Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.191
Filtrar
1.
Biomaterials ; 313: 122757, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39178558

RESUMEN

Recent progress in stem cell therapy has demonstrated the therapeutic potential of intravenous stem cell infusions for treating the life-threatening lung disease of pulmonary fibrosis (PF). However, it is confronted with limitations, such as a lack of control over cellular function and rapid clearance by the host after implantation. In this study, we developed an innovative PF therapy through tracheal administration of microfluidic-templated stem cell-laden microcapsules, which effectively reversed the progression of inflammation and fibrotic injury. Our findings highlight that hydrogel microencapsulation can enhance the persistence of donor mesenchymal stem cells (MSCs) in the host while driving MSCs to substantially augment their therapeutic functions, including immunoregulation and matrix metalloproteinase (MMP)-mediated extracellular matrix (ECM) remodeling. We revealed that microencapsulation activates the MAPK signaling pathway in MSCs to increase MMP expression, thereby degrading overexpressed collagen accumulated in fibrotic lungs. Our research demonstrates the potential of hydrogel microcapsules to enhance the therapeutic efficacy of MSCs through cell-material interactions, presenting a promising yet straightforward strategy for designing advanced stem cell therapies for fibrotic diseases.


Asunto(s)
Cápsulas , Matriz Extracelular , Inmunomodulación , Células Madre Mesenquimatosas , Fibrosis Pulmonar , Animales , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fibrosis Pulmonar/terapia , Fibrosis Pulmonar/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones Endogámicos C57BL , Hidrogeles/química , Ratones , Masculino
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125012, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236573

RESUMEN

Lipid droplets (LDs) serve as vital subcellular organelles, crucial for the maintenance of lipid and energy homeostasis within cells. Their visualization is of significant value for elucidating the intricate interactions between LDs and other cellular organelles. Despite the importance of LDs, the literature on the utilization of phthalocyanine-based photosensitizers for targeted LD imaging and two-photon imaging-guided photodynamic therapy (PDT) remains sparse. In this study, we have designed and synthesized trifluoromethyl-pyrrolidone silicon phthalocyanine (PyCF3SiPc). To enhance the water solubility of PyCF3SiPc and improve its tumor cells accumulation, we employed 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly(ethylene glycol))-2000] (DSPE-mPEG2000) as a nanocarrier, thereby formulating DSPE@PyCF3SiPc nanoparticles. Our in vitro experiments in MCF-7 cells demonstrated that DSPE@PyCF3SiPc selectively targets and visualizes LDs, offering a reliable tool for tracking their dynamic movement. Moreover, DSPE@PyCF3SiPc demonstrates considerable phototoxicity against MCF-7 cells subjected to PDT underscoring its potential as an effective therapeutic agent. In conclusion, DSPE@PyCF3SiPc presents itself as a promising novel probe for the dual purpose of monitoring the dynamic movement of LDs and guiding imaging-assisted PDT. The development of this nanoparticle system not only advances our understanding of LD biology but also paves the way for innovative therapeutic strategies in oncology.

3.
Small ; : e2405161, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240036

RESUMEN

The assembly of colloidal particles into micro-patterns is essential in optics, informatics, and microelectronics. However, it is still a challenge to achieve quick, reversible, and precise assembly patterns within micro-scale spaces like droplets. Hereby, a method is presented that utilizes in-plane dielectrophoresis to precisely manipulate particle assemblies within microscale droplets. The electro-microfluidic particle assembly platform, equipped with ingenious electrode designs, enables the formation of diverse micro-patterns within a droplet array. The tunability, similarity, stability, and reversibility of this platform are demonstrated. The ability to assemble letters, numbers, and Morse code patterns within the droplet array underscores its potential for information encoding. Furthermore, using an example with four addressing electrodes beneath a droplet, 16 distinct pieces of information through electrical stimuli is successfully encoded. This unique capability facilitates the construction of a dynamic electronic token, indicating promising applications in anti-counterfeiting technologies.

4.
J Virol ; : e0069524, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254312

RESUMEN

Enterovirus 71 (EV71) belongs to the family of Picornaviridae; it could cause a variety of illnesses and pose a great threat to public health worldwide. Currently, there is no specific drug treatment for this virus, and a better understanding of virus-host interaction is crucial for novel antiviral development. Here, we find that the class III phosphatidylinositol 3-kinase, VPS34, is an essential host factor for EV71 infection. VPS34 inhibition with either shRNA or specific chemical inhibitor significantly reduces EV71 infection. Meanwhile, EV71 infection upregulates phosphatidylinositol 3-phosphate (PI3P) production in viral replication organelles (ROs), while the depletion of PI3P by phosphatase overexpression inhibits EV71 infection. In addition, the PI3P-binding protein, double FYVE-containing protein 1 (DFCP1), is also required for an efficient replication of EV71. DFCP1 could interact with viral 2C protein and facilitate viral association with lipid droplets (LDs), which are important lipid sources for viral RO biogenesis. Taken together, these results indicate that EV71 virus exploits the VPS34-PI3P-DFCP1-LDs pathway to promote viral RO formation and viral infection, and they also illuminate novel targets for antiviral development.IMPORTANCEEnterovirus 71 (EV71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD) and other serious complications, which are big threats to children under 5 years old. Unravelling the interactions between virus and the host cells will open new avenues in antiviral research. Here, we found the class III phosphatidylinositol 3-kinase, VPS34, and its effector, double FYVE-containing protein 1 (DFCP1), were essential for EV71 infection, both of which could support EV71 viral replication by enhancing the biogenesis of viral replication organelles (ROs). As DFCP1 localizes to lipid droplets, hijacking of these host factors will enable viral utilization of lipids from LDs for the generation of membrane structures during RO biogenesis. In addition, the VPS34 kinase inhibitor was found to be potent against EV71 infection; therefore, this study also brings up a novel target for future anti-EV71 drug development.

5.
J Colloid Interface Sci ; 678(Pt A): 1132-1142, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39255752

RESUMEN

HYPOTHESIS: The co-flow step emulsification (CFSE) is very sensitive to the two-phase fluid interfaces, we conjecture that the CFSE hydrodynamic model depends on several key factors and the droplet generation process can be precisely controlled, thus to obtain droplet emulsions with the "ultra-high volume fraction of inner-phase" and "flexible droplet size" characteristics. The resulting droplets are expected to be applied to droplet digital PCR (ddPCR) with "high information density" and "wide dynamic range" advances. EXPERIMENTS: By combining numerical simulation and fluid dynamics experiments, we have investigated the crucial parameters affecting the CFSE two-phase interface and finally achieved the prediction and guidance for CFSE droplet production. FINDINGS: With the help of the CFSE device, multivolume droplet populations were produced on demand. Then, ddPCR tests were performed with DNA concentrations from 10 copies/µL to 20,000 copies/µL. The CFSE device owns an ultra-wide dynamic range (up to 5 orders of magnitude), showing excellent quantification ability of nucleic acid targets.

6.
Eur J Med Res ; 29(1): 458, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261895

RESUMEN

BACKGROUND: DNA methylation showed notable potential to act as a diagnostic marker in many cancers. Many studies proposed DNA methylation biomarker in OSCC detection, while most of these studies are limited to specific cohorts or geographical location. However, the generalizability of DNA methylation as a diagnostic marker in oral cancer across different geographical locations is yet to be investigated. METHODS: We used genome-wide methylation data from 384 oral cavity cancer and normal tissues from TCGA HNSCC and eastern India. The common differentially methylated CpGs in these two cohorts were used to develop an Elastic-net model that can be used for the diagnosis of OSCC. The model was validated using 812 HNSCC and normal samples from different anatomical sites of oral cavity from seven countries. Droplet Digital PCR of methyl-sensitive restriction enzyme digested DNA (ddMSRE) was used for quantification of methylation and validation of the model with 22 OSCC and 22 contralateral normal samples. Additionally, pyrosequencing was used to validate the model using 46 OSCC and 25 adjacent normal and 21 contralateral normal tissue samples. RESULTS: With ddMSRE, our model showed 91% sensitivity, 100% specificity, and 95% accuracy in classifying OSCC from the contralateral normal tissues. Validation of the model with pyrosequencing also showed 96% sensitivity, 91% specificity, and 93% accuracy for classifying the OSCC from contralateral normal samples, while in case of adjacent normal samples we found similar sensitivity but with 20% specificity, suggesting the presence of early disease methylation signature at the adjacent normal samples. Methylation array data of HNSCC and normal tissues from different geographical locations and different anatomical sites showed comparable sensitivity, specificity, and accuracy in detecting oral cavity cancer with across. Similar results were also observed for different stages of oral cavity cancer. CONCLUSIONS: Our model identified crucial genomic regions affected by DNA methylation in OSCC and showed similar accuracy in detecting oral cancer across different geographical locations. The high specificity of this model in classifying contralateral normal samples from the oral cancer compared to the adjacent normal samples suggested applicability of the model in early detection.


Asunto(s)
Metilación de ADN , Neoplasias de la Boca , Regiones Promotoras Genéticas , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , India/epidemiología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Islas de CpG/genética
7.
Sci Rep ; 14(1): 21326, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266645

RESUMEN

This study investigates a novel microfluidic mixing technique that uses the resonant oscillation of coalescent droplets. During the vertical contact-separation process, solutes are initially separated as a result of the combined effects of diffusion and gravity. We show that the application of alternating current (AC) voltage to microelectrodes below the droplets causes a resonant oscillation, which enhances the even distribution of the solute. The difference in concentration between the top and bottom droplets exhibits frequency dependence and indicates the existence of a particular AC frequency that results in a homogeneous concentration. This frequency corresponds to the resonance frequency of the droplet oscillation that is determined using particle tracking velocimetry. To understand the mixing process, a phenomenological model based on the equilibrium between surface tension, viscosity, and electrostatic force was developed. This model accurately predicted the resonance frequency of droplet flow and was consistent with the experimental results. These results suggest that the resonant oscillation of droplets driven by AC voltage significantly enhances the diffusion of solutes, which is an effective approach to microfluid mixing.

8.
Plants (Basel) ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273892

RESUMEN

Cryopreservation, storing biological material in liquid nitrogen (LN, -196 °C), offers a valuable option for the long-term conservation of non-orthodox seeds and vegetatively propagated species in the sector of agrobiodiversity and wild flora. Although the large-scale cryobanking of germplasm collections has been increasing worldwide, the wide application of cryopreservation protocols in wild flora is hampered by difficulties in vitro propagation and a lack of universal cryopreservation protocols, among others. This study established a systematic approach to developing an in vitro culture and droplet-vitrification cryopreservation procedure for shoot tips of Scrophularia kakudensis. The standard procedure includes a two-step preculture with 10% sucrose for 31 h and with 17.5% sucrose for 16 h, osmoprotection with loading solution C4-35% (17.5% glycerol + 17.5% sucrose, w/v) for 30 min, cryoprotection with A3-80% (33.3% glycerol + 13.3% dimethyl sulfoxide + 13.3% ethylene glycol + 20.1% sucrose, w/v) at 0 °C for 60 min, and cooling and rewarming using aluminum foil strips. After unloading, a three-step regrowth procedure starting with an ammonium-free medium with growth regulators was essential for developing normal plantlets from cryopreserved shoot tips. Liquid overlay on the gelled medium two weeks after inoculation resulted in vigorous growth during subcultures. Moreover, liquid overlay increased LN regeneration by up to 80%, i.e., 23% higher than no liquid overlay.

9.
Small ; : e2405106, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233535

RESUMEN

Conventional herbicide formulations suffer from serious problems such as easy drift, run-off and scouring into the environment, which pose enormous threats to human health and environmental safety. Herein, an innovative strategy is proposed to prepare oil-in-water nanoemulsions with long-term stability, enhanced droplet deposition, and improved nanoherbicide adhesion via steerable interfacial assembly of 1D amyloid-like protein nanocomposites. Bovine serum albumin (BSA) undergoes rapid amyloid-like aggregation upon reduction of its disulfide bond. The resulting phase-transitioned BSA (PTB) oligomers instantly self-assemble on the surface of cellulose nanofibers (CNF) to form the 1D PTB/CNF nanocomposites, which greatly expands the parameter space for interfacial assembly of amyloid-like proteins. The PTB/CNF nanocomposites exhibit excellent interfacial activity, enabling spontaneous adsorption at the oil-water interface to stabilize nanoemulsion. The excess PTB/CNF nanocomposites would also self-assemble at the air-aqueous interface upon spraying, resulting in efficient droplet deposition on (super)hydrophobic leaves. The deposited nanoherbicides show excellent resistance to wind/rain corrosion due to the robust amyloid-mediated adhesion, with a retention rate of more than 80% after severe scouring. Consequently, herbicide applications can be reduced by at least 30% compared to commercial emulsifiable concentrates, showing greater herbicidal efficiency. This study provides novel insights and approaches to promote sustainable agricultural development.

10.
Chin Med ; 19(1): 120, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232826

RESUMEN

BACKGROUND: Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS: The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS: The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION: Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.

11.
Ann Surg Oncol ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244517

RESUMEN

BACKGROUND: Sporadic desmoid fibromatosis (DF) is a rare locally aggressive tumor characterized by mutation in exon 3 of CTNNB1 (T41A, S45F, and S45P). Standard of care is active surveillance (AS), but 30% require treatment. DF clinical course is unpredictable and identification of prognostic markers is needed to tailor strategy. In this prospective study, we investigated the consistency between mutation detected in tumor biopsies with that detected in plasma by digital droplet PCR (ddPCR) and the association between circulating tumor DNA (ctDNA) abundancy with clinical outcome. PATIENTS AND METHODS: A total of 56 patients and 10 healthy donors were included. CTNNB1 mutation status of DF biopsies was determined by Sanger and in case of WT CTNNB1 with NGS. In matched plasma samples at enrollment and during AS at specific timepoints, we evaluated cfDNA quantity and ctDNA. RESULTS: ctDNA levels were measured in 46 patients with CTNNB1 mutation. Detection rate for T41A, S45F and S45P was 68%, 42% and 100%, respectively. S45P variant has been detected in all patients with S45P mutation. Longitudinal assessment of ctDNA during AS in nine patients (four with regression and five with progression as first event according to RECIST) showed a concordance between the event and ctDNA level change in six out of nine patients tested (4/5 with progression and 2/4 with regression). CONCLUSIONS: Results of ctDNA analysis support its potential clinical implementation as diagnostic tool in specific clinical scenarios where biopsy can be challenging. A prospective clinical trial needs to be performed to evaluate the potential role of ctDNA as predictive biomarker.

12.
Environ Sci Technol ; 58(37): 16376-16385, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39225344

RESUMEN

Carbon dioxide (CO2) chemisorption using biphasic solvents has been regarded as a promising approach, but challenges remain in achieving efficient dynamic phase-splitting during practical implementation. To address this, the centrifugal force was innovatively adopted to enhance the coalescence and separation of immiscible fine droplets within the biphasic solvent. The comprehensive evaluation demonstrates that centrifugal phase-splitting shows outstanding separation efficiency (>95%) and excellent applicability for various solvents. Correlation analysis reveals a strong relationship between the rich phase's viscosity, lean phase's residual CO2, and the phase separation efficiency. The time-profile behavior of immiscible droplets, observed through microscope images of phase-splitting, enables the estimation of the growth and coalescence rates of the discrete phase. Industrial-scale process simulation for technical and economic analysis confirms that the total capture cost ($ 42.5/t CO2) can be reduced by ∼22% with the use of biphasic solvents and a centrifugal separator compared to conventional methods. This study introduces a fresh perspective on polarity-induced cluster generation and coagulation-induced separation, offering an effective solution to address the challenges associated with dynamic phase-splitting in biphasic solvents during practical applications.


Asunto(s)
Dióxido de Carbono , Solventes , Dióxido de Carbono/química , Solventes/química , Centrifugación , Gases/química
13.
Trends Cell Biol ; 34(9): 695-697, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39241754

RESUMEN

In neurodegeneration, neurons release lipids that accumulate in glial lipid droplets (LDs). But what controls lipid transport and how does this affect glia? A recent study by Li et al. discovered that the loss of neuronal AMP-activated protein kinase (AMPK) activity promotes lipid efflux, which drives a proinflammatory state in microglia.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Microglía , Neuronas , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Transporte Biológico , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Microglía/metabolismo , Neuronas/metabolismo , Ratones
14.
Proc Natl Acad Sci U S A ; 121(37): e2405342121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39240970

RESUMEN

Droplet microfluidics has become a very powerful tool in high-throughput screening, including antibody discovery. Screens are usually carried out by physically sorting droplets hosting cells of the desired phenotype, breaking them, recovering the encapsulated cells, and sequencing the paired antibody light and heavy chain genes at the single-cell level. This series of multiple consecutive manipulation steps of rare screening hits is complex and challenging, resulting in a significant loss of clones with the desired phenotype or large fractions of cells with incomplete antibody information. Here, we present fluorescence-activated droplet sequencing, in which droplets showing the desired phenotype are selectively picoinjected with reagents for RT-PCR. Subsequently, light and heavy chain genes are natively paired, fused into a single-chain fragment variant format, and amplified before off-chip transfer and downstream nanopore sequencing. This workflow is sufficiently sensitive for obtaining different paired full-length antibody sequences from as little as five droplets, fulfilling the desired phenotype. Replacing physical sorting by specific sequencing overcomes a general bottleneck in droplet microfluidic screening and should be compatible with many more applications.


Asunto(s)
Anticuerpos , Humanos , Microfluídica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
15.
Trop Med Infect Dis ; 9(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39330897

RESUMEN

Leishmaniasis is a complex disease caused by different species of Leishmania. To date, no vaccine for humans or ideal therapy has been developed owing to the limited efficacy and toxicity of available drugs, as well as the emergence of resistant strains. Therefore, it is necessary to identify novel therapeutic targets and discover therapeutic options for leishmaniasis. In this study, we evaluated the impact of deleting the lipid droplet protein kinase (LDK) enzyme in Leishmania infantum using an untargeted metabolomics approach performed using liquid chromatography and high-resolution mass spectrometry. LDK is involved in lipid droplet biogenesis in trypanosomatids. Thirty-nine lipid metabolites altered in the stationary and logarithmic growth phases were noted and classified into five classes: (1) sterols, (2) fatty and conjugated acids, (3) ceramides, (4) glycerophosphocholine and its derivatives, and (5) glycerophosphoethanolamine and its derivatives. Our data demonstrated that glycerophosphocholine and its derivatives were the most affected after LDK deletion, suggesting that the absence of this enzyme promotes the remodeling of lipid composition in L. infantum, thus contributing to a better understanding of the function of LDK in this parasite.

16.
ACS Sens ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321112

RESUMEN

Droplet microfluidic systems have emerged as indispensable and advanced tools in contemporary biological science. A prominent example is the droplet digital polymerase chain reaction (ddPCR), which plays a pivotal role in next-generation sequencing and the detection of rare nucleic acids or mutations. However, existing optical detection configurations are bulky, intricate, and costly, and require meticulous optical alignment to optimize fluorescence sensing. Herein, we propose a lab-in-fiber optofluidic system (LiFO), which provides a stable and compact footprint, self-alignment, and enhanced optical coupling for high-accuracy ddPCR. Moreover, LiFO could expand its capabilities for multiangle-scattering light collection in which we collect focused forward-scattering light (fFSL) to enable real-time droplet counting and size monitoring. To accomplish these attributes, LiFO incorporates optical fibers, along with fabricated PDMS grooves, for a self-aligned optical setup to implement simultaneous fluorescence and scattering detection. Furthermore, LiFO harnesses the concept of flowing droplets functioning as microlenses, which allows us to collect and translate fFSL signals into droplet size information. We have demonstrated the effectiveness of LiFO in ddPCR applications, illustrating its capacity to enhance the accuracy and precision of DNA quantification. Notably, LiFO exhibits improved linearity in the measurement of serial DNA dilutions, reflected by an increase in R2 from 0.956 to 0.997. These results demonstrate the potential of LiFO to serve as a valuable tool across a wide spectrum of droplet microfluidic platforms, offering opportunities for advancement in practical applications.

17.
Ultrasound Med Biol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39322450

RESUMEN

OBJECTIVE: Low-intensity histotripsy (LIH) is a novel and safe technique for tissue ablation. This study aimed to explore the effects of LIH on canine prostate tissue and identify the degree of acute injury to the gland. METHODS: We constructed and evaluated two types of acoustically responsive droplet (ARD) emulsions using either perfluoropentane (PFP) with a lipid shell or perfluoromethyl-cyclopentane (PFMCP) with lauromacrogol (L) injection. Twenty beagles were assigned to four experimental groups: ultrasound (US) + PFP (n = 6), US + PFMCP-L (n = 6), PFMCP-L (n = 5) and PFP (n = 3). The ARDs were injected transcutaneously and transabdominally into normal canine prostates under US-guided imaging. Subsequently, focused therapeutic US was employed to induce acoustic droplet vaporization and bubble cloud cavitation. The mechanical damage to canine prostate tissue was evaluated using gross and histological examination. RESULTS: Gross specimens showed that the injured area was dark brown. Hematoxylin and eosin-stained tissue sections of the damage zone showed significant cavity formation and interstitial edema. The total tissue damage scores in the US + PFP group were compared to those of the other three experimental groups. No statistically significant differences were observed in the extent of tissue damage and total scores among the US + PFMCP-L, PFMCP-L and PFP groups. CONCLUSION: We achieved significant mechanical tissue damage in the canine prostate using PFP ARD-based LIH that proved to be superior to that using PFMCP ARDs with LIH.

18.
ACS Sens ; 9(9): 4860-4869, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39233482

RESUMEN

Exosomes, nanosized extracellular vesicles containing biomolecular cargo, are increasingly recognized as promising noninvasive biomarkers for cancer diagnosis, particularly for their role in carrying tumor-specific molecular information. Traditional methods for exosome detection face challenges such as complexity, time consumption, and the need for sophisticated equipment. This study addresses these challenges by introducing a novel droplet microfluidic platform integrated with a surface-enhanced Raman spectroscopy (SERS)-based aptasensor for the rapid and sensitive detection of HER2-positive exosomes from breast cancer cells. Our approach utilized an on-chip salt-induced gold nanoparticles (GNPs) aggregation process in the presence of HER2 aptamers and HER2-positive exosomes, enhancing the hot spot-based SERS signal amplification. This platform achieved a limit of detection of 4.5 log10 particles/mL with a sample-to-result time of 5 min per sample. Moreover, this platform has been successfully applied for HER2 status testing in clinical samples to distinguish HER2-positive breast cancer patients from HER2-negative breast cancer patients. High sensitivity, specificity, and the potential for high-throughput screening of specific tumor exosomes make this SERS-based droplet system a potential liquid biopsy technology for early cancer diagnosis.


Asunto(s)
Neoplasias de la Mama , Exosomas , Oro , Nanopartículas del Metal , Receptor ErbB-2 , Espectrometría Raman , Exosomas/química , Humanos , Espectrometría Raman/métodos , Receptor ErbB-2/análisis , Oro/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Femenino , Línea Celular Tumoral , Límite de Detección , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
19.
PeerJ ; 12: e18036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308812

RESUMEN

Pesticide spraying is a cost-effective way to control crop pests and diseases. The effectiveness of this method relies on the deposition and distribution of the spray droplets within the targeted application area. There is a critical need for an accurate and stable detection algorithm to evaluate the liquid droplet deposition parameters on the water-sensitive paper (WSP) and reduce the impact of image noise. This study acquired 90 WSP samples with diverse coverage through field spraying experiments. The droplets on the WSP were subsequently isolated, and the coverage and density were computed, employing the fixed threshold method, the Otsu threshold method, and our Genetic-Otsu threshold method. Based on the benchmark of manually measured data, an error analysis was conducted on the accuracy of three methods, and a comprehensive evaluation was carried out. The relative error results indicate that the Genetic-Otsu method proposed in this research demonstrates superior performance in detecting droplet coverage and density. The relative errors of droplet density in the sparse, medium, and dense droplet groups are 2.7%, 1.5%, and 2.0%, respectively. The relative errors of droplet coverage are 1.5%, 0.88%, and 1.2%, respectively. These results demonstrate that the Genetic-Otsu algorithm outperforms the other two algorithms. The proposed algorithm effectively identifies small-sized droplets and accurately distinguishes the multiple independent contours of adjacent droplets even in dense droplet groups, demonstrating excellent performance. Overall, the Genetic-Otsu algorithm offered a reliable solution for detecting droplet deposition parameters on WSP, providing an efficient tool for evaluating droplet deposition parameters in UAV pesticide spraying applications.


Asunto(s)
Algoritmos , Plaguicidas
20.
Front Vet Sci ; 11: 1439743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309031

RESUMEN

Edwardsiella tarda (E. tarda) can infect humans and a variety of animals, including fish, amphibians, reptiles, birds, and mammals. However, a more highly sensitive, specific, and repeatable test for its detection is lacking. The objective of this study was to develop a highly sensitive, specific, and repeatable droplet digital polymerase chain reaction (ddPCR)-based method for the quantitative detection of E. tarda. The gyrB gene was selected as the target gene, and primers and probe were designed and synthesized. Using E. tarda genomic DNA as templates, the reaction method was optimized to establish a linear relationship with real-time PCR detection methods. The sensitivity, specificity, and repeatability of the method were analyzed, and clinical samples were tested. When the primer and probe concentrations were 900 and 300 nM, respectively, and the annealing temperature was 57°C, the efficiency of the ddPCR amplification reaction was highest and the boundary between positive and negative droplet distribution was clearest. The sensitivity was high, with detection limit being as low as 0.56 copies·µL-1; additionally, and a good linear relationship (R 2 = 0.9962) between ddPCR and real-time PCR detection, within the range of 1-25,000 copies·µL-1, was evident. The repeatability was good, with a detection coefficient of variation of 2.74%. There was no cross-reactivity with 15 other common pathogenic microorganisms in aquatic animals (Streptococcus agalactiae, Streptococcus iniae, Streptococcus suis type 2, Nocardia seriolae, Vibrio parahaemolyticus, Aeromonas sobria, red sea bream iridovirus, decapod iridescent virus 1, enterocytozoon hepatopenaei, carp edema virus, Koi herpesvirus, goldfish hematopoietic necrosis virus, tilapia lake virus, viral nervous necrosis virus, or grass carp reovirus) in positive samples. Among the 48 clinical samples, including Bahaba taipingensis and its live food fish, pond water samples, and routine monitoring samples (Koi), 21 were positive for E. tarda, consistent with the bacterial isolation and identification results. The E. tarda ddPCR detection method has high specificity, sensitivity, and repeatability, can more accurately quantify E. tarda, and provides a useful reference for research related to this bacterium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA