDAC) method for three-phase PWM rectifiers, which considers inductance-parameter-mismatched and DC load disturbances. A discrete-time model of the three-phase PWM rectifier is established using the forward Euler discretization method, and a dual-loop discrete-time feedback linearization control (DDFLC) is given. Based on the DDFLC, the DDAC is designed. Firstly, an adaptive inductance disturbance observer (AIDO) based on the gradient descent method is proposed in the current control loop. The AIDO is used to estimate lump disturbances caused by mismatched inductance parameters and then compensate for these disturbances in the current controller, ensuring its strong robustness to inductance parameters. Secondly, a load parameter adaptive law (LPAL) based on the discrete-time Lyapunov theory is proposed for the voltage control loop. The LPAL estimates the DC load parameter in real time and subsequently adjusts it in the voltage controller, achieving DC load adaptability. Finally, simulation and experimental results show that the DDAC exhibits better steady and dynamic performances, less current harmonic content than the DDFLC and the dual-loop discrete-time PI control (DDPIC), and a stronger robustness to inductance parameters and DC load disturbances.

18.
Math Biosci ; 373: 109206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729519

RESUMEN

Understanding the consequences on population dynamics of the variability in dispersal over a fragmented habitat remains a major focus of ecological and environmental inquiry. Dispersal is often asymmetric: wind, marine currents, rivers, or human activities produce a preferential direction of dispersal between connected patches. Here, we study how this asymmetry affects population dynamics by considering a discrete-time two-patch model with asymmetric dispersal. We conduct a rigorous analysis of the model and describe all the possible response scenarios of the total realized asymptotic population abundance to a change in the dispersal rate for a fixed symmetry level. In addition, we discuss which of these scenarios can be achieved just by restricting mobility in one specific direction. Moreover, we also report that changing the order of events does not alter the population dynamics in our model, contrary to other situations discussed in the literature.


Asunto(s)
Ecosistema , Dinámica Poblacional , Dinámica Poblacional/estadística & datos numéricos , Modelos Biológicos , Animales , Densidad de Población , Humanos
19.
ISA Trans ; 151: 1-11, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789302

RESUMEN

This paper investigates the issue of parallel event-triggered (PET) dynamic output feedback control for networked control systems (NCSs) built by the discrete-time T-S fuzzy model. Initially, a novel PET dynamic output feedback controller is designed. Based on saving network resources and enhancing transmission efficiency, the PET strategy makes full use of relative and absolute triggering condition information. And the dynamic output feedback control can not only address unmeasurable states but also provide a better response to the internal information of the system. The random multiple communication delays and the ℓth-order Rice fading model with different channel coefficients, meanwhile, are both applied in the system. It is closer to the actual situation. Subsequently, new sufficient conditions of membership function dependence are proposed via the staircase function approximation method combined with Lyapunov stability. It guarantees that the system is exponentially mean square stable (EMSS) with H∞ performance. Ultimately, the presented results are validated using two examples. In the future, we will explore the correlative research of T-S fuzzy Markov jump NCSs.

20.
Epidemiol Psychiatr Sci ; 33: e30, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779822

RESUMEN

AIMS: While past research suggested that living arrangements are associated with suicide death, no study has examined the impact of sustained living arrangements and the change in living arrangements. Also, previous survival analysis studies only reported a single hazard ratio (HR), whereas the actual HR may change over time. We aimed to address these limitations using causal inference approaches. METHODS: Multi-point data from a general Japanese population sample were used. Participants reported their living arrangements twice within a 5-year time interval. After that, suicide death, non-suicide death and all-cause mortality were evaluated over 14 years. We used inverse probability weighted pooled logistic regression and cumulative incidence curve, evaluating the association of time-varying living arrangements with suicide death. We also studied non-suicide death and all-cause mortality to contextualize the association. Missing data for covariates were handled using random forest imputation. RESULTS: A total of 86,749 participants were analysed, with a mean age (standard deviation) of 51.7 (7.90) at baseline. Of these, 306 died by suicide during the 14-year follow-up. Persistently living alone was associated with an increased risk of suicide death (risk difference [RD]: 1.1%, 95% confidence interval [CI]: 0.3-2.5%; risk ratio [RR]: 4.00, 95% CI: 1.83-7.41), non-suicide death (RD: 7.8%, 95% CI: 5.2-10.5%; RR: 1.56, 95% CI: 1.38-1.74) and all-cause mortality (RD: 8.7%, 95% CI: 6.2-11.3%; RR: 1.60, 95% CI: 1.42-1.79) at the end of the follow-up. The cumulative incidence curve showed that these associations were consistent throughout the follow-up. Across all types of mortality, the increased risk was smaller for those who started to live with someone and those who transitioned to living alone. The results remained robust in sensitivity analyses. CONCLUSIONS: Individuals who persistently live alone have an increased risk of suicide death as well as non-suicide death and all-cause mortality, whereas this impact is weaker for those who change their living arrangements.


Asunto(s)
Características de la Residencia , Suicidio , Humanos , Suicidio/estadística & datos numéricos , Femenino , Masculino , Persona de Mediana Edad , Características de la Residencia/estadística & datos numéricos , Japón/epidemiología , Adulto , Modelos Logísticos , Factores de Riesgo , Análisis de Supervivencia , Causas de Muerte , Anciano , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA