Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 36(3): 988-1000, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791226

RESUMEN

Given the information overload often imparted to human cognitive-processing systems, suppression of irrelevant and distracting information is essential for successful behavior. Using a hybrid block/event-related fMRI design, we characterized proactive and reactive brain mechanisms for filtering distracting stimuli. Participants performed a flanker task, discriminating the direction of a target arrow in the presence versus absence of congruent or incongruent flanking distracting arrows during either Pure blocks (distracters always absent) or Mixed blocks (distracters on 80% of trials). Each Mixed block had either 20% or 60% incongruent trials. Activations in the dorsal frontoparietal attention network during Mixed versus Pure blocks evidenced proactive (blockwise) recruitment of a distraction-filtering mechanism. Sustained activations in right middle frontal gyrus during 60% Incongruent blocks correlated positively with behavioral indices of distraction-filtering (slowing when distracters might occur) and negatively with distraction-related behavioral costs (incongruent vs congruent trials), suggesting a role in coordinating proactive filtering of potential distracters. Event-related analyses showed that incongruent trials elicited greater reactive activations in 20% (vs 60%) Incongruent blocks for counteracting distraction and conflict, including in the insula and anterior cingulate. Context-related effects in occipitoparietal cortex consisted of greater target-evoked activations for distracter-absent trials (central-target-only) in Mixed versus Pure blocks, suggesting enhanced attentional engagement. Functional-localizer analyses in V1/V2/V3 revealed less distracter-processing activity in 60% (vs 20%) Incongruent blocks, presumably reflecting tonic suppression by proactive filtering mechanisms. These results delineate brain mechanisms underlying proactive and reactive filtering of distraction and conflict, and how they are orchestrated depending on distraction probability, thereby aiding task performance. Significance statement: Irrelevant stimuli distract people and impair their attentional performance. Here, we studied how the brain deals with distracting stimuli using a hybrid block/event-related fMRI design and a task that varied the probability of the occurrence of such distracting stimuli. The results suggest that when distraction is likely, a region in right frontal cortex proactively implements attentional control mechanisms to help filter out any distracting stimuli that might occur. In contrast, when distracting input occurs infrequently, this region is more reactively engaged to help limit the negative consequences of the distracters on behavioral performance. Our results thus help illuminate how the brain flexibly responds under differing attentional demands to engender effective behavior.


Asunto(s)
Atención/fisiología , Encéfalo/fisiología , Conflicto Psicológico , Imagen por Resonancia Magnética/métodos , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adolescente , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Adulto Joven
2.
Vis cogn ; 23(1-2): 313-335, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26180506

RESUMEN

When attending for impending visual stimuli, cognitive systems prepare to identify relevant information while ignoring irrelevant, potentially distracting input. Recent work (Marini et al., 2013) showed that a supramodal distracter-filtering mechanism is invoked in blocked designs involving expectation of possible distracter stimuli, although this entails a cost (distraction-filtering cost) on speeded performance when distracters are expected but not presented. Here we used an arrow-flanker task to study whether an analogous cost, potentially reflecting the recruitment of a specific distraction-filtering mechanism, occurs dynamically when potential distraction is cued trial-to-trial (cued distracter-expectation cost). In order to promote the maximal utilization of cue information by participants, in some experimental conditions the cue also signaled the possibility of earning a monetary reward for fast and accurate performance. This design also allowed us to investigate the interplay between anticipation for distracters and anticipation of reward, which is known to engender attentional preparation. Only in reward contexts did participants show a cued distracter-expectation cost, which was larger with higher reward prospect and when anticipation for both distracters and reward were manipulated trial-to-trial. Thus, these results indicate that reward prospect interacts with the distracter expectation during trial-by-trial preparatory processes for potential distraction. These findings highlight how reward guides cue-driven attentional preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA