Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Bioessays ; 46(7): e2300247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769702

RESUMEN

Dormancy or hibernation is a non-proliferative state of cells with low metabolic activity and gene expression. Dormant cells sequester ribosomes in a translationally inactive state, called dormant/hibernating ribosomes. These dormant ribosomes are important for the preservation of ribosomes and translation shut-off. While recent studies attempted to elucidate their modes of formation, the regulation and roles of the diverse dormant ribosomal populations are still largely understudied. The mechanistic details of the formation of dormant ribosomes in stress and especially their disassembly during recovery remain elusive. In this review, we discuss the roles of dormant ribosomes and their potential regulatory mechanisms. Furthermore, we highlight the paradigms that need to be answered in the field of ribosomal dormancy.


Asunto(s)
Homeostasis , Biosíntesis de Proteínas , Ribosomas , Ribosomas/metabolismo , Humanos , Animales , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética
2.
Int Immunopharmacol ; 129: 111628, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38320351

RESUMEN

BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is characterized by a high mortality rate, attributed primarily to the establishment of an immunosuppressive microenvironment. Within this context, we aimed to elucidate the pivotal role of eukaryotic elongation factor 2 kinase (eEF2K) in orchestrating the infiltration and activation of natural killer (NK) cells within the HCC tumor microenvironment. By shedding light on the immunomodulatory mechanisms at play, our findings should clarify HCC pathogenesis and help identify potential therapeutic intervention venues. METHODS: We performed a comprehensive bioinformatics analysis to determine the functions of eEF2K in the context of HCC. We initially used paired tumor and adjacent normal tissue samples from patients with HCC to measure eEF2K expression and its correlation with prognosis. Subsequently, we enrolled a cohort of patients with HCC undergoing immunotherapy to examine the ability of eEF2K to predict treatment efficacy. To delve deeper into the mechanistic aspects, we established an eEF2K-knockout cell line using CRISPR/Cas9 gene editing. This step was crucial for verifying activation of the cGAS-STING pathway and the subsequent secretion of cytokines. To further elucidate the role of eEF2K in NK cell function, we applied siRNA-based techniques to effectively suppress eEF2K expression in vitro. For in vivo validation, we developed a tumor-bearing mouse model that enabled us to compare the infiltration and activation of NK cells within the tumor microenvironment following various treatment strategies. RESULTS: We detected elevated eEF2K expression within HCC tissues, and this was correlated with an unfavorable prognosis (30.84 vs. 20.99 months, P = 0.033). In addition, co-culturing eEF2K-knockout HepG2 cells with dendritic cells led to activation of the cGAS-STING pathway and a subsequent increase in the secretion of IL-2 and CXCL9. Moreover, inhibiting eEF2K resulted in notable NK cell proliferation along with apoptosis reduction. Remarkably, after combining NH125 and PD-1 treatments, we found a significant increase in NK cell infiltration within HCC tumors in our murine model. Our flow cytometry analysis revealed reduced NKG2A expression and elevated NKG2D expression and secretion of granzyme B, TNF-α, and IFN-γ in NK cells. Immunohistochemical examination confirmed no evidence of damage to vital organs in the mice treated with the combination therapy. Additionally, we noted higher levels of glutathione peroxidase and lipid peroxidation in the peripheral blood serum of the treated mice. CONCLUSION: Targeted eEF2K blockade may result in cGAS-STING pathway activation, leading to enhanced infiltration and activity of NK cells within HCC tumors. The synergistic effect achieved by combining an eEF2K inhibitor with PD-1 antibody therapy represents a novel and promising approach for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células Asesinas Naturales , Neoplasias Hepáticas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
3.
Adv Sci (Weinh) ; 11(5): e2305035, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084501

RESUMEN

Dysregulated eEF2K expression is implicated in the pathogenesis of many human cancers, including triple-negative breast cancer (TNBC), making it a plausible therapeutic target. However, specific eEF2K inhibitors with potent anti-cancer activity have not been available so far. Targeted protein degradation has emerged as a new strategy for drug discovery. In this study, a novel small molecule chemical is designed and synthesized, named as compound C1, which shows potent activity in degrading eEF2K. C1 selectively binds to F8, L10, R144, C146, E229, and Y236 of the eEF2K protein and promotes its proteasomal degradation by increasing the interaction between eEF2K and the ubiquitin E3 ligase ßTRCP in the form of molecular glue. C1 significantly inhibits the proliferation and metastasis of TNBC cells both in vitro and in vivo and in TNBC patient-derived organoids, and these antitumor effects are attributed to the degradation of eEF2K by C1. Additionally, combination treatment of C1 with paclitaxel, a commonly used chemotherapeutic drug, exhibits synergistic anti-tumor effects against TNBC. This study not only generates a powerful research tool to investigate the therapeutic potential of targeting eEF2K, but also provides a promising lead compound for developing novel drugs for the treatment of TNBC and other cancers.


Asunto(s)
Quinasa del Factor 2 de Elongación , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Fosforilación , Transducción de Señal , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores
4.
Cancer Cell ; 41(5): 853-870.e13, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37084735

RESUMEN

We uncover a tumor-suppressive process in urothelium called transcriptional-translational conflict caused by deregulation of the central chromatin remodeling component ARID1A. Loss of Arid1a triggers an increase in a nexus of pro-proliferation transcripts, but a simultaneous inhibition of the eukaryotic elongation factor 2 (eEF2), which results in tumor suppression. Resolution of this conflict through enhancing translation elongation speed enables the efficient and precise synthesis of a network of poised mRNAs resulting in uncontrolled proliferation, clonogenic growth, and bladder cancer progression. We observe a similar phenomenon in patients with ARID1A-low tumors, which also exhibit increased translation elongation activity through eEF2. These findings have important clinical implications because ARID1A-deficient, but not ARID1A-proficient, tumors are sensitive to pharmacologic inhibition of protein synthesis. These discoveries reveal an oncogenic stress created by transcriptional-translational conflict and provide a unified gene expression model that unveils the importance of the crosstalk between transcription and translation in promoting cancer.


Asunto(s)
Cromatina , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética
5.
Mol Med ; 29(1): 29, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849916

RESUMEN

BACKGROUND: Intriguingly, liver regeneration after injury does not induce uncontrolled growth and the underlying mechanisms of such a "hepatostat" are still not clear. Endocan, a proteoglycan, was implicated in liver regeneration. It can support the function of hepatocyte growth factor/scatter factor in tissue repair after injury. Endostatin, a 20 kDa C-terminal fragment of collagen XVIII, may modulate the cessation of liver regeneration. eEF2K, a protein kinase that regulates protein synthesis, can regulate angiogenesis. Thus, we investigated the role of endocan, endostatin and eEF2K during normal liver regeneration. METHODS: Serum samples and regenerating remnant liver tissues were obtained on various days after partial hepatectomy in rats. mRNA expression levels of Vegf and Pcna were analyzed in addition to immunohistochemical evaluations. Liver tissue protein levels of endostatin, endocan and p-eEF2K/eEF2K were determined with Western blot. Serum levels of endostatin and endocan were assessed with ELISA. RESULTS: Pcna expression level in residual liver tissues peaked on day-1, while Vegf expression reached its highest level on days 1-3 after partial hepatectomy (70%). Endocan activity declined gradually on days 1-7. The decrease in liver endocan expression was accompanied by an increase in serum endocan levels. Partial hepatectomy induced a rapid increase in liver endostatin levels. Following its surge on day-1, endostatin expression gradually declined, which was accompanied by a peak in serum endostatin. Finally, partial hepatectomy was shown to regulate eEF2K; thus, increasing protein translation. CONCLUSIONS: We revealed possible mechanistic insights into liver regeneration by examining the associations of Pcna, Vegf, endocan, endostatin, eEF2K with hepatic regeneration after partial hepatectomy. Indeed, endocan might serve as a useful biomarker to monitor clinical prognosis in a plethora of conditions such as recovery of donor's remaining liver after living-donor liver transplant. Whether endocan might represent a strategy to optimize liver regeneration when given therapeutically needs to be investigated in future studies.


Asunto(s)
Regeneración Hepática , Trasplante de Hígado , Animales , Ratas , Humanos , Antígeno Nuclear de Célula en Proliferación , Endostatinas , Factor A de Crecimiento Endotelial Vascular , Donadores Vivos
6.
Molecules ; 28(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770760

RESUMEN

The α-kinase, eEF2K, phosphorylates the threonine 56 residue of eEF2 to inhibit global peptide elongation (protein translation). As a master regulator of protein synthesis, in combination with its unique atypical kinase active site, investigations into the targeting of eEF2K represents a case of intense structure-based drug design that includes the use of modern computational techniques. The role of eEF2K is incredibly diverse and has been scrutinized in several different diseases including cancer and neurological disorders-with numerous studies inhibiting eEF2K as a potential treatment option, as described in this paper. Using available crystal structures of related α-kinases, particularly MHCKA, we report how homology modeling has been used to improve inhibitor design and efficacy. This review presents an overview of eEF2K related drug discovery efforts predating from the 1990's, to more recent in vivo studies in rat models. We also provide the reader with a basic introduction to several approaches and software programs used to undertake such drug discovery campaigns. With the recent exciting publication of an eEF2K crystal structure, we present our view regarding the future of eEF2K drug discovery.


Asunto(s)
Neoplasias , Transducción de Señal , Ratas , Animales , Fosforilación , Procesamiento Proteico-Postraduccional , Diseño de Fármacos , Neoplasias/tratamiento farmacológico , Quinasa del Factor 2 de Elongación
7.
Mol Biol Rep ; 50(4): 3011-3022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36652154

RESUMEN

BACKGROUND: Eukaryotic elongation factor 2 kinase (eukaryotic elongation factor 2 kinase, eEF2K) is a calcium calmodulin dependent protein kinase that keeps the highest energy consuming cellular process of protein synthesis under check through negative regulation. eEF2K pauses global protein synthesis rates at the translational elongation step by phosphorylating its only kown substrate elongation factor 2 (eEF2), a unique translocase activity in ekaryotic cells enabling the polypeptide chain elongation. Therefore, eEF2K is thought to preserve cellular energy pools particularly upon acute development of cellular stress conditions such as nutrient deprivation, hypoxia, or infections. Recently, high expression of this enzyme has been associated with poor prognosis in an array of solid tumor types. Therefore, in a growing number of studies tremendous effort is being directed to the development of treatment methods aiming to suppress eEF2K as a novel therapeutic approach in the fight against cancer. METHODS: In our study, we aimed to investigate the changes in the tumorigenicity of chordoma cells in presence of gene silencing for eEF2K. Taking a transient gene silencing approach using siRNA particles, eEF2K gene expression was suppressed in chordoma cells. RESULTS: Silencing eEF2K expression was associated with a slight increase in cellular proliferation and a decrease in death rates. Furthermore, no alteration in the sensitivity of chordoma cells to chemotherapy was detected in response to the decrease in eEF2K expression which intriguingly promoted suppression of cell migratory and invasion related properties. CONCLUSION: Our findings indicate that the loss of eEF2K expression in chordoma cell lines results in the reduction of metastatic capacity.


Asunto(s)
Cordoma , Quinasa del Factor 2 de Elongación , Humanos , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/química , Quinasa del Factor 2 de Elongación/metabolismo , Cordoma/genética , Fosforilación , Línea Celular , Transducción de Señal
8.
J Neurochem ; 166(1): 47-57, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34796967

RESUMEN

Understanding the molecular signaling mechanisms underlying cognition and neuronal plasticity would provide insights into the pathogenesis of neuronal disorders characterized by cognitive syndromes such as Alzheimer disease (AD). Phosphorylation of the mRNA translational factor eukaryotic elongation factor 2 (eEF2) by its specific kinase eEF2K is critically involved in protein synthesis regulation. In this review, we discussed recent studies on the roles of eEF2K/eEF2 signaling in the context of regulation/dysregulation of cognitive function and synaptic plasticity. We specifically focus on the discussion of recent evidence indicating suppression of eEF2K signaling as a potential novel therapeutic avenue for AD and related dementias (ADRDs).


Asunto(s)
Enfermedad de Alzheimer , Quinasa del Factor 2 de Elongación , Humanos , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Enfermedad de Alzheimer/genética , Plasticidad Neuronal , Transducción de Señal/fisiología , Cognición , Fosforilación/fisiología , Factor 2 de Elongación Peptídica/metabolismo
9.
J Neurochem ; 166(1): 10-23, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35680556

RESUMEN

Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Cognición , Diana Mecanicista del Complejo 1 de la Rapamicina
10.
Front Aging Neurosci ; 14: 959326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158543

RESUMEN

Maintenance of memory and synaptic plasticity depends on de novo protein synthesis, and accumulating evidence implicates a role of dysregulated mRNA translation in cognitive impairments associated with Alzheimer's disease (AD). Accumulating evidence demonstrates hyper-phosphorylation of translation factor eukaryotic elongation factor 2 (eEF2) in the hippocampi of human AD patients as well as transgenic AD model mice. Phosphorylation of eEF2 (at the Thr 56 site) by its only known kinase, eEF2K, leads to inhibition of general protein synthesis. A recent study suggests that amyloid ß (Aß)-induced neurotoxicity could be associated with an interaction between eEF2 phosphorylation and the transcription factor nuclear erythroid 2-related factor (NRF2)-mediated antioxidant response. In this brief communication, we report that global homozygous knockout of the eEF2K gene alleviates deficits of long-term recognition and spatial learning in a mouse model of AD (APP/PS1). Moreover, eEF2K knockout does not alter brain Aß pathology in APP/PS1 mice. The hippocampal NRF2 antioxidant response in the APP/PS1 mice, measured by expression levels of nicotinamide adenine dinucleotide plus hydrogen (NADPH) quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), is ameliorated by suppression of eEF2K signaling. Together, the findings may contribute to our understanding of the molecular mechanisms underlying AD pathogenesis, indicating that suppression of eEF2K activity could be a beneficial therapeutic option for this devastating neurodegenerative disease.

11.
Molecules ; 27(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956836

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is increasingly considered as an attractive therapeutic target for cancer as well as other diseases. However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study, pharmacophore screening, homology modeling, and molecular docking methods were adopted to screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and then cytotoxicity assay and western blotting were performed to verify the validity of the screen. Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally, molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and anticancer therapy.


Asunto(s)
Quinasa del Factor 2 de Elongación , Medicina Tradicional China , Neoplasias , Simulación por Computador , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Técnicas In Vitro , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Fosforilación
12.
Neurochem Res ; 47(12): 3670-3681, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35849271

RESUMEN

Glioblastoma (GBM) is one of the most common malignancies among primary brain tumors in adults, featuring a poor prognosis and a high recurrence rate. Eukaryotic elongation factor 2 kinase (eEF2K) is a calcium/calmodulin-dependent protein kinase that is involved in promoting tumor cell proliferation, migration, invasion, and survival. However, its expression level in GBM, its prognostic impact and correlation with immune infiltration are not yet known. In this study, we used The Cancer Genome Atlas (TCGA) database to explore the potential molecular mechanisms of eEF2K in GBM development and clinical prognosis in terms of gene expression, survival status, immune infiltration, and associated cellular pathways. We found that eEF2K expression levels were elevated in GBM, but eEF2K was not associated with the prognosis of GBM patients; eEF2K expression in GBM was associated with multiple immune cell infiltrations. These results show a statistical correlation between eEF2K expression and the development of GBM and immune cell infiltration, which helps us to understand the roles of eEF2K in GBM from different perspectives.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/patología , Eucariontes , Pronóstico , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica
13.
Anticancer Agents Med Chem ; 22(14): 2607-2618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35718922

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer deaths in the US due to the lack of effective targeted therapeutics and extremely poor prognosis. OBJECTIVE: The study aims to investigate the role of miR-193b and related signaling mechanisms in PDAC cell proliferation, invasion, and tumor growth. METHODS: Using PDAC cell lines, we performed cell viability, colony formation, in vitro wound healing, and matrigel invasion assays following transfection with miR-193b mimic or control-miR. To identify potential downstream targets of miR-193b, we utilized miRNA-target prediction algorithms and investigated the regulation of eukaryotic elongation factor-2 kinase (eEF2K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways and mediators of epithelial mesenchymal transition (EMT). The role of miR-193b in PDAC tumorigenesis was evaluated in in vivo tumor growth of Panc-1 xenograft model in nude mice. RESULTS: We found that miR-193b is under expressed in PDAC cells compared to corresponding normal pancreatic epithelial cells and demonstrated that ectopic expression of miR-193b reduced cell proliferation, migration, invasion, and EMT through downregulation of eEF2K signaling in PDAC cells. miR-193b expression led to increased expression of E-Cadherin and Claudin-1 while decreasing Snail and TCF8/ZEB1 expressions via eEF2K and MAPK/ERK axis. In vivo systemic injection of miR-193b using lipid-nanoparticles twice a week reduced tumor growth of Panc-1 xenografts and eEF2K expression in nude mice. CONCLUSIONS: Our findings suggest that miR-193b expression suppresses PDAC cell proliferation, migration, invasion, and EMT through inhibition of eEF2K/MAPK-ERK oncogenic axis and that miR-193b-based RNA therapy might be an effective therapeutic strategy to control the growth of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Animales , Carcinogénesis/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
14.
Artículo en Chino | MEDLINE | ID: mdl-35634666

RESUMEN

Objective: To investigate the effects of glycogen synthase kinase-3ß (GSK3ß)/eukaryotic extension factor kinase 2 (eEF2K) signaling pathway on the process of pulmonary fibrosis through in vivo experiments, and find new ideas for clinical treatment of pulmonary fibrosis. Methods: The pulmonary fibrosis model of C57BL/6 male mice was induced by bleomycin with intratracheal injection at the dose of 2 mg/kg. After 14 days of modeling, animals were divided into model group, negative inhibition group and inhibition group (n=5 for each group), and control group was not processed. The inhibition group was treated with TDZD-8 (4 mg/kg) after modeling, the negative inhibition group was given DMSO solution after modeling, and the samples were collected after 28 days. Hematoxylin-eosin staining method was used to detect lung fibrosis in mice and scored according to Ashcroft scale. Expression levels of GSK3ß, p-GSK3ß, eEF2K, p-eEF2K (Ser70, Ser392, Ser470), precursor protein of matrix metalloproteinase-2 (pro-MMP-2), matrix metalloproteinase-2 (MMP-2), collagen I (Col I), collagen Ⅲ (Col Ⅲ) and α-smooth muscle actin (α-SMA) were detected by Western blot. Results: Compared with control group, the fibrosis score was up-regulated, the expression levels of GSK3ß, p-GSK3ß, p-eEF2K (Ser70, Ser392, Ser470), pro-MMP-2, MMP-2, Col I, Col Ⅲ and α-SMA were increased, while that of eEF2K was decreased in model group (P<0.05). Compared with model group, the fibrosis score, expression levels of GSK3ß, p-GSK3ß, p-eEF2K (Ser70, Ser392, Ser470), pro-MMP-2, MMP-2, Col I, Col Ⅲ and α-SMA were decreased, but the expression level of eEF2K was increased in inhibition group (P<0.05). Conclusion: GSK3ß can activate eEF2K by phosphorylation at the sites of Ser70, Ser392 and Ser470, increase the contents of fibrosis indicators, promote the formation of pulmonary fibrosis, and aggravate lung tissue lesions.


Asunto(s)
Fibrosis Pulmonar , Animales , Colágeno , Colágeno Tipo I , Quinasa del Factor 2 de Elongación/metabolismo , Eucariontes/metabolismo , Fibrosis , Glucógeno Sintasa Quinasa 3 beta , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Transducción de Señal
15.
Mol Cell Proteomics ; 21(6): 100240, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513296

RESUMEN

PI3K-mammalian target of rapamycin and MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK) are the most frequently dysregulated signaling pathways in cancer. A problem that limits the success of therapies that target individual PI3K-MAPK members is that these pathways converge to regulate downstream functions and often compensate each other, leading to drug resistance and transient responses to therapy. In order to overcome resistance, therapies based on cotreatments with PI3K/AKT and MEK/MAPK inhibitors are now being investigated in clinical trials, but the mechanisms of sensitivity to cotreatment are not fully understood. Using LC-MS/MS-based phosphoproteomics, we found that eukaryotic elongation factor 2 kinase (eEF2K), a key convergence point downstream of MAPK and PI3K pathways, mediates synergism to cotreatment with trametinib plus pictilisib (which target MEK1/2 and PI3Kα/δ, respectively). Inhibition of eEF2K by siRNA or with a small molecule inhibitor reversed the antiproliferative effects of the cotreatment with PI3K plus MEK inhibitors in a cell model-specific manner. Systematic analysis in 12 acute myeloid leukemia cell lines revealed that eEF2K activity was increased in cells for which PI3K plus MEKi cotreatment is synergistic, while PKC potentially mediated resistance to such cotreatment. Together, our study uncovers eEF2K activity as a key mediator of responses to PI3Ki plus MEKi and as a potential biomarker to predict synergy to cotreatment in cancer cells.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Cromatografía Liquida , Quinasas de Proteína Quinasa Activadas por Mitógenos , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Espectrometría de Masas en Tándem
16.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408842

RESUMEN

Decreasing the levels of certain proteins has been shown to be important for controlling cancer but it is currently unknown whether proteins could potentially be targeted by the inhibiting of protein synthesis. Under this circumstance, targeting protein translation could preferentially affect certain pathways, which could then be of therapeutic advantage when treating cancer. In this report, eukaryotic elongation factor-2 kinase (EEF2K), which is involved in protein translation, was shown to regulate cholesterol metabolism. Targeting EEF2K inhibited key parts of the cholesterol pathway in cancer cells, which could be rescued by the addition of exogenous cholesterol, suggesting that it is a potentially important pathway modulated by targeting this process. Specifically, targeting EEF2K significantly suppressed tumour cell growth by blocking mRNA translation of the cholesterol biosynthesis transcription factor, sterol regulatory element-binding protein (SREBP) 2, and the proteins it regulates. The process could be rescued by the addition of LDL cholesterol taken into the cells via non-receptor-mediated-uptake, which negated the need for SREBP2 protein. Thus, the levels of SREBP2 needed for cholesterol metabolism in cancer cells are therapeutically vulnerable by targeting protein translation. This is the first report to suggest that targeting EEF2K can be used to modulate cholesterol metabolism to treat cancer.


Asunto(s)
Quinasa del Factor 2 de Elongación , Melanoma , Colesterol/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Biosíntesis de Proteínas , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
17.
Trends Biochem Sci ; 47(6): 477-491, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35246374

RESUMEN

In addition to their central functions in translation, ribosomes can adopt inactive structures that are fully assembled yet devoid of mRNA. We describe how the abundance of idle eukaryotic ribosomes is influenced by a broad range of biological conditions spanning viral infection, nutrient deprivation, and developmental cues. Vacant ribosomes may provide a means to exclude ribosomes from translation while also shielding them from degradation, and the variable identity of factors that occlude ribosomes may impart distinct functionality. We propose that regulated changes in the balance of idle and active ribosomes provides a means to fine-tune translation. We provide an overview of idle ribosomes, describe what is known regarding their function, and highlight questions that may clarify their biological roles.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
18.
Clin Transl Med ; 12(2): e722, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184394

RESUMEN

BACKGROUND: Despite the remarkable breakthroughs achieved in the management of metastatic melanoma using immunotherapy and targeted therapies, long-term clinical efficacy is often compromised due to dose-limiting toxicity and innate or acquired resistance. Therefore, it is of vital importance to further explore the molecular mechanisms underlying melanoma progression and identify new targeted therapeutic approaches. METHODS: The function of eukaryotic elongation factor-2 kinase (EEF2K) in melanoma were investigated in vitro and in vivo. RNA-seq and chromatin immunoprecipitation (ChIP) assay were undertaken to explore the mechanisms. The antitumor effect of bromodomain and extra terminal domain (BET) inhibitors combined with cytarabine were assessed in melanoma both in vitro and in vivo. RESULTS: EEF2K silencing markedly attenuated the malignant phenotypes of melanoma cells, including proliferation, migration, invasion and metastasis. In contrast, EEF2K overexpression promoted melanoma cell proliferation, migration and invasion. Mechanistically, we demonstrated that EEF2K upregulates the phosphorylation of STAT3 (p-STAT3) at Tyr705, which binds to the promoter region of SPP1 and enhances its transcription, thus facilitating melanoma progression. Transfection-induced re-expression of SPP1 partly negated the inhibitory effect of EEF2K silencing on melanoma, whereas inhibition of SPP1 or STAT3 significantly abolished the efficacy of EEF2K on melanoma cells. Intriguingly, EEF2K silencing combined with BET inhibitor treatment further inhibited cell proliferation and promoted apoptosis in melanoma. We further screened the US FDA-approved antitumour drug library and identified cytarabine as a potential clinically applicable EEF2K inhibitor that could synergise with BET inhibitors in melanoma treatment. CONCLUSION: EEF2K/p-STAT3/SPP1 may be a novel oncogenic pathway in melanoma progression, which could be a target for novel combination therapy for melanoma.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Osteopontina/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Quinasa del Factor 2 de Elongación/uso terapéutico , Melanoma/fisiopatología , Melanoma/prevención & control , Ratones , Osteopontina/antagonistas & inhibidores , Osteopontina/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Transducción de Señal/efectos de los fármacos
19.
FASEB J ; 36(2): e22154, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032419

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.


Asunto(s)
Antígenos CD36/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Células Espumosas/metabolismo , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
20.
J Biomol Struct Dyn ; 40(24): 13355-13365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-30880628

RESUMEN

Protein kinases emerged as one of the most successful families of drug targets due to their increased activity and involvement in mediating critical signal transduction pathways in cancer cells. Recent evidence suggests that eukaryotic elongation factor 2 kinase (eEF-2K) is a potential therapeutic target for treating some highly aggressive solid cancers, including lung, pancreatic and triple-negative breast cancers. Thus, several compounds have been developed for the inhibition of the enzyme activity, but they are not sufficiently specific and potent. Besides, the crystal structure of this kinase remains unknown. Hence, the functional organization and regulation of eEF-2K remain poorly characterized. For this purpose, we constructed a homology model of eEF-2K and then used docking methodology to better understanding the binding mechanism of eEF-2K with 58 compounds that have been proposed as existing inhibitors. The results of this analysis were compared with the experimental results and the compounds effective against eEF-2K were determined against eEF-2K as a result of both studies. And finally, molecular dynamics (MD) simulations were performed for the stability of eEF-2K with these compounds. According to these study defined that the binding mechanism of eEF-2K with inhibitors at the molecular level and elucidated the residues of eEF-2K that play an important role in enzyme selectivity and ligand affinity. This information may lead to new selective and potential drug molecules to be for inhibition of eEF-2K.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Quinasa del Factor 2 de Elongación , Simulación de Dinámica Molecular , Quinasa del Factor 2 de Elongación/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA