Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(6): e0076223, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38747590

RESUMEN

The RNA chaperone Hfq acts as a global regulator of numerous biological processes, such as carbon/nitrogen metabolism and environmental adaptation in plant-associated diazotrophs; however, its target RNAs and the mechanisms underlying nitrogen fixation remain largely unknown. Here, we used enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing to identify hundreds of Hfq-binding RNAs probably involved in nitrogen fixation, carbon substrate utilization, biofilm formation, and other functions. Collectively, these processes endow strain A1501 with the requisite capabilities to thrive in the highly competitive rhizosphere. Our findings revealed a previously uncharted landscape of Hfq target genes. Notable among these is nifM, encoding an isomerase necessary for nitrogenase reductase solubility; amtB, encoding an ammonium transporter; oprB, encoding a carbohydrate porin; and cheZ, encoding a chemotaxis protein. Furthermore, we identified more than 100 genes of unknown function, which expands the potential direct regulatory targets of Hfq in diazotrophs. Our data showed that Hfq directly interacts with the mRNA of regulatory proteins (RsmA, AlgU, and NifA), regulatory ncRNA RsmY, and other potential targets, thus revealing the mechanistic links in nitrogen fixation and other metabolic pathways. IMPORTANCE: Numerous experimental approaches often face challenges in distinguishing between direct and indirect effects of Hfq-mediated regulation. New technologies based on high-throughput sequencing are increasingly providing insight into the global regulation of Hfq in gene expression. Here, enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing was employed to identify the Hfq-binding sites and potential targets in the root-associated Pseudomonas stutzeri A1501 and identify hundreds of novel Hfq-binding RNAs that are predicted to be involved in metabolism, environmental adaptation, and nitrogen fixation. In particular, we have shown Hfq interactions with various regulatory proteins' mRNA and their potential targets at the posttranscriptional level. This study not only enhances our understanding of Hfq regulation but, importantly, also provides a framework for addressing integrated regulatory network underlying root-associated nitrogen fixation.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped , Fijación del Nitrógeno , Raíces de Plantas , Pseudomonas stutzeri , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Fijación del Nitrógeno/genética , Raíces de Plantas/microbiología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Rizosfera
2.
Dev Cell ; 59(5): 661-675.e7, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38290520

RESUMEN

Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Masculino , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Semen/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
RNA ; 30(3): 223-239, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164626

RESUMEN

Mitochondria-associated RNA-binding proteins (RBPs) have emerged as key contributors to mitochondrial biogenesis and homeostasis. With few examples known, we set out to identify RBPs that regulate nuclear-encoded mitochondrial mRNAs (NEMmRNAs). Our systematic analysis of RNA targets of 150 RBPs identified RBPs with a preference for binding NEMmRNAs, including LARP4, a La RBP family member. We show that LARP4's targets are particularly enriched in mRNAs that encode respiratory chain complex proteins (RCCPs) and mitochondrial ribosome proteins (MRPs) across multiple human cell lines. Through quantitative proteomics, we demonstrate that depletion of LARP4 leads to a significant reduction in RCCP and MRP protein levels. Furthermore, we show that LARP4 depletion reduces mitochondrial function, and that LARP4 re-expression rescues this phenotype. Our findings shed light on a novel function for LARP4 as an RBP that binds to and positively regulates NEMmRNAs to promote mitochondrial respiratory function.


Asunto(s)
Mitocondrias , Proteínas de Unión al ARN , Humanos , Línea Celular , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
BMC Biol ; 21(1): 246, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936138

RESUMEN

BACKGROUND: The exon junction complex (EJC) is involved in most steps of the mRNA life cycle, ranging from splicing to nonsense-mediated mRNA decay (NMD). It is assembled by the splicing machinery onto mRNA in a sequence-independent manner. A fundamental open question is whether the EJC is deposited onto all exon‒exon junctions or only on a subset of them. Several previous studies have made observations supportive of the latter, yet these have been limited by methodological constraints. RESULTS: In this study, we sought to overcome these limitations via the integration of two different approaches for transcriptome-wide mapping of EJCs. Our results revealed that nearly all, if not all, internal exons consistently harbor an EJC in Drosophila, demonstrating that EJC presence is an inherent consequence of the splicing reaction. Furthermore, our study underscores the limitations of eCLIP methods in fully elucidating the landscape of RBP binding sites. Our findings highlight how highly specific (low false positive) methodologies can lead to erroneous interpretations due to partial sensitivity (high false negatives). CONCLUSIONS: This study contributes to our understanding of EJC deposition and its association with pre-mRNA splicing. The universal presence of EJC on internal exons underscores its significance in ensuring proper mRNA processing. Additionally, our observations highlight the need to consider both specificity and sensitivity in RBP mapping methodologies.


Asunto(s)
Proteínas de Unión al ARN , Ribonucleoproteínas , Animales , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Drosophila/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones , Sitios de Unión
5.
Bio Protoc ; 13(11): e4688, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37323634

RESUMEN

Individual nucleotide resolution UV cross-linking and immunoprecipitation followed by high-throughput sequencing (iCLIP-seq) is a powerful technique that is used to identify RNA-binding proteins' (RBP) binding sites on target RNAs and to characterize the molecular basis of posttranscriptional regulatory pathways. Several variants of CLIP have been developed to improve its efficiency and simplify the protocol [e.g., iCLIP2 and enhanced CLIP (eCLIP)]. We have recently reported that transcription factor SP1 functions in the regulation of alternative cleavage and polyadenylation through direct RNA binding. We utilized a modified iCLIP method to identify RNA-binding sites for SP1 and several of the cleavage and polyadenylation complex subunits, including CFIm25, CPSF7, CPSF100, CPSF2, and Fip1. Our revised protocol takes advantage of several features of the eCLIP procedure and also improves on certain steps of the original iCLIP method, including optimization of circularization of cDNA. Herein, we describe a step-by-step procedure for our revised iCLIP-seq protocol, that we designate as iCLIP-1.5, and provide alternative approaches for certain difficult-to-CLIP proteins. Key features Identification of RNA-binding sites of RNA-binding proteins (RBPs) at nucleotide resolution. iCLIP-seq provides precise positional and quantitative information on the RNA-binding sites of RBPs in living cells. iCLIP facilitates the identification of sequence motifs recognized by RBPs. Allows quantitative analysis of genome-wide changes in protein-RNA interactions. Revised iCLIP-1.5 protocol is more efficient and highly robust; it provides higher coverage even for low-input samples. Graphical overview.

6.
Cell Genom ; 3(5): 100303, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37228754

RESUMEN

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.

7.
Funct Integr Genomics ; 23(2): 174, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219715

RESUMEN

Microdeletion of the 15q11.2 BP1-BP2 region, also known as Burnside-Butler susceptibility region, is associated with phenotypes like delayed developmental language abilities along with motor skill disabilities, combined with behavioral and emotional problems. The 15q11.2 microdeletion region harbors four evolutionarily conserved and non-imprinted protein-coding genes: NIPA1, NIPA2, CYFIP1, and TUBGCP5. This microdeletion is a rare copy number variation frequently associated with several pathogenic conditions in humans. The aim of this study is to investigate the RNA-binding proteins binding with the four genes present in 15q11.2 BP1-BP2 microdeletion region. The results of this study will help to better understand the molecular intricacies of the Burnside-Butler Syndrome and also the possible involvement of these interactions in the disease aetiology. Our results of enhanced crosslinking and immunoprecipitation data analysis indicate that most of the RBPs interacting with the 15q11.2 region are involved in the post-transcriptional regulation of the concerned genes. The RBPs binding to this region are found from the in silico analysis, and the interaction of RBPs like FASTKD2 and EFTUD2 with exon-intron junction sequence of CYFIP1 and TUBGCP5 has also been validated by combined EMSA and western blotting experiment. The exon-intron junction binding nature of these proteins suggests their potential involvement in splicing process. This study may help to understand the intricate relationship of RBPs with mRNAs within this region, along with their functional significance in normal development, and lack thereof, in neurodevelopmental disorders. This understanding will help in the formulation of better therapeutic approaches.


Asunto(s)
Cromosomas Humanos , Variaciones en el Número de Copia de ADN , Humanos , Proteínas de Unión al ARN , Intrones , Factores de Elongación de Péptidos , Ribonucleoproteína Nuclear Pequeña U5
8.
Aging (Albany NY) ; 15(10): 3984-4011, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37219408

RESUMEN

Environmental and physiological stresses can accelerate Alzheimer's disease (AD) pathogenesis. Under stress, a cytoplasmic membraneless structure termed a stress granule (SG) is formed and is associated with various neurodegenerative disorders, including AD. SGs contain translationally arrested mRNAs, suggesting that impaired RNA metabolism in neurons causes AD progression; however, the underlying mechanism remains unclear. Here, we identified numerous mRNAs and long non-coding RNAs that are directly targeted by the SG core proteins G3BP1 and G3BP2. They redundantly target RNAs before and after stress conditions. We further identified RNAs within SGs, wherein AD-associated gene transcripts accumulated, suggesting that SGs can directly regulate AD development. Furthermore, gene-network analysis revealed a possible link between the sequestration of RNAs by SGs and the impairment of protein neurohomeostasis in AD brains. Together, our study provides a comprehensive RNA regulatory mechanism involving SGs, which could be targeted therapeutically to slow AD progression mediated by SGs.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Portadoras , Humanos , Proteínas Portadoras/genética , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteostasis , Enfermedad de Alzheimer/genética , Gránulos de Estrés , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Neuronas/metabolismo
9.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35641157

RESUMEN

Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA-RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA-RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.


Asunto(s)
ARN Circular , ARN , Genoma , Inmunoprecipitación , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN
10.
Cell Mol Life Sci ; 79(5): 279, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35507203

RESUMEN

Translational control is a fundamental mechanism regulating animal germ cell development. Gonadal somatic cells provide support and microenvironment for germ cell development to ensure fertility, yet the roles of translational control in gonadal somatic compartment remain largely undefined. We found that mouse homolog of conserved fly germline stem cell factor Pumilio, PUM1, is absent in oocytes of all growing follicles after the primordial follicle stage, instead, it is highly expressed in somatic compartments of ovaries. Global loss of Pum1, not oocyte-specific loss of Pum1, led to a significant reduction in follicular number and size as well as fertility. Whole-genome identification of PUM1 targets in ovarian somatic cells revealed an enrichment of cell proliferation pathway, including 48 key regulators of cell phase transition. Consistently granulosa cells proliferation is reduced and the protein expression of the PUM-bound Cell Cycle Regulators (PCCR) were altered accordingly in mutant ovaries, and specifically in granulosa cells. Increase in negative regulator expression and decrease in positive regulators in the mutant ovaries support a coordinated translational control of somatic cell cycle program via PUM proteins. Furthermore, postnatal knockdown, but not postnatal oocyte-specific loss, of Pum1 in Pum2 knockout mice reduced follicular growth and led to similar expression alteration of PCCR genes, supporting a critical role of PUM-mediated translational control in ovarian somatic cells for mammalian female fertility. Finally, expression of human PUM protein and its regulated cell cycle targets exhibited significant correlation with ovarian cancer and prognosis for cancer survival. Hence, PUMILIO-mediated cell cycle regulation represents an important mechanism in mammalian female reproduction and human cancer biology.


Asunto(s)
Neoplasias Ováricas , Proteínas de Unión al ARN , Animales , Ciclo Celular/genética , Femenino , Humanos , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Oocitos/metabolismo , Neoplasias Ováricas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Microambiente Tumoral
11.
Cell Rep ; 38(10): 110481, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263585

RESUMEN

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Línea Celular Tumoral , Autorrenovación de las Células/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patología , MicroARNs/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Mol Ther Nucleic Acids ; 27: 241-255, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34976441

RESUMEN

MEX3A is an RNA-binding protein that mediates mRNA decay through binding to 3' untranslated regions. However, its role and mechanism in clear cell renal cell carcinoma remain unknown. In this study, we found that MEX3A expression was transcriptionally activated by ETS1 and upregulated in clear cell renal cell carcinoma. Silencing MEX3A markedly reduced clear cell renal cell carcinoma cell proliferation in vitro and in vivo. Inhibiting MEX3A induced G1/S cell-cycle arrest. Gene set enrichment analysis revealed that E2F targets are the central downstream pathways of MEX3A. To identify MEX3A targets, systematic screening using enhanced cross-linking and immunoprecipitation sequencing, and RNA-immunoprecipitation sequencing assays were performed. A network of 4,000 genes was identified as potential targets of MEX3A. Gene ontology analysis of upregulated genes bound by MEX3A indicated that negative regulation of the cell proliferation pathway was highly enriched. Further assays indicated that MEX3A bound to the CDKN2B 3' untranslated region, promoting its mRNA degradation. This leads to decreased levels of CDKN2B and an uncontrolled cell cycle in clear cell renal cell carcinoma, which was confirmed by rescue experiments. Our findings revealed that MEX3A acts as a post-transcriptional regulator of abnormal cell-cycle progression in clear cell renal cell carcinoma.

13.
Methods Mol Biol ; 2404: 189-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34694610

RESUMEN

Individual-nucleotide crosslinking and immunoprecipitation (iCLIP) sequencing and its derivative enhanced CLIP (eCLIP) sequencing are methods for the transcriptome-wide detection of binding sites of RNA-binding proteins (RBPs). This chapter provides a stepwise tutorial for analyzing iCLIP and eCLIP data with replicates and size-matched input (SMI) controls after read alignment using our open-source tools htseq-clip and DEWSeq. This includes the preparation of gene annotation, extraction, and preprocessing of truncation sites and the detection of significantly enriched binding sites using a sliding window based approach suitable for different binding modes of RBPs.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Sitios de Unión , Inmunoprecipitación , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcriptoma
14.
Dev Cell ; 56(21): 2928-2937.e9, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34752747

RESUMEN

Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Ribosomas/metabolismo , Animales , Línea Celular , Factor 3 de Iniciación Eucariótica/genética , Humanos , Ratones , ARN Mensajero/genética , Transducción de Señal/fisiología
15.
Gigascience ; 10(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34406415

RESUMEN

BACKGROUND: Cross-linking and immunoprecipitation followed by next-generation sequencing (CLIP-seq) is the state-of-the-art technique used to experimentally determine transcriptome-wide binding sites of RNA-binding proteins (RBPs). However, it relies on gene expression, which can be highly variable between conditions and thus cannot provide a complete picture of the RBP binding landscape. This creates a demand for computational methods to predict missing binding sites. Although there exist various methods using traditional machine learning and lately also deep learning, we encountered several problems: many of these are not well documented or maintained, making them difficult to install and use, or are not even available. In addition, there can be efficiency issues, as well as little flexibility regarding options or supported features. RESULTS: Here, we present RNAProt, an efficient and feature-rich computational RBP binding site prediction framework based on recurrent neural networks. We compare RNAProt with 1 traditional machine learning approach and 2 deep-learning methods, demonstrating its state-of-the-art predictive performance and better run time efficiency. We further show that its implemented visualizations capture known binding preferences and thus can help to understand what is learned. Since RNAProt supports various additional features (including user-defined features, which no other tool offers), we also present their influence on benchmark set performance. Finally, we show the benefits of incorporating additional features, specifically structure information, when learning the binding sites of an hairpin loop binding RBP. CONCLUSIONS: RNAProt provides a complete framework for RBP binding site predictions, from data set generation over model training to the evaluation of binding preferences and prediction. It offers state-of-the-art predictive performance, as well as superior run time efficiency, while at the same time supporting more features and input types than any other tool available so far. RNAProt is easy to install and use, comes with comprehensive documentation, and is accompanied by informative statistics and visualizations. All this makes RNAProt a valuable tool to apply in future RBP binding site research.


Asunto(s)
Redes Neurales de la Computación , ARN , Sitios de Unión , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
Methods Mol Biol ; 2369: 139-164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34313988

RESUMEN

Over the last decades, identification of RNA-proteins complexes and their binding sites was challenging. Recently, techniques based on crosslinking, immunoprecipitation, and high-throughput sequencing have been developed. An optimized method, called eCLIP-seq, enables to identify precisely the targeted RNAs as well as the transcriptome-wide binding sites at nucleotide resolution. Here we describe the eCLIP-seq protocol in asexual stages of the human malaria parasite, Plasmodium falciparum. This method could facilitate the characterization of RNA-binding proteins in this organism for which few data are currently available.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Plasmodium falciparum , Sitios de Unión , Humanos , Inmunoprecipitación , Plasmodium falciparum/genética , Unión Proteica , Proteínas , ARN/genética
17.
BMC Bioinformatics ; 22(1): 279, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039271

RESUMEN

BACKGROUND: With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. RESULTS: We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed's abstract retrieval engine and NCBO's recommender annotation system. Lantern's annotations were benchmarked against lncRNAdb's manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. CONCLUSIONS: Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.


Asunto(s)
ARN Largo no Codificante , Genoma Humano , Humanos , Anotación de Secuencia Molecular , ARN Largo no Codificante/genética
18.
Cell Rep ; 34(13): 108914, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789107

RESUMEN

The Piwi-interacting RNA (piRNA) pathway safeguards genomic integrity by silencing transposable elements (transposons) in the germline. While Piwi is the central piRNA factor, others including Asterix/Gtsf1 have also been demonstrated to be critical for effective silencing. Here, using enhanced crosslinking and immunoprecipitation (eCLIP) with a custom informatic pipeline, we show that Asterix/Gtsf1 specifically binds tRNAs in cellular contexts. We determined the structure of mouse Gtsf1 by NMR spectroscopy and identified the RNA-binding interface on the protein's first zinc finger, which was corroborated by biochemical analysis as well as cryo-EM structures of Gtsf1 in complex with co-purifying tRNA. Consistent with the known dependence of long terminal repeat (LTR) retrotransposons on tRNA primers, we demonstrate that LTR retrotransposons are, in fact, preferentially de-repressed in Asterix mutants. Together, these findings link Asterix/Gtsf1, tRNAs, and LTR retrotransposon silencing and suggest that Asterix exploits tRNA dependence to identify transposon transcripts and promote piRNA silencing.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/metabolismo , Retroelementos/genética , Animales , Proteínas de Drosophila/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Nucleares/química , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/genética , Proteínas Recombinantes/biosíntesis , Secuencias Repetidas Terminales
19.
Development ; 148(1)2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33246929

RESUMEN

The adult Drosophila intestinal epithelium is a model system for stem cell biology, but its utility is limited by current biochemical methods that lack cell type resolution. Here, we describe a new proximity-based profiling method that relies upon a GAL4 driver, termed intestinal-kickout-GAL4 (I-KCKT-GAL4), that is exclusively expressed in intestinal progenitor cells. This method uses UV crosslinked whole animal frozen powder as its starting material to immunoprecipitate the RNA cargoes of transgenic epitope-tagged RNA binding proteins driven by I-KCKT-GAL4 When applied to the general mRNA-binder, poly(A)-binding protein, the RNA profile obtained by this method identifies 98.8% of transcripts found after progenitor cell sorting, and has low background noise despite being derived from whole animal lysate. We also mapped the targets of the more selective RNA binder, Fragile X mental retardation protein (FMRP), using enhanced crosslinking and immunoprecipitation (eCLIP), and report for the first time its binding motif in Drosophila cells. This method will therefore enable the RNA profiling of wild-type and mutant intestinal progenitor cells from intact flies exposed to normal and altered environments, as well as the identification of RNA-protein interactions crucial for stem cell function.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnicas Genéticas , Intestinos/citología , ARN/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Elementos de Facilitación Genéticos/genética , Femenino , Regulación de la Expresión Génica , Especificidad de Órganos , Proteínas de Unión a Poli(A)/metabolismo , ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
BMC Genomics ; 21(1): 894, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33334306

RESUMEN

BACKGROUND: Current peak callers for identifying RNA-binding protein (RBP) binding sites from CLIP-seq data take into account genomic read profiles, but they ignore the underlying transcript information, that is information regarding splicing events. So far, there are no studies available that closer observe this issue. RESULTS: Here we show that current peak callers are susceptible to false peak calling near exon borders. We quantify its extent in publicly available datasets, which turns out to be substantial. By providing a tool called CLIPcontext for automatic transcript and genomic context sequence extraction, we further demonstrate that context choice affects the performances of RBP binding site prediction tools. Moreover, we show that known motifs of exon-binding RBPs are often enriched in transcript context sites, which should enable the recovery of more authentic binding sites. Finally, we discuss possible strategies on how to integrate transcript information into future workflows. CONCLUSIONS: Our results demonstrate the importance of incorporating transcript information in CLIP-seq data analysis. Taking advantage of the underlying transcript information should therefore become an integral part of future peak calling and downstream analysis tools.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Datos , Sitios de Unión , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA