Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125592

RESUMEN

The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Regiones Promotoras Genéticas , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Plantones/metabolismo , Transducción de Señal , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Terminación de Péptidos , Transactivadores
2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063238

RESUMEN

Eukaryotic release factor eRF1, encoded by the ETF1 gene, recognizes stop codons and induces peptide release during translation termination. ETF1 produces several different transcripts as a result of alternative splicing, from which two eRF1 isoforms can be formed. Isoform 1 codes well-studied canonical eRF1, and isoform 2 is 33 amino acid residues shorter than isoform 1 and completely unstudied. Using a reconstituted mammalian in vitro translation system, we showed that the isoform 2 of human eRF1 is also involved in translation. We showed that eRF1iso2 can interact with the ribosomal subunits and pre-termination complex. However, its codon recognition and peptide release activities have decreased. Additionally, eRF1 isoform 2 exhibits unipotency to UGA. We found that eRF1 isoform 2 interacts with eRF3a but stimulated its GTPase activity significantly worse than the main isoform eRF1. Additionally, we studied the eRF1 isoform 2 effect on stop codon readthrough and translation in a cell-free translation system. We observed that eRF1 isoform 2 suppressed stop codon readthrough of the uORFs and decreased the efficiency of translation of long coding sequences. Based on these data, we assumed that human eRF1 isoform 2 can be involved in the regulation of translation termination. Moreover, our data support previously stated hypotheses that the GTS loop is important for the multipotency of eRF1 to all stop codons. Whereas helix α1 of the N-domain eRF1 is proposed to be involved in conformational rearrangements of eRF1 in the A-site of the ribosome that occur after GTP hydrolysis by eRF3, which ensure hydrolysis of peptidyl-tRNA at the P site of the ribosome.


Asunto(s)
Codón de Terminación , Factores de Terminación de Péptidos , Isoformas de Proteínas , Humanos , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Codón de Terminación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ribosomas/metabolismo , Biosíntesis de Proteínas , Terminación de la Cadena Péptídica Traduccional , Unión Proteica
3.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38881530

RESUMEN

HemK2 is a highly conserved methyltransferase, but the identification of its genuine substrates has been controversial, and its biological importance in higher organisms remains unclear. We elucidate the role of HemK2 in the methylation of eukaryotic Release Factor 1 (eRF1), a process that is essential for female germline development in Drosophila melanogaster. Knockdown of hemK2 in the germline cells (hemK2-GLKD) induces apoptosis, accompanied by a pronounced decrease in both eRF1 methylation and protein synthesis. Overexpression of a methylation-deficient eRF1 variant recapitulates the defects observed in hemK2-GLKD, suggesting that eRF1 is a primary methylation target of HemK2. Furthermore, hemK2-GLKD leads to a significant reduction in mRNA levels in germline cell. These defects in oogenesis and protein synthesis can be partially restored by inhibiting the No-Go Decay pathway. In addition, hemK2 knockdown is associated with increased disome formation, suggesting that disruptions in eRF1 methylation may provoke ribosomal stalling, which subsequently activates translation-coupled mRNA surveillance mechanisms that degrade actively translated mRNAs. We propose that HemK2-mediated methylation of eRF1 is crucial for ensuring efficient protein production and mRNA stability, which are vital for the generation of high-quality eggs.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Oogénesis , Biosíntesis de Proteínas , Estabilidad del ARN , Animales , Oogénesis/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Estabilidad del ARN/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Femenino , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Apoptosis/genética , ARN Helicasas DEAD-box
4.
Bioessays ; 46(7): e2400058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38724251

RESUMEN

The genetic code is a set of instructions that determine how the information in our genetic material is translated into amino acids. In general, it is universal for all organisms, from viruses and bacteria to humans. However, in the last few decades, exceptions to this rule have been identified both in pro- and eukaryotes. In this review, we discuss the 16 described alternative eukaryotic nuclear genetic codes and observe theories of their appearance in evolution. We consider possible molecular mechanisms that allow codon reassignment. Most reassignments in nuclear genetic codes are observed for stop codons. Moreover, in several organisms, stop codons can simultaneously encode amino acids and serve as termination signals. In this case, the meaning of the codon is determined by the additional factors besides the triplets. A comprehensive review of various non-standard coding events in the nuclear genomes provides a new insight into the translation mechanism in eukaryotes.


Asunto(s)
Código Genético , Biosíntesis de Proteínas , ARN Mensajero , Código Genético/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas/genética , Animales , Codón de Terminación/genética , Núcleo Celular/genética , Evolución Molecular , Codón/genética , Eucariontes/genética
5.
Plant Cell Rep ; 43(4): 84, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448703

RESUMEN

KEY MESSAGE: The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.


Asunto(s)
Arabidopsis , Chrysanthemum , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Reproducción , Chrysanthemum/genética
6.
Plant Cell Environ ; 47(5): 1877-1894, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343027

RESUMEN

ETHYLENE RESPONSE FACTOR 1 (ERF1) plays an important role in integrating hormone crosstalk and stress responses. Previous studies have shown that ERF1 is unstable in the dark and its degradation is mediated by UBIQUITIN-CONJUGATING ENZYME 18. However, whether there are other enzymes regulating ERF1's stability remains unclear. Here, we use various in vitro and in vivo biochemical, genetic and stress-tolerance tests to demonstrate that both CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUMO-CONJUGATING ENZYME 1 (SCE1) regulate the stability of ERF1. We also performed transcriptomic analyses to understand their common regulatory pathways. We show that COP1 mediates ERF1 ubiquitination in the dark while SCE1 mediates ERF1 sumoylation in the light. ERF1 stability is positively regulated by SCE1 and negatively regulated by COP1. Upon abiotic stress, SCE1 plays a positive role in stress defence by regulating the expression of ERF1's downstream stress-responsive genes, whereas COP1 plays a negative role in stress response. Moreover, ERF1 also promotes photomorphogenesis and the expression of light-responsive genes. Our study reveals the molecular mechanism of how COP1 and SCE1 counteract to regulate ERF1's stability and light-stress signalling crosstalk.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Cell Rep ; 42(9): 113056, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37651229

RESUMEN

Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.


Asunto(s)
Fibrosis Quística , Biosíntesis de Proteínas , Humanos , Codón de Terminación/metabolismo , Codón sin Sentido , Ribosomas/metabolismo , Fibrosis Quística/genética
8.
Cell Rep ; 42(7): 112809, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37450369

RESUMEN

Abscisic acid (ABA) is involved in lateral root (LR) development, but how ABA signaling interacts with auxin signaling to regulate LR formation is not well understood. Here, we report that ABA-responsive ERF1 mediates the crosstalk between ABA and auxin signaling to regulate Arabidopsis LR emergence. ABI3 is a negative factor in LR emergence and transcriptionally activates ERF1 by binding to its promoter, and reciprocally, ERF1 activates ABI3, which forms a regulatory loop that enables rapid signal amplification. Notably, ABI3 physically interacts with ERF1, reducing the cis element-binding activities of both ERF1 and ABI3 and thus attenuating the expression of ERF1-/ABI3-regulated genes involved in LR emergence and ABA signaling, such as PIN1, AUX1, ARF7, and ABI5, which may provide a molecular rheostat to avoid overamplification of auxin and ABA signaling. Taken together, our findings identify the role of the ABI3-ERF1 module in mediating crosstalk between ABA and auxin signaling in LR emergence.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Terminación de Péptidos , Factores de Transcripción , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo
9.
Cell Rep ; 42(6): 112565, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224012

RESUMEN

Lateral roots (LRs) are crucial for plants to sense environmental signals in addition to water and nutrient absorption. Auxin is key for LR formation, but the underlying mechanisms are not fully understood. Here, we report that Arabidopsis ERF1 inhibits LR emergence by promoting local auxin accumulation with altered distribution and regulating auxin signaling. Loss of ERF1 increases LR density compared with the wild type, whereas ERF1 overexpression causes the opposite phenotype. ERF1 enhances auxin transport by upregulating PIN1 and AUX1, resulting in excessive auxin accumulation in the endodermal, cortical, and epidermal cells surrounding LR primordia. Furthermore, ERF1 represses ARF7 transcription, thereby downregulating the expression of cell-wall remodeling genes that facilitate LR emergence. Together, our study reveals that ERF1 integrates environmental signals to promote local auxin accumulation with altered distribution and repress ARF7, consequently inhibiting LR emergence in adaptation to fluctuating environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/genética , Factores de Transcripción/metabolismo
10.
J Biol Chem ; 298(7): 102133, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35700825

RESUMEN

The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3' contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3' stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3' nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3' nucleotides. Moreover, the efficiency of translation termination in weak 3' contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3' nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.


Asunto(s)
Nucleótidos , Biosíntesis de Proteínas , Animales , Codón de Terminación/genética , Codón de Terminación/metabolismo , Eucariontes/metabolismo , Humanos , Mamíferos/metabolismo , Nucleótidos/genética , Nucleótidos/metabolismo , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
11.
Mol Biol (Mosk) ; 56(3): 439-450, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35621100

RESUMEN

Human translational methyltransferase (methylase) HEMK2, whose orthologues are found in many prokaryotes and eukaryotes, methylates such diverse substrates as glutamine and lysine residues in proteins, deoxyadenosine in DNA, and arsenicals. One of the important substrate of HEMK2 methylase is a glutamine residue in the GGQ ultra-conservative motif of the eukaryotic release factor 1 (eRF1). Release factor methylation by HEMK2 orthologs is conserved among eukaryotes, archaea, and bacteria, although bacterial release factors differ in sequence and structure from eukaryotic ones. In this review, we consider the features of human HEMK2 methylase and its orthologs as multifunctional enzymes that regulate cellular processes, in particular, protein biosynthesis.


Asunto(s)
Glutamina , Metiltransferasas , Secuencia de Aminoácidos , Glutamina/química , Glutamina/genética , Glutamina/metabolismo , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
12.
Mol Biol (Mosk) ; 56(2): 206-226, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35403616

RESUMEN

The review discusses the role that proteins interacting with the translation termination factors eRF1 and eRF3 play in the control of protein synthesis and prionization. These proteins interact not only with each other, but also with many other proteins involved in controlling the efficiency of translation termination, and associate translation termination with other cell processes. The termination of translation is directly related not only to translation re-initiation and ribosome recycling, but also to mRNA stability and protein quality control. This connection is ensured by the interaction of eRF1 and eRF3 with proteins participating in various cell metabolic processes, such as mRNA transport from the nucleus into the cytoplasm (Dbp5/DDX19 and Gle1), ribosome recycling (Rli1/ABCE1), mRNA degradation (Upf proteins), and translation initiation (Pab1/PABP). In addition to genetic control, there is epigenetic control of translation termination. This mechanism is associated with prion polymerization of the Sup35 protein to form the [PSI^(+)] prion. The maintenance of the [PSI^(+)] prion, like other yeast prions, requires the operation of a system of molecular chaperones and protein sorting factors. The review considers in detail the interaction of the translation termination factors with proteins involved in various cellular processes.


Asunto(s)
Priones , Proteínas de Saccharomyces cerevisiae , ARN Helicasas DEAD-box/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Priones/genética , Priones/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Genes (Basel) ; 12(12)2021 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-34946968

RESUMEN

Protein synthesis (translation) is one of the fundamental processes occurring in the cells of living organisms. Translation can be divided into three key steps: initiation, elongation, and termination. In the yeast Saccharomyces cerevisiae, there are two translation termination factors, eRF1 and eRF3. These factors are encoded by the SUP45 and SUP35 genes, which are essential; deletion of any of them leads to the death of yeast cells. However, viable strains with nonsense mutations in both the SUP35 and SUP45 genes were previously obtained in several groups. The survival of such mutants clearly involves feedback control of premature stop codon readthrough; however, the exact molecular basis of such feedback control remain unclear. To investigate the genetic factors supporting the viability of these SUP35 and SUP45 nonsense mutants, we performed whole-genome sequencing of strains carrying mutant sup35-n and sup45-n alleles; while no common SNPs or indels were found in these genomes, we discovered a systematic increase in the copy number of the plasmids carrying mutant sup35-n and sup45-n alleles. We used the qPCR method which confirmed the differences in the relative number of SUP35 and SUP45 gene copies between strains carrying wild-type or mutant alleles of SUP35 and SUP45 genes. Moreover, we compare the number of copies of the SUP35 and SUP45 genes in strains carrying different nonsense mutant variants of these genes as a single chromosomal copy. qPCR results indicate that the number of mutant gene copies is increased compared to the wild-type control. In case of several sup45-n alleles, this was due to a disomy of the entire chromosome II, while for the sup35-218 mutation we observed a local duplication of a segment of chromosome IV containing the SUP35 gene. Taken together, our results indicate that gene amplification is a common mechanism of adaptation to nonsense mutations in release factor genes in yeast.


Asunto(s)
Amplificación de Genes , Factores de Terminación de Péptidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Adaptación Fisiológica , Cromosomas Fúngicos/genética , Codón sin Sentido , Saccharomyces cerevisiae/genética , Secuenciación Completa del Genoma
14.
Front Genet ; 12: 750761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721538

RESUMEN

APETALA2/ethylene response element-binding factor (AP2/ERF) transcription factors (TFs) have been found to regulate plant growth and development and response to various abiotic stresses. However, detailed information of AP2/ERF genes in peanut against drought has not yet been performed. Herein, 185 AP2/ERF TF members were identified from the cultivated peanut (A. hypogaea cv. Tifrunner) genome, clustered into five subfamilies: AP2 (APETALA2), ERF (ethylene-responsive-element-binding), DREB (dehydration-responsive-element-binding), RAV (related to ABI3/VP), and Soloist (few unclassified factors)). Subsequently, the phylogenetic relationship, intron-exon structure, and chromosomal location of AhAP2/ERF were further characterized. All of these AhAP2/ERF genes were distributed unevenly across the 20 chromosomes, and 14 tandem and 85 segmental duplicated gene pairs were identified which originated from ancient duplication events. Gene evolution analysis showed that A. hypogaea cv. Tifrunner were separated 64.07 and 66.44 Mya from Medicago truncatula L. and Glycine max L., respectively. Promoter analysis discovered many cis-acting elements related to light, hormones, tissues, and stress responsiveness process. The protein interaction network predicted the exitance of functional interaction among families or subgroups. Expression profiles showed that genes from AP2, ERF, and dehydration-responsive-element-binding subfamilies were significantly upregulated under drought stress conditions. Our study laid a foundation and provided a panel of candidate AP2/ERF TFs for further functional validation to uplift breeding programs of drought-resistant peanut cultivars.

15.
RNA Biol ; 18(sup2): 804-817, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34793288

RESUMEN

Nsp1 of SARS-CoV-2 regulates the translation of host and viral mRNAs in cells. Nsp1 inhibits host translation initiation by occluding the entry channel of the 40S ribosome subunit. The structural study of the Nsp1-ribosomal complexes reported post-termination 80S complex containing Nsp1, eRF1 and ABCE1. Considering the presence of Nsp1 in the post-termination 80S ribosomal complex, we hypothesized that Nsp1 may be involved in translation termination. Using a cell-free translation system and reconstituted in vitro translation system, we show that Nsp1 stimulates peptide release and formation of termination complexes. Detailed analysis of Nsp1 activity during translation termination stages reveals that Nsp1 facilitates stop codon recognition. We demonstrate that Nsp1 stimulation targets eRF1 and does not affect eRF3. Moreover, Nsp1 increases amount of the termination complexes at all three stop codons. The activity of Nsp1 in translation termination is provided by its N-terminal domain and the minimal required part of eRF1 is NM domain. We assume that the biological meaning of Nsp1 activity in translation termination is binding with the 80S ribosomes translating host mRNAs and remove them from the pool of the active ribosomes.


Asunto(s)
Biosíntesis de Proteínas , SARS-CoV-2 , Proteínas no Estructurales Virales/fisiología , Animales , Sistema Libre de Células , Codón de Terminación/metabolismo , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Mutación , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , Conejos , Ribosomas/metabolismo
16.
J Biol Chem ; 297(5): 101269, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606825

RESUMEN

Programmed cell death 4 protein (PDCD4) regulates many vital cell processes, although is classified as a tumor suppressor because it inhibits neoplastic transformation and tumor growth. For example, PCDC4 has been implicated in the regulation of transcription and mRNA translation. PDCD4 is known to inhibit translation initiation by binding to eukaryotic initiation factor 4A and elongation of oncogenic c- and A-myb mRNAs. Additionally, PDCD4 has been shown to interact with poly(A)-binding protein (PABP), which affects translation termination, although the significance of this interaction is not fully understood. Considering the interaction between PABP and PDCD4, we hypothesized that PDCD4 may also be involved in translation termination. Using in vitro translation systems, we revealed that PDCD4 directly activates translation termination. PDCD4 stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the PABP, which also stimulates peptide release, PDCD4 activity in translation termination increases. PDCD4 regulates translation termination by facilitating the binding of release factors to the ribosome, increasing the GTPase activity of eRF3, and dissociating eRF3 from the posttermination complex. Using a toe-printing assay, we determined the first stage at which PDCD4 functions-binding of release factors to the A-site of the ribosome. However, preventing binding of eRF3 with PABP, PDCD4 suppresses subsequent rounds of translation termination. Based on these data, we assumed that human PDCD4 controls protein synthesis during translation termination. The described mechanism of the activity of PDCD4 in translation termination provides a new insight into its functioning during suppression of protein biosynthesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sistema Libre de Células/metabolismo , Humanos , Factores de Terminación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo
17.
Front Mol Neurosci ; 13: 103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581712

RESUMEN

The modification of methyltransferase-like (METTL) enzymes plays important roles in various cellular responses by regulating microRNA expression. However, how m6A modification is involved in stress granule (SG) formation in the early stage of acute ischemic stroke by affecting the biogenesis processing of microRNAs remains unclear. Here, we established a middle cerebral artery occlusion (MCAO) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in primary cortical neurons and PC12 cells to explore the potential mechanism between m6A modification and SG formation. The in vivo results showed that the level of infarction and apoptosis increased while SG formation decreased significantly within the ischemic cortex with improved reperfusion time after 2 h of ischemia. Consistent with the in vivo data, an inverse association between the apoptosis level and SG formation was observed in PC12 cells during the reperfusion period after 6 h of OGD stimulation. Both in vivo and in vitro results showed that the expression of METTL3 protein, m6A and miR-335 was significantly decreased with the reperfusion period. Overexpression of the METTL3 and METTL3 gene-knockdown in PC12 cells were achieved via plasmid transfection and CRISPR-Cas9 technology, respectively. Overexpression or knockdown of METTL3 in oxygen-glucose deprivation of PC12 cells resulted in functional maturation of miR-335, SG formation and apoptosis levels. In addition, we found that miR-335 enhanced SG formation through degradation of the mRNA of the eukaryotic translation termination factor (Erf1). In conclusion, we found that METTL3-mediated m6A methylation increases the maturation of miR-335, which promotes SG formation and reduces the apoptosis level of injury neurons and cells, and provides a potential therapeutic strategy for AIS.

18.
Biomolecules ; 10(6)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560154

RESUMEN

Translation termination is the final step in protein biosynthesis when the synthesized polypeptide is released from the ribosome. Understanding this complex process is important for treatment of many human disorders caused by nonsense mutations in important genes. Here, we present a new method for the analysis of translation termination rate in cell-free systems, CTELS (for C-terminally extended luciferase-based system). This approach was based on a continuously measured luciferase activity during in vitro translation reaction of two reporter mRNA, one of which encodes a C-terminally extended luciferase. This extension occupies a ribosomal polypeptide tunnel and lets the completely synthesized enzyme be active before translation termination occurs, i.e., when it is still on the ribosome. In contrast, luciferase molecule without the extension emits light only after its release. Comparing the translation dynamics of these two reporters allows visualization of a delay corresponding to the translation termination event. We demonstrated applicability of this approach for investigating the effects of cis- and trans-acting components, including small molecule inhibitors and read-through inducing sequences, on the translation termination rate. With CTELS, we systematically assessed negative effects of decreased 3' UTR length, specifically on termination. We also showed that blasticidin S implements its inhibitory effect on eukaryotic translation system, mostly by affecting elongation, and that an excess of eRF1 termination factor (both the wild-type and a non-catalytic AGQ mutant) can interfere with elongation. Analysis of read-through mechanics with CTELS revealed a transient stalling event at a "leaky" stop codon context, which likely defines the basis of nonsense suppression.


Asunto(s)
Bioensayo/métodos , Codón sin Sentido , Tasa de Mutación , Terminación de la Cadena Péptídica Traduccional/genética , Sistema Libre de Células/fisiología , Codón de Terminación/genética , Análisis Mutacional de ADN , Genes Reporteros , Humanos , Técnicas In Vitro , Luciferasas/genética , Luciferasas/metabolismo , Terminación de la Cadena Péptídica Traduccional/fisiología , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/genética
19.
Neuron ; 106(1): 90-107.e13, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32059759

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide repeat expansion in C9orf72 (C9-HRE). While RNA and dipeptide repeats produced by C9-HRE disrupt nucleocytoplasmic transport, the proteins that become redistributed remain unknown. Here, we utilized subcellular fractionation coupled with tandem mass spectrometry and identified 126 proteins, enriched for protein translation and RNA metabolism pathways, which collectively drive a shift toward a more cytosolic proteome in C9-HRE cells. Among these was eRF1, which regulates translation termination and nonsense-mediated decay (NMD). eRF1 accumulates within elaborate nuclear envelope invaginations in patient induced pluripotent stem cell (iPSC) neurons and postmortem tissue and mediates a protective shift from protein translation to NMD-dependent mRNA degradation. Overexpression of eRF1 and the NMD driver UPF1 ameliorate C9-HRE toxicity in vivo. Our findings provide a resource for proteome-wide nucleocytoplasmic alterations across neurodegeneration-associated repeat expansion mutations and highlight eRF1 and NMD as therapeutic targets in C9orf72-associated ALS and/or FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Drosophila/genética , Demencia Frontotemporal/genética , Neuronas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Factores de Terminación de Péptidos/genética , ARN Mensajero/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/metabolismo , Fraccionamiento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Membrana Nuclear , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteoma , Fracciones Subcelulares , Espectrometría de Masas en Tándem
20.
Plant Sci ; 281: 223-231, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30824055

RESUMEN

Prolamines are alcohol-soluble proteins classified as either cysteine-poor (CysP) or cysteine-rich (CysR) based on whether they can be alcohol-extracted without or with reducing agents, respectively. In rice esp1 mutants, various CysP prolamines exhibit both reduced and normal amounts of isoelectric focusing bands, indicating that the mutation affects only certain prolamine classes. To examine the genetic regulation of CysP prolamine synthesis and accumulation, we constructed a high-resolution genetic linkage map of ESP1. The ESP1 gene was mapped to within a 20 kb region on rice chromosome 7. Sequencing analysis of annotated genes in this region revealed a single-nucleotide polymorphism within eukaryotic peptide chain release factor (eRF1), which participates in stop-codon recognition and nascent-polypeptide release from ribosomes during translation. A subsequent complementation test revealed that ESP1 encodes eRF1. We also identified UAA as the stop codon of CysP prolamines with reduced concentration in esp1 mutants. Recognition assays and microarray analysis confirmed that ESP1/eRF1 recognizes UAA/UAG, but not UGA. Our results provide convincing evidence that ESP1/eRF1 participates in the translation termination of CysP prolamines during seed development.


Asunto(s)
Endospermo/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Codón de Terminación/genética , Codón de Terminación/metabolismo , Endospermo/genética , Ligamiento Genético/genética , Ligamiento Genético/fisiología , Mutación/genética , Oryza/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA