Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Intervalo de año de publicación
1.
Animals (Basel) ; 14(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39199825

RESUMEN

Avian botulism is a paralytic disease due to the ingestion of botulinum neurotoxins (BoNT) produced by anaerobic, sporigenic bacteria (notably, Clostridium botulinum). Wild waterbirds worldwide are affected with variable recurrence and severity, and organic material decaying in wetland habitats may constitute a suitable substrate for the replication of clostridia strains producing BoNT in conditions of high temperatures and the absence of oxygen. Here, we describe a large outbreak of avian botulism that occurred in the Valle Mandriole protected area of northeastern Italy (VM). After the recovery in late summer of a few duck carcasses that molecularly tested positive for BoNT-producing clostridia, in October 2019, the avian botulism escalation led to a total of 2367 birds being recovered (2158 carcasses and 209 sick birds). Among these, 2365/2367 were waterbirds, with ducks accounting for 91.8% of the total (2173/2367) and green-winged teals representing 93.5% of the ducks. After the quick collection of dead and sick birds (from 4 to 11 October 2019) and the flooding of the VM wetland (from 5 to 12 October 2019), the 2019 botulism emergency apparently ended. Following two water inputs in May and July 2020, only one pooled sample obtained from 16 bird carcasses found that year in VM tested positive for clostridia type C by real-time PCR, whereas, after to the implementation of measures deterring the bird's presence, new avian botulism cases-due to clostridia type C and C/D, according to molecular and animal-model tests of confirmation-led to the collection of 176 waterbirds (82 carcasses and 94 sick ducks) and 16 waterbirds (9 carcasses and 7 sick ducks) in the summers 2021 and 2022, respectively. In conclusion, the prevention, management, and control of the disease rely on habitat management, the quick and careful collection/removal of animal carcasses, and the regular monitoring and surveillance of live and dead birds.

2.
Mar Environ Res ; 198: 106517, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657369

RESUMEN

Estuarine mangroves are often considered nurseries for the Atlantic Goliath grouper juveniles. Yet, the contributions of different estuarine primary producers and habitats as sources of organic matter during early ontogenetic development remain unclear. Given the species' critically endangered status and protection in Brazil, obtaining biological samples from recently settled recruits in estuaries is challenging. In this study, we leveraged a local partnership with fishers and used stable isotope (C and N) profiles from the eye lenses of stranded individuals or incidentally caught by fishery to reconstruct the trophic and habitat changes of small juveniles. The eye lens grows by the apposition of protein-rich layers. Once these layers are formed, they become inert, allowing to make inferences on the trophic ecology and habitat use along the development of the individual until its capture. We used correlations between fish size and the entire eye lens size, along with estuarine baselines, to reconstruct the fish size and trophic positions for each of the lens layers obtained. We then used dominant primary producers and basal sources from mangrove sheltered, exposed estuarine and marine habitats to construct an ontogenetic model of trophic and habitat support changes since maternal origins. Our model revealed marine support before the juveniles reached 25 mm (standard length), followed by a rapid increase in reliance on mangrove sheltered sources, coinciding with the expected size at settlement. After reaching 60 mm, individuals began to show variability. Some remained primarily supported by the mangrove sheltered area, while others shifted to rely more on the exposed estuarine area around 150 mm. Our findings indicate that while mangroves are critical for settlement, as Goliath grouper juveniles grow, they can utilize organic matter produced throughout the estuary. This underscores the need for conservation strategies that focus on seascape connectivity, as protecting just one discrete habitat may not be sufficient to preserve this endangered species and safeguard its ecosystem functions.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Cristalino , Animales , Cristalino/crecimiento & desarrollo , Brasil , Estuarios , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Lubina/fisiología , Lubina/crecimiento & desarrollo , Cadena Alimentaria , Monitoreo del Ambiente
3.
Mar Environ Res ; 192: 106190, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820479

RESUMEN

To preserve marine biodiversity, we need reliable early warning indicators that inform changes in marine ecosystems. As reliable samplers of mid-trophic level communities, studying the trophodynamics of large pelagic fish can contribute to monitoring these changes. Here, we combined stomach content and stable isotope analyses to reconstruct the diet of juvenile swordfish (Xiphias gladius) in the northwestern Mediterranean Sea, in a time-lapse of almost a decade (2012 and 2020). Overall, our study showed that swordfish fed on a wide range of fish and cephalopod species from both pelagic and demersal habitats. A dietary shift towards increasing consumption of cephalopods and decreasing consumption of Gadiformes had been observed between 2012 and 2020. Stable isotope approaches revealed that gelatinous organisms were also important prey, particularly for smaller-sized swordfish. We underline the importance of combining multiple and complementary approaches to better reconstruct the diet of generalist species. Our findings highlight the generalist and opportunistic diet of Mediterranean swordfish, which makes them good candidates for monitoring changes in the ecosystem.


Asunto(s)
Ecosistema , Perciformes , Animales , Mar Mediterráneo , Peces , Dieta , Isótopos
4.
Mar Environ Res ; 192: 106195, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769556

RESUMEN

Atlantification, known as impacts of high-latitude Atlantic water inflows on the Arctic Ocean has strengthened owing to climate change, corresponding to the rapid ice retreat in the Arctic. The relationship between phytoplankton and environmental changes in the Arctic on the interannual scale is unclear because of the lack of long-time series data. In this study, we discuss the ecological response to Atlantic water intrusion in the Kongsfjorden,Svalbard. We measured chlorophyll a and photosynthesis pigments for the water column samples from a fixed section along the Kongsfjorden to study the response of phytoplankton biomass and communities to Atlantic water intrusion in the summer season from 2007 to 2018. The results showed that dinoflagellates, prasinophytes, cryptophytes, and chlorophytes consistently accounted for over 50% of the total biomass, with the distinct annual variation of chlorophyll a. Bioavailable nitrogen was the main limiting factor on phytoplankton growth in the study area, as inferred by its concentration and nutrients ratios. The relationship between phytoplankton and water mass analysis suggested that the intrusion of Atlantic water in Kongsfjorden may cause interannual variability of the phytoplankton biomass and community structure by influencing the nutrient supply and water stratification in the fjord region. Our study provides insights into the ongoing impact of Atlantification on the phytoplankton community in the Arctic fjord.


Asunto(s)
Fitoplancton , Agua , Svalbard , Clorofila A , Estaciones del Año , Regiones Árticas
5.
Mar Environ Res ; 189: 106026, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295308

RESUMEN

This study aimed to investigate the impact of changing environmental conditions on MMI ES in seagrasses and mangroves. We used data from satellite and biodiversity platforms combined with field data to explore the links between ecosystem pressures (habitat conversion, overexploitation, climate change), conditions (environmental quality, ecosystem attributes), and MMI ES (provisioning, regulation, cultural). Both seagrass and mangrove extents increased significantly since 2016. While sea surface temperature showed no significant annual variation, sea surface partial pressure CO2, height above sea level and pH presented significant changes. Among the environmental quality variables only silicate, PO4 and phytoplankton showed significant annual varying trends. The MMI food provisioning increased significantly, indicating overexploitation that needs urgent attention. MMI regulation and cultural ES did not show significant trends overtime. Our results show that MMI ES are affected by multiple factors and their interactions can be complex and non-linear. We identified key research gaps and suggested future directions for research. We also provided relevant data that can support future ES assessments.


Asunto(s)
Biodiversidad , Ecosistema , Fitoplancton , Temperatura , Cambio Climático
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220271, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37246384

RESUMEN

Africa is experiencing extensive biodiversity loss due to rapid changes in the environment, where natural resources constitute the main instrument for socioeconomic development and a mainstay source of livelihoods for an increasing population. Lack of data and information deficiency on biodiversity, but also budget constraints and insufficient financial and technical capacity, impede sound policy design and effective implementation of conservation and management measures. The problem is further exacerbated by the lack of harmonized indicators and databases to assess conservation needs and monitor biodiversity losses. We review challenges with biodiversity data (availability, quality, usability and database access) as a key limiting factor that impacts funding and governance. We also evaluate the drivers of both ecosystems change and biodiversity loss as a central piece of knowledge to develop and implement effective policies. While the continent focuses more on the latter, we argue that the two are complementary in shaping restoration and management solutions. We thus underscore the importance of establishing monitoring programmes focusing on biodiversity-ecosystem linkages in order to inform evidence-based decisions in ecosystem conservation and restoration in Africa. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , África
7.
Glob Chang Biol ; 29(15): 4212-4233, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37058084

RESUMEN

The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.


Asunto(s)
Ecosistema , Gadiformes , Animales , Larva , Peces/fisiología , Océanos y Mares , Regiones Árticas
8.
Mol Ecol ; 32(23): 6345-6362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36086900

RESUMEN

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.


Asunto(s)
Código de Barras del ADN Taxonómico , Ecosistema , Código de Barras del ADN Taxonómico/métodos , Polen/genética , Plantas/genética , ADN , Polinización/genética
9.
Glob Chang Biol ; 29(4): 943-954, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333958

RESUMEN

Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Humanos , Adaptación Fisiológica/genética , Genómica , Biodiversidad , Evolución Biológica
10.
Mar Environ Res ; 178: 105645, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35644076

RESUMEN

To construct robust biogeochemical models for application to marine-based aquaculture settings, careful selection of appropriate model parameters is necessary. This study used an experimental approach to establish biomarkers of farm and marine-derived organic matter, and to derive isotopic turnover rates, and trophic discrimination factors specific to aquaculture associated food webs. A shift towards a farm-derived resource base resulted in consumer tissues more depleted in the carbon-13 isotope (indicated by more negative δ13C values) and a higher proportion of oleic acid, linoleic acid, and alpha-linoleic acid in the fatty acid profile of consumers over time. Measured trophic discrimination factors between dietary sources and consumer tissues demonstrated high variability among species and tissue types, ranging from -0.25‰ to 0.82‰ for Δ13C and from -0.77‰ to 6.8‰ for Δ15N. Stable isotope half-lives were also diverse among species and tissue types, ranging from <7 days to 462 days. Results demonstrated that construction of robust models for tracing assimilation of farm-derived organic matter through marine food webs requires the use of taxa and tissue specific parameters. Turnover rates have applications for understanding assimilative capacity of communities and for managing populations within the ecological footprint of farms.


Asunto(s)
Cadena Alimentaria , Ácido Linoleico , Acuicultura , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis
11.
Animals (Basel) ; 12(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35625082

RESUMEN

Fibropapillomatosis is a neoplastic disease of marine turtles, with green turtles (Chelonia mydas) being the most affected species. Fibropapillomatosis causes debilitating tumor growths on soft tissues and internal organs, often with lethal consequences. Disease incidence has been increasing in the last few decades and the reason is still uncertain. The potential viral infectious agent of Fibropapillomatosis, chelonid herpesvirus 5, has been co-evolving with its sea turtle host for millions of years and no major mutation linked with increased disease occurrence has been detected. Hence, frequent outbreaks in recent decades are likely attributable to external drivers such as large-scale anthropogenic changes in the green turtle coastal marine ecosystem. This study found that variations in sea surface temperature, salinity, and nutrient effluent discharge from nearby rivers were correlated with an increased incidence of the disease, substantiating that these may be among the significant environmental drivers impacting Fibropapillomatosis prevalence. This study offers data and insight on the need to establish a baseline of environmental factors which may drive Fibropapillomatosis and its clinical exacerbation. We highlight the multifactorial nature of this disease and support the inclusion of interdisciplinary work in future Fibropapillomatosis research efforts.

12.
Mar Environ Res ; 177: 105623, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35447483

RESUMEN

Proliferations of zoantharians along tropical and subtropical regions are increasingly common and usually associated with anthropogenic impacts and ecosystem degradation. In the Canary Islands, we studied how the dominance in the substrate of Palythoa caribaeorum and Zoanthus pulchellus affected fish communities. For that purpose, we recorded the composition and biodiversity of fish assemblages associated to both zoantharian and macroalgae dominated habitats. In general terms, we found significant reductions of total fish abundance and richness at P. caribaeorum dominated habitats compared with macroalgae stands. However, in terms of trophic structure, there were significant changes within both zoantharian habitats depending on their coverages of the substrate. Herbivores and small invertebrate feeders, which are more adapted to forage in the macroalgae canopy, were less abundant in zoantharian habitats. This study demonstrates that the increasing dominance of zoantharians throughout the archipelago restructure the ecosystems and impact the native fish communities, that may offer a positive feedback for invasive tropical species to thrive.


Asunto(s)
Antozoos , Algas Marinas , Animales , Biodiversidad , Arrecifes de Coral , Ecosistema , Peces , Especies Introducidas , España
13.
Glob Chang Biol ; 28(9): 2979-2990, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35195322

RESUMEN

The assessment of climate impact on marine communities dwelling deeper than the well-studied shelf seas has been hampered by the lack of long-term data. For a long time, the prevailing expectation has been that thermal stability in deep ocean layers will delay ecosystem responses to warming. Few observational studies have challenged this view and indicated that deep organisms can respond exceptionally fast to physical change at the sea surface. To address the depth-specific impact of climate change, we investigated spatio-temporal changes in fish community structure along a bathymetry gradient of 150-1500 m between 1998 and 2016 in East Greenland. Here, the Arctic East Greenland Current and the Atlantic Irminger Current meet and mix, representing a sub-Arctic transition zone. We found the strongest signals of community reorganizations at depths between 350 and 1000 m and only weak responses in the shallowest and deepest regions. Changes were in synchrony with atmospheric warming, loss in sea ice and variability in physical sea surface conditions both within our study region and North of the Denmark Strait. These results suggest that interannual variability and long-term climate trends of the larger ecoregion can rapidly affect fish communities down to 1000-m depth through atmospheric ocean coupling and food web interactions.


Asunto(s)
Ecosistema , Cubierta de Hielo , Animales , Regiones Árticas , Cambio Climático , Peces , Océanos y Mares
14.
Glob Chang Biol ; 28(9): 2930-2939, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35100483

RESUMEN

Forest and savanna ecosystems naturally exist as alternative stable states. The maximum capacity of these ecosystems to absorb perturbations without transitioning to the other alternative stable state is referred to as 'resilience'. Previous studies have determined the resilience of terrestrial ecosystems to hydroclimatic changes predominantly based on space-for-time substitution. This substitution assumes that the contemporary spatial frequency distribution of ecosystems' tree cover structure holds across time. However, this assumption is problematic since ecosystem adaptation over time is ignored. Here we empirically study tropical forests' stability and hydroclimatic adaptation dynamics by examining remotely sensed tree cover change (ΔTC; aboveground ecosystem structural change) and root zone storage capacity (Sr ; buffer capacity towards water-stress) over the last two decades. We find that ecosystems at high (>75%) and low (<10%) tree cover adapt by instigating considerable subsoil investment, and therefore experience limited ΔTC-signifying stability. In contrast, unstable ecosystems at intermediate (30%-60%) tree cover are unable to exploit the same level of adaptation as stable ecosystems, thus showing considerable ΔTC. Ignoring this adaptive mechanism can underestimate the resilience of the forest ecosystems, which we find is largely underestimated in the case of the Congo rainforests. The results from this study emphasise the importance of the ecosystem's temporal dynamics and adaptation in inferring and assessing the risk of forest-savannah transitions under rapid hydroclimatic change.


Asunto(s)
Ecosistema , Bosques , Aclimatación , Adaptación Fisiológica , Árboles
15.
Glob Chang Biol ; 28(3): 918-935, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719077

RESUMEN

Rapid climate change is impacting biodiversity, ecosystem function, and human well-being. Though the magnitude and trajectory of climate change are becoming clearer, our understanding of how these changes reshape terrestrial life zones-distinct biogeographic units characterized by biotemperature, precipitation, and aridity representing broad-scale ecosystem types-is limited. To address this gap, we used high-resolution historical climatologies and climate projections to determine the global distribution of historical (1901-1920), contemporary (1979-2013), and future (2061-2080) life zones. Comparing the historical and contemporary distributions shows that changes from one life zone to another during the 20th century impacted 27 million km2 (18.3% of land), with consequences for social and ecological systems. Such changes took place in all biomes, most notably in Boreal Forests, Temperate Coniferous Forests, and Tropical Coniferous Forests. Comparing the contemporary and future life zone distributions shows the pace of life zone changes accelerating rapidly in the 21st century. By 2070, such changes would impact an additional 62 million km2 (42.6% of land) under "business-as-usual" (RCP8.5) emissions scenarios. Accelerated rates of change are observed in hundreds of ecoregions across all biomes except Tropical Coniferous Forests. While only 30 ecoregions (3.5%) had over half of their areas change to a different life zone during the 20th century, by 2070 this number is projected to climb to 111 ecoregions (13.1%) under RCP4.5 and 281 ecoregions (33.2%) under RCP8.5. We identified weak correlations between life zone change and threatened vertebrate richness, levels of vertebrate endemism, cropland extent, and human population densities within ecoregions, illustrating the ubiquitous risks of life zone changes to diverse social-ecological systems. The accelerated pace of life zone changes will increasingly challenge adaptive conservation and sustainable development strategies that incorrectly assume current ecological patterns and livelihood provisioning systems will persist.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biodiversidad , Bosques , Humanos , Vertebrados
16.
Glob Chang Biol ; 28(1): 72-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669231

RESUMEN

Marine and freshwater ecosystems are increasingly at risk of large and cascading changes from multiple human activities (termed "regime shifts"), which can impact population productivity, resilience, and ecosystem structure. Pacific salmon exhibit persistent and large fluctuations in their population dynamics driven by combinations of intrinsic (e.g., density dependence) and extrinsic factors (e.g., ecosystem changes, species interactions). In recent years, many Pacific salmon have declined due to regime shifts but clear understanding of the processes driving these changes remains elusive. Here, we unpacked the role of density dependence, ecosystem trends, and stochasticity on productivity regimes for a community of five anadromous Pacific salmonids (Steelhead, Coho Salmon, Pink Salmon, Dolly Varden, and Coastal Cutthroat Trout) across a rich 40-year time-series. We used a Bayesian multivariate state-space model to examine whether productivity shifts had similarly occurred across the community and explored marine or freshwater changes associated with those shifts. Overall, we identified three productivity regimes: an early regime (1976-1990), a compensatory regime (1991-2009), and a declining regime (since 2010) where large declines were observed for Steelhead, Dolly Varden, and Cutthroat Trout, intermediate declines in Coho and no change in Pink Salmon. These regime changes were associated with multiple cumulative effects across the salmon life cycle. For example, increased seal densities and ocean competition were associated with lower adult marine survival in Steelhead. Watershed logging also intensified over the past 40 years and was associated with (all else equal) ≥97% declines in freshwater productivity for Steelhead, Cutthroat, and Coho. For Steelhead, marine and freshwater dynamics played approximately equal roles in explaining trends in total productivity. Collectively, these changing environments limited juvenile production and lowered future adult returns. These results reveal how changes in freshwater and marine environments can jointly shape population dynamics among ecological communities, like Pacific salmon, with cascading consequences to their resilience.


Asunto(s)
Ecosistema , Oncorhynchus mykiss , Animales , Teorema de Bayes , Agua Dulce , Humanos , Salmón
17.
Mar Environ Res ; 173: 105529, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34800869

RESUMEN

Kelp detritus fuels coastal food webs and may play an important role as a source of organic matter for natural carbon sequestration. Here, we conducted ex situ and in situ manipulations to evaluate the role of temperature and light availability in the breakdown of detrital material. We examined degradation rates of two North Atlantic species with contrasting thermal affinities: the 'warm water' kelp Laminaria ochroleuca and the 'cool water' Laminaria hyperborea. Detrital fragments were exposed to different temperatures in controlled conditions and across an in situ gradient of depth, corresponding to light availability. Overall, degradation rates (i.e. changes in Fv/Fm and biomass) were faster under lower light conditions and at higher temperatures, although responses were highly variable between plants and fragments. Crucially, as L. ochroleuca degraded faster than L. hyperborea under some conditions, a climate-driven substitution of the 'cool' for the 'warm' kelp, which has been observed at some locations, will likely increase detritus turnover rates and alter detrital pathways in certain environments. More importantly, ocean warming combined with decreased coastal water quality will likely accelerate kelp detritus decomposition, with potential implications for coastal food webs and carbon cycles.


Asunto(s)
Kelp , Ciclo del Carbono , Ecosistema , Cadena Alimentaria , Temperatura
18.
Mar Environ Res ; 170: 105406, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34293607

RESUMEN

Local disturbances drive the decrease of the area covered by Posidonia oceanica in the Mediterranean. Mechanical impacts during the development of coastal infrastructures alter sea floor and the recolonization of benthic community will depend on the recovery of pre-disturbance environmental conditions and on the intrinsic characteristics of the local community that was disturbed. We transplanted 468 rhizome fragments and 450 seedlings of P. oceanica in a meadow disturbed by the trenching and deployment of a power line to evaluate the suitability of the disturbed sea floor for rehabilitating P. oceanica meadows. We quantify and compare the survivorship and vegetative development of the transplanted/planted (i.e. fragments/seedlings) material in the two types of the unconsolidated substrata left after infrastructure deployment works finished: sand and burlap bags filled with coarse gravel. The latter was used as a corrective measure for topographic restoration. Three experimental plots with sixteen transplanted fragments or twenty-five seedlings were placed at each substratum type at three different depths (i.e. 15, 20 and 25 m). Our results show that the transplanting of P. oceanica rhizome fragments in the disturbed substrata had low survival rates (0-31%) after 40-48 months. The survivorship of seedlings was lower than that of fragments. Our results highlight the importance of substratum for P. oceanica recovery after mechanical impact; disturbed, non-consolidated substrata will preclude P. oceanica rehabilitation through planting. Preservation of meadow substratum (i.e. dead matte) is a critical element that coastal infrastructure projects should consider to enable future recovery of P. oceanica meadows.


Asunto(s)
Alismatales , Entierro , Ecosistema , Mar Mediterráneo
19.
Front Plant Sci ; 12: 629962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747011

RESUMEN

The spatial extent of seagrass is poorly mapped, and knowledge of historical loss is limited. Here, we collated empirical and qualitative data using systematic review methods to provide unique analysis on seagrass occurrence and loss in the United Kingdom. We document 8,493 ha of recently mapped seagrass in the United Kingdom since 1998. This equates to an estimated 0.9 Mt of carbon, which, in the current carbon market represents about £22 million. Using simple models to estimate seagrass declines triangulated against habitat suitability models, we provide evidence of catastrophic seagrass loss; at least 44% of United Kingdom's seagrasses have been lost since 1936, 39% since the 1980's. However, losses over longer time spans may be as high as 92%. Based on these estimates, historical seagrass meadows could have stored 11.5 Mt of carbon and supported approximately 400 million fish. Our results demonstrate the vast scale of losses and highlight the opportunities to restore seagrass to support a range of ecosystems services.

20.
Biol Rev Camb Philos Soc ; 96(1): 89-106, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32869448

RESUMEN

The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.


Asunto(s)
Ecosistema , Lagos , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA