Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecosystems ; 26(8): 1819-1840, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106357

RESUMEN

Complex links between biotic and abiotic constituents are fundamental for the functioning of ecosystems. Although non-monotonic interactions and associations are known to increase the stability, diversity, and productivity of ecosystems, they are frequently ignored by community-level standard statistical approaches. Using the copula-based dependence measure qad, capable of quantifying the directed and asymmetric dependence between variables for all forms of (functional) relationships, we determined the proportion of non-monotonic associations between different constituents of an ecosystem (plants, bacteria, fungi, and environmental parameters). Here, we show that up to 59% of all statistically significant associations are non-monotonic. Further, we show that pairwise associations between plants, bacteria, fungi, and environmental parameters are specifically characterized by their strength and degree of monotonicity, for example, microbe-microbe associations are on average stronger than and differ in degree of non-monotonicity from plant-microbe associations. Considering directed and non-monotonic associations, we extended the concept of ecosystem coupling providing more complete insights into the internal order of ecosystems. Our results emphasize the importance of ecological non-monotonicity in characterizing and understanding ecosystem patterns and processes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-023-00867-9.

2.
Curr Biol ; 33(20): 4538-4547.e5, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37757832

RESUMEN

Human activities cause substantial changes in biodiversity.1,2 Despite ongoing concern about the implications of invertebrate decline,3,4,5,6,7 few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.e., vegetation associated) invertebrate community biomass (100%, 36%, and 0% of ambient biomass) in experimental grassland mesocosms in a controlled Ecotron facility. In line with recent reports on invertebrate biomass loss over the last decade, our 36% biomass treatment also represented a decrease in invertebrate abundance (-70%) and richness (-44%). Moreover, we simulated the pronounced change in invertebrate biomass and turnover in community composition across the season. We found that the loss of invertebrate biomass decreases ecosystem multifunctionality, including two critical ecosystem services, aboveground pest control and belowground decomposition, while harvested plant biomass increases, likely because less energy was channeled up the food chain. Moreover, communities and ecosystem functions become decoupled with a lower biomass of invertebrates. Our study shows that invertebrate loss threatens the integrity of grasslands by decoupling ecosystem processes and decreasing ecosystem-service supply.


Asunto(s)
Ecosistema , Invertebrados , Animales , Humanos , Biomasa , Biodiversidad , Plantas , Suelo
3.
Front Plant Sci ; 13: 839920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35317014

RESUMEN

Most alpine meadow on the Tibetan Plateau are at different stages of community succession induced by grazing practices. Quantifying the succession sequence and assessing the dynamics of plant composition, ecosystem coupling, and multifunctionality across successional stages are essential for reasonable restoration of degraded alpine meadow. Here, we selected areas with different grazing disturbance histories and used them as a space series (i.e., space-for-time substitution) to study the community succession. Our work quantified the plant succession sequence of alpine meadow induced by grazing with plant functional group approach. The plant succession sequence is from the tall sedge community with erect growth to the short undesirable toxic forbs community with prostrate growth. Ecosystem coupling, ecosystem multifunctionality and their relationships were all the lowest in Stage 4. Compared to Stage 4, the ecosystem multifunctionality index increased in Stages 1, 2, and 3 by 102.6, 89.8, and 207.6%, respectively; the extent of ecosystem coupling increased by 20.0, 16.8, and 21.2%, respectively. Our results indicated that the driving factors of ecosystem coupling and ecosystem multifunctionality were soil factor individual in early successional stage to plant-soil simultaneously in late successional stage. Our results also highlighted the importance of toxic weeds during the late stage of degraded succession and suggest that the expansion of toxic plants is a consequence of their greater suitability from a successional perspective. The findings of this study would provide valuable guidance for optimizing the management and restoration practice of alpine meadow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA